1
|
Goldberg LR, Baskin BM, Beierle JA, Adla Y, Kelliher JC, Yao EJ, Kirkpatrick SL, Reed ER, Jenkins DF, Cox J, Luong AM, Luttik KP, Scotellaro JA, Drescher TA, Crotts SB, Yazdani N, Ferris MT, Johnson WE, Mulligan MK, Bryant CD. Atp1a2 and Kcnj9 Are Candidate Genes Underlying Sensitivity to Oxycodone-Induced Locomotor Activation and Withdrawal-Induced Anxiety-Like Behaviors in C57BL/6 Substrains. GENES, BRAIN, AND BEHAVIOR 2025; 24:e70009. [PMID: 39801366 PMCID: PMC11725984 DOI: 10.1111/gbb.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/22/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025]
Abstract
Opioid use disorder is heritable, yet its genetic etiology is largely unknown. C57BL/6J and C57BL/6NJ mouse substrains exhibit phenotypic diversity in the context of limited genetic diversity which together can facilitate genetic discovery. Here, we found C57BL/6NJ mice were less sensitive to oxycodone (OXY)-induced locomotor activation versus C57BL/6J mice in a conditioned place preference paradigm. Narrow-sense heritability of OXY-induced locomotor activity traits ranged from 0.22 to 0.31, implicating suitability for genetic analysis. Quantitative trait locus (QTL) mapping in an F2 cross identified a chromosome 1 QTL explaining 7%-12% of the variance in OXY locomotion and anxiety-like withdrawal in the elevated plus maze. A second QTL for EPM withdrawal behavior on chromosome 5 near Gabra2 (alpha-2 subunit of GABA-A receptor) explained 9% of the variance. To narrow the chromosome 1 locus, we generated recombinant lines spanning 163-181 Mb, captured the QTL for OXY locomotor traits and withdrawal, and fine-mapped a 2.45-Mb region (170.16-172.61 Mb). Transcriptome analysis identified five, localized striatal cis-eQTL transcripts and two were confirmed at the protein level (KCNJ9, ATP1A2). Kcnj9 codes for a potassium channel (GIRK3) that is a major effector of mu opioid receptor signaling. Atp1a2 codes for a subunit of a Na+/K+ ATPase enzyme that regulates neuronal excitability and shows functional adaptations following chronic opioid administration. To summarize, we identified two candidate genes underlying the physiological and behavioral properties of opioids, with direct preclinical relevance to investigators employing these widely used substrains and clinical relevance to human genetic studies of opioid use disorder.
Collapse
Affiliation(s)
- Lisa R. Goldberg
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
- Graduate Program in Biomolecular Pharmacology, Department of Pharmacology, Physiology & BiophysicsBoston University Chobanian and Avedisian School of MedicineBostonMassachusettsUSA
| | - Britahny M. Baskin
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
- T32 Training Program on Development of Medications for Substance Use Disorder, Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
| | - Jacob A. Beierle
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
- Graduate Program in Biomolecular Pharmacology, Department of Pharmacology, Physiology & BiophysicsBoston University Chobanian and Avedisian School of MedicineBostonMassachusettsUSA
- Transformative Training Program in Addiction ScienceBoston UniversityBostonMassachusettsUSA
| | - Yahia Adla
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
| | - Julia C. Kelliher
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
| | - Emily J. Yao
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
| | - Stacey L. Kirkpatrick
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
| | - Eric R. Reed
- Graduate Program in BioinformaticsBoston UniversityBostonMassachusettsUSA
| | - David F. Jenkins
- Graduate Program in BioinformaticsBoston UniversityBostonMassachusettsUSA
| | - Jiayi Cox
- Genetics and Graduate Program in Genetics and Genomics, Program in Biomedical SciencesBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Alexander M. Luong
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
| | - Kimberly P. Luttik
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
| | - Julia A. Scotellaro
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
- Undergraduate Research Opportunity Program (UROP)Boston UniversityBostonMassachusettsUSA
| | - Timothy A. Drescher
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
| | - Sydney B. Crotts
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
| | - Neema Yazdani
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
- Graduate Program in Biomolecular Pharmacology, Department of Pharmacology, Physiology & BiophysicsBoston University Chobanian and Avedisian School of MedicineBostonMassachusettsUSA
- Transformative Training Program in Addiction ScienceBoston UniversityBostonMassachusettsUSA
| | - Martin T. Ferris
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - W. Evan Johnson
- Division of Infectious Disease, Department of Medicine, Center for Data ScienceRutgers UniversityNew BrunswickNew JerseyUSA
| | - Megan K. Mulligan
- Department of Genetics, Genomics, and InformaticsUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Camron D. Bryant
