1
|
Lu ZK, Huang Y, Wang B, Zheng Q, Bai PY, Guo WL, Bian WJ, Niu JL. Altered resting-state functional brain activity in patients with chronic post-burn pruritus. Burns 2025; 51:107305. [PMID: 39546823 DOI: 10.1016/j.burns.2024.107305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Pruritus, a common symptom of burn wounds, arises from skin tissue damage and abnormal tissue healing. Chronic post-burn pruritus (CPBP) is defined as itching that persists for six weeks or more. The brain mechanisms underlying CPBP are not understood adequately. This study aims to explore abnormal brain function in CPBP patients and identify potential pathogenesis of pruritus. MATERIALS AND METHODS Twenty patients with CPBP and twenty healthy controls (HCs) participated in the study and underwent resting-state functional magnetic resonance imaging (fMRI) scans. Brain activity was evaluated using regional homogeneity (ReHo), amplitude of low-frequency fluctuations (ALFF), and fractional ALFF (fALFF) measures. Preprocessing of fMRI data involved steps such as slice timing correction, motion correction, and nuisance regression to account for physiological noise and head motion. Statistical analyses included two-sample t-tests to compare ReHo, ALFF, and fALFF values between CPBP patients and HCs, with age as a covariate, and Spearman correlation analysis to explore relationships between brain activity measures and clinical characteristics. RESULTS The study revealed significant differences in brain activity between CPBP patients and HCs. CPBP patients exhibited altered higher ReHo in regions including the bilateral middle frontal gyrus, medial superior frontal gyrus, precuneus, left insula, right caudate, and bilateral cerebellar tonsils, with decreased ReHo in the right precentral gyrus. ALFF analysis showed increased activity in the bilateral middle frontal gyrus, medial superior frontal gyrus, right precuneus, and right inferior frontal gyrus, and decreased ALFF in the left precentral gyrus and right postcentral gyrus. fALFF values were notably higher in the bilateral medial superior frontal gyrus and precuneus. Several brain regions with significant differences in ReHo, ALFF, and fALFF were extensively correlated with the burned area and pruritus scale scores. CONCLUSION Our data suggest that patients with CPBP show alterations in ReHo, ALFF, and fALFF values primarily in brain regions associated with the default mode network and sensorimotor areas. These results may provide valuable insights relevant to the neuropathology of CPBP.
Collapse
Affiliation(s)
- Zhi-Kai Lu
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China; CT Room, General Hospital of Tisco, The Sixth Hospital of Shanxi Medical University, Taiyuan 030008, Shanxi Province, China
| | - Yin Huang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
| | - Bin Wang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
| | - Qian Zheng
- Department of Radiology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Pei-Yi Bai
- Department of Burns, General Hospital of Tisco, The Sixth Hospital of Shanxi Medical University, Taiyuan 030008, Shanxi Province, China
| | - Wan-Li Guo
- Department of Burns, General Hospital of Tisco, The Sixth Hospital of Shanxi Medical University, Taiyuan 030008, Shanxi Province, China
| | - Wen-Jin Bian
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jin-Liang Niu
- Department of Radiology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China.
| |
Collapse
|
2
|
Sinha S, Gabriel VA, Arora RK, Shin W, Scott J, Bharadia SK, Verly M, Rahmani WM, Nickerson DA, Fraulin FO, Chatterjee P, Ahuja RB, Biernaskie JA. Interventions for postburn pruritus. Cochrane Database Syst Rev 2024; 6:CD013468. [PMID: 38837237 PMCID: PMC11152192 DOI: 10.1002/14651858.cd013468.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
BACKGROUND Postburn pruritus (itch) is a common and distressing symptom experienced on healing or healed burn or donor site wounds. Topical, systemic, and physical treatments are available to control postburn pruritus; however, it remains unclear how effective these are. OBJECTIVES To assess the effects of interventions for treating postburn pruritus in any care setting. SEARCH METHODS In September 2022, we searched the Cochrane Wounds Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), Ovid MEDLINE (including In-Process & Other Non-Indexed Citations), Ovid Embase, and EBSCO CINAHL Plus. We also searched clinical trials registries and scanned references of relevant publications to identify eligible trials. There were no restrictions with respect to language, publication date, or study setting. SELECTION CRITERIA Randomised controlled trials (RCTs) that enrolled people with postburn pruritus to compare an intervention for postburn pruritus with any other intervention, placebo or sham intervention, or no intervention. DATA COLLECTION AND ANALYSIS We used the standard methodological procedures expected by Cochrane. We used GRADE to assess the certainty of the evidence. MAIN RESULTS We included 25 RCTs assessing 21 interventions with 1166 randomised participants. These 21 interventions can be grouped into six categories: neuromodulatory agents (such as doxepin, gabapentin, pregabalin, ondansetron), topical therapies (such as CQ-01 hydrogel, silicone gel, enalapril ointment, Provase moisturiser, beeswax and herbal oil cream), physical modalities (such as massage therapy, therapeutic touch, extracorporeal shock wave therapy, enhanced education about silicone gel sheeting), laser scar revision (pulsed dye laser, pulsed high-intensity laser, fractional CO2 laser), electrical stimulation (transcutaneous electrical nerve stimulation, transcranial direct current stimulation), and other therapies (cetirizine/cimetidine combination, lemon balm tea). Most RCTs were conducted at academic hospitals and were at a high risk of performance, attrition, and detection bias. While 24 out of 25 included studies reported change in burn-related pruritus, secondary outcomes such as cost-effectiveness, pain, patient perception, wound healing, and participant health-related quality of life were not reported or were reported incompletely. Neuromodulatory agents versus antihistamines or placebo There is low-certainty evidence that doxepin cream may reduce burn-related pruritus compared with oral antihistamine (mean difference (MD) -2.60 on a 0 to 10 visual analogue scale (VAS), 95% confidence interval (CI) -3.79 to -1.42; 2 studies, 49 participants). A change of 2 points represents a minimal clinically important difference (MCID). Due to very low-certainty evidence, it is uncertain whether doxepin cream impacts the incidence of somnolence as an adverse event compared to oral antihistamine (risk ratio (RR) 0.64, 95% CI 0.32 to 1.25; 1 study, 24 participants). No data were reported on pain in the included study. There is low-certainty evidence that gabapentin may reduce burn-related pruritus compared with cetirizine (MD -2.40 VAS, 95% CI -4.14 to -0.66; 1 study, 40 participants). A change of 2 points represents a MCID. There is low-certainty evidence that gabapentin reduces the incidence of somnolence compared to cetirizine (RR 0.02, 95% CI 0.00 to 0.38; 1 study, 40 participants). No data were reported on pain in the included study. There is low-certainty evidence that pregabalin may result in a reduction in burn-related pruritus intensity compared with cetirizine with pheniramine maleate (MD -0.80 VAS, 95% CI -1.24 to -0.36; 1 study, 40 participants). A change of 2 points represents a MCID. There is low-certainty evidence that pregabalin reduces the incidence of somnolence compared to cetirizine (RR 0.04, 95% CI 0.00 to 0.69; 1 study, 40 participants). No data were reported on pain in the included study. There is moderate-certainty evidence that ondansetron probably results in a reduction in burn-related pruritus intensity compared with diphenhydramine (MD -0.76 on a 0 to 10 numeric analogue scale (NAS), 95% CI -1.50 to -0.02; 1 study, 38 participants). A change of 2 points represents a MCID. No data were reported on pain and adverse events in the included study. Topical therapies versus relevant comparators There is moderate-certainty evidence that enalapril ointment probably decreases mean burn-related pruritus compared with placebo control (MD -0.70 on a 0 to 4 scoring table for itching, 95% CI -1.04 to -0.36; 1 study, 60 participants). No data were reported on pain and adverse events in the included study. Physical modalities versus relevant comparators