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
- T32 Training Program on Development of Medications for Substance Use Disorder, Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
| |
Collapse
|
2
|
Goldberg LR, Baskin BM, Adla Y, Beierle JA, Kelliher JC, Yao EJ, Kirkpatrick SL, Reed ER, Jenkins DF, Cox J, Luong AM, Luttik KP, Scotellaro JA, Drescher TA, Crotts SB, Yazdani N, Ferris MT, Johnson WE, Mulligan MK, Bryant CD. Atp1a2 and Kcnj9 are candidate genes underlying sensitivity to oxycodone-induced locomotor activation and withdrawal-induced anxiety-like behaviors in C57BL/6 substrains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589731. [PMID: 38798314 PMCID: PMC11123399 DOI: 10.1101/2024.04.16.589731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Opioid use disorder is heritable, yet its genetic etiology is largely unknown. C57BL/6J and C57BL/6NJ mouse substrains exhibit phenotypic diversity in the context of limited genetic diversity which together can facilitate genetic discovery. Here, we found C57BL/6NJ mice were less sensitive to oxycodone (OXY)-induced locomotor activation versus C57BL/6J mice in a conditioned place preference paradigm. Narrow-sense heritability was estimated at 0.22-0.31, implicating suitability for genetic analysis. Quantitative trait locus (QTL) mapping in an F2 cross identified a chromosome 1 QTL explaining 7-12% of the variance in OXY locomotion and anxiety-like withdrawal in the elevated plus maze. A second QTL for EPM withdrawal behavior on chromosome 5 near Gabra2 (alpha-2 subunit of GABA-A receptor) explained 9% of the variance. To narrow the chromosome 1 locus, we generated recombinant lines spanning 163-181 Mb, captured the QTL for OXY locomotor traits and withdrawal, and fine-mapped a 2.45-Mb region (170.16-172.61 Mb). Transcriptome analysis identified five, localized striatal cis-eQTL transcripts and two were confirmed at the protein level (KCNJ9, ATP1A2). Kcnj9 codes for a potassium channel (GIRK3) that is a major effector of mu opioid receptor signaling. Atp1a2 codes for a subunit of a Na+/K+ ATPase enzyme that regulates neuronal excitability and shows functional adaptations following chronic opioid administration. To summarize, we identified two candidate genes underlying the physiological and behavioral properties of opioids, with direct preclinical relevance to investigators employing these widely used substrains and clinical relevance to human genetic studies of opioid use disorder.
Collapse
Affiliation(s)
- Lisa R. Goldberg
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Graduate Program in Biomolecular Pharmacology, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA USA
| | - Britahny M. Baskin
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- T32 Training Program on Development of Medications for Substance Use Disorder, Center for Drug Discovery, Northeastern University
| | - Yahia Adla
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
| | - Jacob A. Beierle
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Graduate Program in Biomolecular Pharmacology, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA USA
- Transformative Training Program in Addiction Science, Boston University
| | - Julia C. Kelliher
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
| | - Emily J. Yao
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
| | - Stacey L. Kirkpatrick
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
| | - Eric R. Reed
- Graduate Program in Bioinformatics, Boston University, Boston, MA USA
| | - David F. Jenkins
- Graduate Program in Bioinformatics, Boston University, Boston, MA USA
| | - Jiayi Cox
- Genetics and Graduate Program in Genetics and Genomics, Program in Biomedical Sciences, Boston University Chobanian & Avedisian School of Medicine
| | - Alexander M. Luong
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
| | - Kimberly P. Luttik
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
| | - Julia A. Scotellaro
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Undergraduate Research Opportunity Program (UROP), Boston University
| | - Timothy A. Drescher
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
| | - Sydney B. Crotts
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
| | - Neema Yazdani
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Graduate Program in Biomolecular Pharmacology, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA USA
- Transformative Training Program in Addiction Science, Boston University
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, NC USA
| | - W. Evan Johnson
- Division of Infectious Disease, Department of Medicine, Center for Data Science, Rutgers University, New Jersey, USA
| | - Megan K. Mulligan
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN USA
| | - Camron D. Bryant
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- T32 Training Program on Development of Medications for Substance Use Disorder, Center for Drug Discovery, Northeastern University
| |
Collapse
|
3
|
Babenko V, Redina O, Smagin D, Kovalenko I, Galyamina A, Babenko R, Kudryavtseva N. Dorsal Striatum Transcriptome Profile Profound Shift in Repeated Aggression Mouse Model Converged to Networks of 12 Transcription Factors after Fighting Deprivation. Genes (Basel) 2021; 13:genes13010021. [PMID: 35052361 PMCID: PMC8774333 DOI: 10.3390/genes13010021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 01/18/2023] Open
Abstract
Both aggressive and aggression-deprived (AD) species represent pathologic cases intensely addressed in psychiatry and substance abuse disciplines. Previously, we reported that AD mice displayed a higher aggressive behavior score than the aggressive group, implying the manifestation of a withdrawal effect. We employed an animal model of chronic social conflicts, curated in our lab for more than 30 years. In the study, we pursued the task of evaluating key events in the dorsal striatum transcriptome of aggression experienced mice and AD species compared to controls using RNA-Seq profiling. Aggressive species were subjected to repeated social conflict encounters (fights) with regular positive (winners) experience in the course of 20 consecutive days (A20 group). This led to a profoundly shifted transcriptome expression profile relative to the control group, outlined by more than 1000 differentially expressed genes (DEGs). RNA-Seq cluster analysis revealed that elevated cyclic AMP (cAMP) signaling cascade and associated genes comprising 170 differentially expressed genes (DEGs) in aggressive (A20) species were accompanied by a downturn in the majority of other metabolic/signaling gene networks (839 DEGs) via the activation of transcriptional repressor DEGs. Fourteen days of a consecutive fighting deprivation period (AD group) featured the basic restoration of the normal (control) transcriptome expression profile yielding only 62 DEGs against the control. Notably, we observed a network of 12 coordinated DEG Transcription Factor (TF) activators from 62 DEGs in total that were distinctly altered in AD compared to control group, underlining the distinct transcription programs featuring AD group, partly retained from the aggressive encounters and not restored to normal in 14 days. We found circadian clock TFs among them, reported previously as a withdrawal effect factor. We conclude that the aggressive phenotype selection with positive reward effect (winning) manifests an addiction model featuring a distinct opioid-related withdrawal effect in AD group. Along with reporting profound transcriptome alteration in A20 group and gaining some insight on its specifics, we outline specific TF activator gene networks associated with transcriptional repression in affected species compared to controls, outlining Nr1d1 as a primary candidate, thus offering putative therapeutic targets in opioid-induced withdrawal treatment.
Collapse
Affiliation(s)
- Vladimir Babenko
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
- Correspondence:
| | - Olga Redina
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
| | - Dmitry Smagin
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
| | - Irina Kovalenko
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
| | - Anna Galyamina
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
| | - Roman Babenko
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
| | - Natalia Kudryavtseva
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint Petersburg, Russia
| |
Collapse
|
4
|
Roy K, Maji D, Deb I. Increase of Cry 1 expression is a common phenomenon of the disturbed circadian clock in ischemic stroke and opioid addiction. Biochem Biophys Res Commun 2021; 558:8-13. [PMID: 33894675 DOI: 10.1016/j.bbrc.2021.04.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/14/2021] [Indexed: 10/21/2022]
Abstract
Increasing evidences suggest the involvement of disrupted circadian clock in various pathologies including stroke and substance abuse. Here we took an attempt to do a comparative study on the regulation of circadian clock gene expression under two pathological circumstances - Opioid addiction and Ischemic stroke in the same cell line model (human neuroblastoma SH-SY5Y cells). To mimic in vivo ischemic stroke condition cells were placed in a hypoxia chamber and incubated for 10 h in balanced salt solution lacking glucose, aerated with an anaerobic gas mixture (95% N2 and 5% C02). For opioid addiction cells were treated with morphine sulphate at 10 μM dose for 48 h. We found that although circadian clock gets disturbed in both states, pattern of alteration of clock gene expressions were different and change was more severe in ischemic stroke than addiction. Interestingly, increase in expression of Cry1 showed as a common factor to both the diseases. This paper also emphasizes the interconnection between the severities of neuronal injury induced by ischemic stroke or opioid abuse to circadian system. Finally, this study will further enrich our knowledge towards the pattern of circadian rhythm disturbances under different pathological states.