Compared with standard care, there is low-certainty evidence that massage may reduce burn-related pruritus (standardised mean difference (SMD) -0.86, 95% CI -1.45 to -0.27; 2 studies, 166 participants) and pain (SMD -1.32, 95% CI -1.66 to -0.98). These SMDs equate to a 4.60-point reduction in pruritus and a 3.74-point reduction in pain on a 10-point VAS. A change of 2 VAS points in itch represents a MCID. No data were reported on adverse events in the included studies. There is low-certainty evidence that extracorporeal shock wave therapy (ESWT) may reduce burn-related pruritus compared with sham stimulation (SMD -1.20, 95% CI -1.65 to -0.75; 2 studies, 91 participants). This equates to a 5.93-point reduction in pruritus on a 22-point 12-item Pruritus Severity Scale. There is low-certainty evidence that ESWT may reduce pain compared with sham stimulation (MD 2.96 on a 0 to 25 pressure pain threshold (PPT), 95% CI 1.76 to 4.16; 1 study, 45 participants). No data were reported on adverse events in the included studies. Laser scar revision versus untreated or placebo controls There is moderate-certainty evidence that pulsed high-intensity laser probably results in a reduction in burn-related pruritus intensity compared with placebo laser (MD -0.51 on a 0 to 1 Itch Severity Scale (ISS), 95% CI -0.64 to -0.38; 1 study, 49 participants). There is moderate-certainty evidence that pulsed high-intensity laser probably reduces pain compared with placebo laser (MD -3.23 VAS, 95% CI -5.41 to -1.05; 1 study, 49 participants). No data were reported on adverse events in the included studies. AUTHORS' CONCLUSIONS There is moderate to low-certainty evidence on the effects of 21 interventions. Most studies were small and at a high risk of bias related to blinding and incomplete outcome data. Where there is moderate-certainty evidence, practitioners should consider the applicability of the evidence for their patients.
Collapse
Affiliation(s)
- Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Vincent A Gabriel
- Departments of Clinical Neurosciences, Pediatrics and Surgery, University of Calgary, Calgary Firefighters' Burn Treatment Centre, Calgary, Canada
| | - Rohit K Arora
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Wisoo Shin
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Janis Scott
- Calgary Firefighters' Burn Treatment Centre, Calgary, Canada
| | - Shyla K Bharadia
- Departments of Clinical Neurosciences, Pediatrics and Surgery, University of Calgary, Calgary Firefighters' Burn Treatment Centre, Calgary, Canada
| | - Myriam Verly
- Division of Plastic and Reconstructive Surgery, University of Calgary, Calgary, Canada
| | - Waleed M Rahmani
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Duncan A Nickerson
- Department of Plastic, Burn and Wound Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Frankie Og Fraulin
- Division of Plastic and Reconstructive Surgery, University of Calgary, Calgary, Canada
- Department of Surgery, Alberta Health Services, Alberta Children's Hospital, Calgary, Canada
| | - Pallab Chatterjee
- Department of Plastic Surgery, Surgical Division, Command Hospital Air Force, Bengaluru, India
| | - Rajeev B Ahuja
- Department of Plastic Surgery, Sir Ganga Ram Hospital, New Delhi, India
| | - Jeff A Biernaskie
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
3
|
Allahham A, Rowe G, Stevenson A, Fear MW, Vallence AM, Wood FM. The impact of burn injury on the central nervous system. BURNS & TRAUMA 2024; 12:tkad037. [PMID: 38312739 PMCID: PMC10835674 DOI: 10.1093/burnst/tkad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/31/2023] [Accepted: 06/21/2023] [Indexed: 02/06/2024]
Abstract
Burn injuries can be devastating, with life-long impacts including an increased risk of hospitalization for a wide range of secondary morbidities. One area that remains not fully understood is the impact of burn trauma on the central nervous system (CNS). This review will outline the current findings on the physiological impact that burns have on the CNS and how this may contribute to the development of neural comorbidities including mental health conditions. This review highlights the damaging effects caused by burn injuries on the CNS, characterized by changes to metabolism, molecular damage to cells and their organelles, and disturbance to sensory, motor and cognitive functions in the CNS. This damage is likely initiated by the inflammatory response that accompanies burn injury, and it is often long-lasting. Treatments used to relieve the symptoms of damage to the CNS due to burn injury often target inflammatory pathways. However, there are non-invasive treatments for burn patients that target the functional and cognitive damage caused by the burn, including transcranial magnetic stimulation and virtual reality. Future research should focus on understanding the mechanisms that underpin the impact of a burn injury on the CNS, burn severity thresholds required to inflict damage to the CNS, and acute and long-term therapies to ameliorate deleterious CNS changes after a burn.