Collapse
Affiliation(s)
- Kaninika Roy
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Daytee Maji
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Ishani Deb
- Department of Biochemistry, University of Calcutta, Kolkata, India.
| |
Collapse
|
5
|
Roy K, Maji D, Deb I. Oxygen glucose deprivation impairs circadian clock genes expressions in Neuro 2A neuroblastoma cells unlike C6 glioma. BIOL RHYTHM RES 2021. [DOI: 10.1080/09291016.2021.1911551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Kaninika Roy
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Daytee Maji
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Ishani Deb
- Department of Biochemistry, University of Calcutta, Kolkata, India
| |
Collapse
|
6
|
Tamura EK, Oliveira-Silva KS, Ferreira-Moraes FA, Marinho EAV, Guerrero-Vargas NN. Circadian rhythms and substance use disorders: A bidirectional relationship. Pharmacol Biochem Behav 2021; 201:173105. [PMID: 33444601 DOI: 10.1016/j.pbb.2021.173105] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 01/23/2023]
Abstract
The circadian system organizes circadian rhythms (biological cycles that occur around 24 h) that couple environmental cues (zeitgebers) with internal functions of the organism. The misalignment between circadian rhythms and external cues is known as chronodisruption and contributes to the development of mental, metabolic and other disorders, including cancer, cardiovascular diseases and addictive disorders. Drug addiction represents a global public health concern and affects the health and well-being of individuals, families and communities. In this manuscript, we reviewed evidence indicating a bidirectional relationship between the circadian system and the development of addictive disorders. We provide information on the interaction between the circadian system and drug addiction for each drug or drug class (alcohol, cannabis, hallucinogens, psychostimulants and opioids). We also describe evidence showing that drug use follows a circadian pattern, which changes with the progression of addiction. Furthermore, clock gene expression is also altered during the development of drug addiction in many brain areas related to drug reward, drug seeking and relapse. The regulation of the glutamatergic and dopaminergic neurocircuitry by clock genes is postulated to be the main circadian mechanism underlying the escalation of drug addiction. The bidirectional interaction between the circadian system and drug addiction seems to be mediated by the effects caused by each drug or class of drugs of abuse. These studies provide new insights on the development of successful strategies aimed at restoring/stabilizing circadian rhythms to reduce the risk for addiction development and relapse.
Collapse
Affiliation(s)
- Eduardo K Tamura
- Department of Health Sciences, Universidade Estadual de Santa Cruz, BR-415, Rodovia Ilhéus- Itabuna, Km-16, Salobrinho, Ilhéus, Bahia 45662-000, Brazil.
| | - Kallyane S Oliveira-Silva
- Department of Health Sciences, Universidade Estadual de Santa Cruz, BR-415, Rodovia Ilhéus- Itabuna, Km-16, Salobrinho, Ilhéus, Bahia 45662-000, Brazil
| | - Felipe A Ferreira-Moraes
- Department of Health Sciences, Universidade Estadual de Santa Cruz, BR-415, Rodovia Ilhéus- Itabuna, Km-16, Salobrinho, Ilhéus, Bahia 45662-000, Brazil
| | - Eduardo A V Marinho
- Department of Health Sciences, Universidade Estadual de Santa Cruz, BR-415, Rodovia Ilhéus- Itabuna, Km-16, Salobrinho, Ilhéus, Bahia 45662-000, Brazil
| | - Natalí N Guerrero-Vargas
- Department of Anatomy, Faculty of Medicine, Universidad Nacional Autonóma de México, Av Universidad 3000, Ciudad Universitaria, México City 04510, Mexico
| |
Collapse
|
7
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|