Collapse
Affiliation(s)
- Amira Allahham
- Burn injury research unit, School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
- Fiona Wood Foundation, 11 Robin Warren Dr, Murdoch WA 6150, Australia
| | - Grant Rowe
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, 90 South Street, Murdoch, Perth 6150, Australia
| | - Andrew Stevenson
- Burn injury research unit, School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
- Fiona Wood Foundation, 11 Robin Warren Dr, Murdoch WA 6150, Australia
| | - Mark W Fear
- Burn injury research unit, School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
- Fiona Wood Foundation, 11 Robin Warren Dr, Murdoch WA 6150, Australia
| | - Ann-Maree Vallence
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, 90 South Street, Murdoch, Perth 6150, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, 90 South Street, Murdoch Perth 6150, Australia
- Burn Service of Western Australia, Fiona Stanley Hospital, MNH (B), Level 4, 102-118 Murdoch Drive, Murdoch, Perth, WA 6150, Australia
| | - Fiona M Wood
- Burn injury research unit, School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
- Fiona Wood Foundation, 11 Robin Warren Dr, Murdoch WA 6150, Australia
- School of Psychology, College of Health and Education, Murdoch University, 90 South Street, Murdoch, Perth 6150, Australia
| |
Collapse
|
4
|
Rowe G, Allahham A, Edgar DW, Rurak BK, Fear MW, Wood FM, Vallence AM. Functional Brain Changes Following Burn Injury: A Narrative Review. Neurorehabil Neural Repair 2024; 38:62-72. [PMID: 38044625 PMCID: PMC10798013 DOI: 10.1177/15459683231215331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
BACKGROUND Burn injuries cause significant motor and sensory dysfunctions that can negatively impact burn survivors' quality of life. The underlying mechanisms of these burn-induced dysfunctions have primarily been associated with damage to the peripheral neural architecture, however, evidence points to a systemic influence of burn injury. Central nervous system (CNS) reorganizations due to inflammation, afferent dysfunction, and pain could contribute to persistent motor and sensory dysfunction in burn survivors. Recent evidence shows that the capacity for neuroplasticity is associated with self-reported functional recovery in burn survivors. OBJECTIVE This review first outlines motor and sensory dysfunctions following burn injury and critically examines recent literature investigating the mechanisms mediating CNS reorganization following burn injury. The review then provides recommendations for future research and interventions targeting the CNS such as non-invasive brain stimulation to improve functional recovery. CONCLUSIONS Directing focus to the CNS following burn injury, alongside the development of non-invasive methods to induce functionally beneficial neuroplasticity in the CNS, could advance treatments and transform clinical practice to improve quality of life in burn survivors.
Collapse
Affiliation(s)
- Grant Rowe
- School of Psychology, College of Health and Education, Murdoch University, Murdoch, WA, Australia
| | - Amira Allahham
- Burn Injury Research Unit, School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| | - Dale W. Edgar
- Fiona Wood Foundation, Murdoch, WA, Australia
- Burn Service of Western Australia, Fiona Stanley Hospital, MNH (B) Main Hospital, Level 4, Burns Unit, Murdoch, WA, Australia
- Institute for Health Research, The University of Notre Dame Australia, Fremantle, WA, Australia
| | - Brittany K. Rurak
- School of Psychology, College of Health and Education, Murdoch University, Murdoch, WA, Australia
| | - Mark W. Fear
- Burn Injury Research Unit, School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
- Fiona Wood Foundation, Murdoch, WA, Australia
| | - Fiona M. Wood
- Burn Injury Research Unit, School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
- Fiona Wood Foundation, Murdoch, WA, Australia
- Burn Service of Western Australia, Fiona Stanley Hospital, MNH (B) Main Hospital, Level 4, Burns Unit, Murdoch, WA, Australia
| | - Ann-Maree Vallence
- School of Psychology, College of Health and Education, Murdoch University, Murdoch, WA, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
5
|
Scrambler Therapy for Chronic Pain after Burns and Its Effect on the Cerebral Pain Network: A Prospective, Double-Blinded, Randomized Controlled Trial. J Clin Med 2022; 11:jcm11154255. [PMID: 35893347 PMCID: PMC9332864 DOI: 10.3390/jcm11154255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 02/05/2023] Open
Abstract
Chronic pain is common after burn injuries, and post-burn neuropathic pain is the most important complication that is difficult to treat. Scrambler therapy (ST) is a non-invasive modality that uses patient-specific electrocutaneous nerve stimulation and is an effective treatment for many chronic pain disorders. This study used magnetic resonance imaging (MRI) to evaluate the pain network-related mechanisms that underlie the clinical effect of ST in patients with chronic burn-related pain. This prospective, double-blinded, randomized controlled trial (ClinicalTrials.gov: NCT03865693) enrolled 43 patients who were experiencing chronic neuropathic pain after unilateral burn injuries. The patients had moderate or greater chronic pain (a visual analogue scale (VAS) score of ≥5), despite treatment using gabapentin and other physical modalities, and were randomized 1:1 to receive real or sham ST sessions. The ST was performed using the MC5-A Calmare device for ten 45 min sessions (Monday to Friday for 2 weeks). Baseline and post-treatment parameters were evaluated subjectively using the VAS score for pain and the Hamilton Depression Rating Scale; MRI was performed to identify objective central nervous system changes by measuring the cerebral blood volume (CBV). After 10 ST sessions (two weeks), the treatment group exhibited a significant reduction in pain relative to the sham group. Furthermore, relative to the pre-ST findings, the post-ST MRI evaluations revealed significantly decreased CBV in the orbito-frontal gyrus, middle frontal gyrus, superior frontal gyrus, and gyrus rectus. In addition, the CBV was increased in the precentral gyrus and postcentral gyrus of the hemisphere associated with the burned limb in the ST group, as compared with the CBV of the sham group. Thus, a clinical effect from ST on burn pain was observed after 2 weeks, and a potential mechanism for the treatment effect was identified. These findings suggest that ST may be an alternative strategy for managing chronic pain in burn patients.
Collapse
|
6
|
Li J, Bai Y, Liang Y, Zhang Y, Zhao Q, Ge J, Li D, Zhu Y, Cai G, Tao H, Wu S, Huang J. Parvalbumin Neurons in Zona Incerta Regulate Itch in Mice. Front Mol Neurosci 2022; 15:843754. [PMID: 35299695 PMCID: PMC8920991 DOI: 10.3389/fnmol.2022.843754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/08/2022] [Indexed: 12/20/2022] Open
Abstract
Pain and itch are intricately entangled at both circuitry and behavioral levels. Emerging evidence indicates that parvalbumin (PV)-expressing neurons in zona incerta (ZI) are critical for promoting nocifensive behaviors. However, the role of these neurons in itch modulation remains elusive. Herein, by combining FOS immunostaining, fiber photometry, and chemogenetic manipulation, we reveal that ZI PV neurons act as an endogenous negative diencephalic modulator for itch processing. Morphological data showed that both histamine and chloroquine stimuli induced FOS expression in ZI PV neurons. The activation of these neurons was further supported by the increased calcium signal upon scratching behavior evoked by acute itch. Behavioral data further indicated that chemogenetic activation of these neurons reduced scratching behaviors related to histaminergic and non-histaminergic acute itch. Similar neural activity and modulatory role of ZI PV neurons were seen in mice with chronic itch induced by atopic dermatitis. Together, our study provides direct evidence for the role of ZI PV neurons in regulating itch, and identifies a potential target for the remedy of chronic itch.
Collapse
Affiliation(s)
- Jiaqi Li
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Yang Bai
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Yi Liang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Yiwen Zhang
- The Cadet Team 6 of School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Qiuying Zhao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Junye Ge
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Dangchao Li
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Yuanyuan Zhu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Guohong Cai
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Huiren Tao
- Department of Spine Surgery, Shenzhen University General Hospital, Shenzhen, China
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Jing Huang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
7
|
Ramos-Fresnedo A, Perez-Vega C, Domingo RA, Cheshire WP, Middlebrooks EH, Grewal SS. Motor Cortex Stimulation for Pain: A Narrative Review of Indications, Techniques, and Outcomes. Neuromodulation 2022; 25:211-221. [DOI: 10.1016/j.neurom.2021.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
|
8
|
Joo SY, Park CH, Cho YS, Seo CH, Ohn SH. Plastic Changes in Pain and Motor Network Induced by Chronic Burn Pain. J Clin Med 2021; 10:jcm10122592. [PMID: 34208281 PMCID: PMC8230805 DOI: 10.3390/jcm10122592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/25/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Musculoskeletal diseases with chronic pain are difficult to control because of their association with both central as well as the peripheral nervous system. In burn patients, chronic pain is one of the major complications that cause persistent discomfort. The peripheral mechanisms of chronic pain by burn have been greatly revealed through studies, but the central mechanisms have not been identified. Our study aimed to characterize the cerebral plastic changes secondary to electrical burn (EB) and non-electrical burn (NEB) by measuring cerebral blood volume (CBV). Sixty patients, twenty with electrical burn (EB) and forty with non-electrical burn (NEB), having chronic pain after burn, along with twenty healthy controls, participated in the study. Voxel-wise comparisons of relative CBV maps were made among EB, NEB, and control groups over the entire brain volume. The CBV was measured as an increase and decrease in the pain and motor network including postcentral gyrus, frontal lobe, temporal lobe, and insula in the hemisphere associated with burned limbs in the whole burn group. In the EB group, CBV was decreased in the frontal and temporal lobes in the hemisphere associated with the burned side. In the NEB group, the CBV was measured as an increase or decrease in the pain and motor network in the postcentral gyrus, precentral gyrus, and frontal lobe of the hemisphere associated with the burn-affected side. Among EB and NEB groups, the CBV changes were not different. Our findings provide evidence of plastic changes in pain and motor network in patients with chronic pain by burn.
Collapse
Affiliation(s)
- So Young Joo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07024, Korea; (S.Y.J.); (Y.S.C.); (C.H.S.)
| | - Chang-hyun Park
- Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), 1202 Geneva, Switzerland;
| | - Yoon Soo Cho
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07024, Korea; (S.Y.J.); (Y.S.C.); (C.H.S.)
| | - Cheong Hoon Seo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07024, Korea; (S.Y.J.); (Y.S.C.); (C.H.S.)
| | - Suk Hoon Ohn
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Korea
- Correspondence: or
| |
Collapse
|
9
|
Carrougher GJ, McMullen K, Amtmann D, Wolfe AE, Tenney D, Schneider JC, Yeakley J, Holavanahalli RK, Patterson L, Madison C, Gibran NS. "Living Well" After Burn Injury: Using Case Reports to Illustrate Significant Contributions From the Burn Model System Research Program. J Burn Care Res 2021; 42:398-407. [PMID: 32971531 PMCID: PMC10044562 DOI: 10.1093/jbcr/iraa161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Burn Model System (BMS) program of research has been funded since 1993 by the National Institute on Disability, Independent Living, and Rehabilitation Research (NIDILRR). The overarching aim of this program is to improve outcomes and quality of life for people with burns in the areas of health and function, employment, and community living and participation. This review reports on BMS contributions that have affected the lives of individuals with a significant burn injury using case reports to associate BMS contributions with recovery. In January 2020, current BMS grantee researchers assessed peer-reviewed BMS publications from 1994 to 2020. Using case report methodology, contributions were linked to three individuals treated at one of the four Burn Model System institutions. With over 25 years of NIDILRR funding, unique BMS contributions to patient recovery were identified and categorized into one of several domains: treatment, assessment measures, sequelae, peer support, employment, and long-term functional outcomes. A second review for significant results of BMS research that add to the understanding of burn injury, pathophysiology, and recovery research was identified and categorized as injury recovery research. The case study participants featured in this review identified select NIDILRR research contributions as having direct, personal benefit to their recovery. The knowledge generation and clinical innovation that this research program has contributed to our collective understanding of recovery after burn injury is considerable. Using case study methodology with three adult burn survivors, we highlight the impact and individual significance of program findings and reinforce the recognition that the value of any clinical research must have relevance to the lives of the study population.
Collapse
Affiliation(s)
| | - Kara McMullen
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington
| | - Dagmar Amtmann
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington
| | - Audrey E Wolfe
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Jeffrey C Schneider
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | - Loren Patterson
- University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Nicole S Gibran
- Department of Surgery, University of Washington, Seattle, Washington
| |
Collapse
|
10
|
Thibaut A, Shie VL, Ryan CM, Zafonte R, Ohrtman EA, Schneider JC, Fregni F. A review of burn symptoms and potential novel neural targets for non-invasive brain stimulation for treatment of burn sequelae. Burns 2021; 47:525-537. [PMID: 33293156 PMCID: PMC8685961 DOI: 10.1016/j.burns.2020.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/30/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022]
Abstract
Burn survivors experience myriad associated symptoms such as pain, pruritus, fatigue, impaired motor strength, post-traumatic stress, depression, anxiety, and sleep disturbance. Many of these symptoms are common and remain chronic, despite current standard of care. One potential novel intervention to target these post burn symptoms is transcranial direct current stimulation (tDCS). tDCS is a non-invasive brain stimulation (NIBS) technique that modulates neural excitability of a specific target or neural network. The aim of this work is to review the neural circuits of the aforementioned clinical sequelae associated with burn injuries and to provide a scientific rationale for specific NIBS targets that can potentially treat these conditions. We ran a systematic review, following the PRISMA statement, of tDCS effects on burn symptoms. Only three studies matched our criteria. One was a feasibility study assessing cortical plasticity in chronic neuropathic pain following burn injury, one looked at the effects of tDCS to reduce pain anxiety during burn wound care, and one assessed the effects of tDCS to manage pain and pruritus in burn survivors. Current literature on NIBS in burn remains limited, only a few trials have been conducted. Based on our review and results in other populations suffering from similar symptoms as patients with burn injuries, three main areas were selected: the prefrontal region, the parietal area and the motor cortex. Based on the importance of the prefrontal cortex in the emotional component of pain and its implication in various psychosocial symptoms, targeting this region may represent the most promising target. Our review of the neural circuitry involved in post burn symptoms and suggested targeted areas for stimulation provide a spring board for future study initiatives.
Collapse
Affiliation(s)
- Aurore Thibaut
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, United States; GIGA-Institute and Neurology Department, University of Liège and University Hospital of Liège, Liège, Belgium
| | - Vivian L Shie
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, United States
| | - Colleen M Ryan
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Shriners Hospitals for Children-Boston, Boston, MA, United States
| | - Ross Zafonte
- Massachusetts General Hospital and Brigham and Women's Hospital, Boston, United States
| | - Emily A Ohrtman
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, United States
| | - Jeffrey C Schneider
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, United States.
| | - Felipe Fregni
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
11
|
Duarte D, Bauer CCC, Pinto CB, Saleh Velez FG, Estudillo-Guerra MA, Pacheco-Barrios K, Gunduz ME, Crandell D, Merabet L, Fregni F. Cortical plasticity in phantom limb pain: A fMRI study on the neural correlates of behavioral clinical manifestations. Psychiatry Res Neuroimaging 2020; 304:111151. [PMID: 32738724 PMCID: PMC9394643 DOI: 10.1016/j.pscychresns.2020.111151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/29/2022]
Abstract
The neural mechanism of phantom limb pain (PLP) is related to the intense brain reorganization process implicating plasticity after deafferentation mostly in sensorimotor system. There is a limited understanding of the association between the sensorimotor system and PLP. We used a novel task-based functional magnetic resonance imaging (fMRI) approach to (1) assess neural activation within a-priori selected regions-of-interested (motor cortex [M1], somatosensory cortex [S1], and visual cortex [V1]), (2) quantify the cortical representation shift in the affected M1, and (3) correlate these changes with baseline clinical characteristics. In a sample of 18 participants, we found a significantly increased activity in M1 and S1 as well as a shift in motor cortex representation that was not related to PLP intensity. In an exploratory analyses (not corrected for multiple comparisons), they were directly correlated with time since amputation; and there was an association between increased activity in M1 with a lack of itching sensation and V1 activation was negatively correlated with PLP. Longer periods of amputation lead to compensatory changes in sensory-motor areas; and itching seems to be a protective marker for less signal changes. We confirmed that PLP intensity is not associated with signal changes in M1 and S1 but in V1.
Collapse
Affiliation(s)
- D Duarte
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA; Department of Psychiatry and Behavioural Neurosciences, McMaster University. 100 West 5th Street, Hamilton, ON L8N 3K7, Canada
| | - C C C Bauer
- McGovern Institute for Brain Research, MIT. 43 Vassar St, Cambridge, MA 02139, USA; Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM 3001, 76230 Juriquilla, Querétaro, 76230, México; Department of Psychology, Northeastern University, 805 Columbus Avenue, Boston, MA 02139, USA.
| | - C B Pinto
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA
| | - F G Saleh Velez
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA; University of Chicago Medical Center, Department of Neurology, University of Chicago. 5841 S Maryland Ave # C411, Chicago, IL 60637, USA
| | - M A Estudillo-Guerra
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA
| | - K Pacheco-Barrios
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA; Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud. Lima, Peru. Av. La Fontana 750 Edificio El Cubo, La Molina - Perú
| | - M E Gunduz
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA
| | - D Crandell
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA
| | - L Merabet
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School. 243 Charles St, Boston, MA 02114, USA
| | - F Fregni
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA; Massachusetts General Hospital, Harvard Medical School. 55 Fruit St, Boston, MA 02114, USA.
| |
Collapse
|
12
|
Ohrtman EA, Zaninotto AL, Carvalho S, Shie VL, Leite J, Ianni CR, Kazis LE, Zafonte R, Ryan CM, Schneider JC, Fregni F. Longitudinal Clinical Trial Recruitment and Retention Challenges in the Burn Population: Lessons Learned From a Trial Examining a Novel Intervention for Chronic Neuropathic Symptoms. J Burn Care Res 2019; 40:792-795. [DOI: 10.1093/jbcr/irz084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
Long-term trials are key to understanding chronic symptoms such as pain and itch. However, challenges such as high attrition rates and poor recruitment are common when conducting research. The aim of this work was to explore these issues within a long-term randomized control trial using transcranial direct current stimulation to treat pain and itch. This parallel double blinded, placebo-controlled randomized trial was comprised of 15 transcranial direct current stimulation visits and 7 follow-up visits. Participants were over the age of 18, had a burn injury that occurred at least 3 weeks before enrollment, and reported having pain and/or itch that was moderate to severe in intensity. A total of 31 subjects were randomized into either an active or sham transcranial direct current stimulation groups. There were no significant differences between the groups in terms of age, race, education, baseline depression, or anxiety. The median dropout time was at visit 19 (visit 16 [SE = 1.98] for the sham group and visit 19 [SE = 1.98] for the active group). Analysis showed no differences in the dropout rate between groups [χ2(1) = 0.003, P = .954]. The dropout rate was 46.7% for the sham group and 43.8% for the active group. Overall, 45.2% of the subjects dropped out of the trial. Long-term clinical trials are an essential part of evaluating interventions for symptoms such as chronic pain and itch. However, as seen in this trial, long-term studies in the burn population often face recruitment and adherence challenges.
Collapse
Affiliation(s)
- Emily A Ohrtman
- Department of Physical Medicine and Rehabilitation, Boston-Harvard Burn Injury Model System, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ana Luiza Zaninotto
- Department of Physical Medicine and Rehabilitation, Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sandra Carvalho
- Neurotherapeutics and Experimental Psychopathology (NEP) Group, Psychological Neuroscience Lab, CiPsi, School of Psychology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Vivian L Shie
- Department of Physical Medicine and Rehabilitation, Boston-Harvard Burn Injury Model System, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jorge Leite
- Universidade Portucalense, Portucalense Institute for Human Development – INPP, Oporto, Portugal
| | - Corinne Rose Ianni
- Department of Physical Medicine and Rehabilitation, Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lewis E Kazis
- Department of Health Law, Policy, and Management, Boston University School of Public Health, Boston, Massachusetts
| | - Ross Zafonte
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts
| | - Colleen M Ryan
- Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, Boston, Massachusetts
| | - Jeffrey C Schneider
- Department of Physical Medicine and Rehabilitation, Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts
- Neurotherapeutics and Experimental Psychopathology (NEP) Group, Psychological Neuroscience Lab, CiPsi, School of Psychology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Felipe Fregni
- Department of Physical Medicine and Rehabilitation, Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts
- Neurotherapeutics and Experimental Psychopathology (NEP) Group, Psychological Neuroscience Lab, CiPsi, School of Psychology, University of Minho, Campus de Gualtar, Braga, Portugal
| |
Collapse
|