1
|
Enders JD, Prodoehl EK, Penn SM, Sriram A, Stucky CL. Episodic pain in Fabry disease is mediated by a heat shock protein-TRPA1 axis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.20.639340. [PMID: 40060522 PMCID: PMC11888165 DOI: 10.1101/2025.02.20.639340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Two-thirds of patients with Fabry disease suffer debilitating pain attacks triggered by exercise, fever, and exposure to environmental heat. These patients face an even greater risk of heat-related episodic pain in the face of global climate change. Almost nothing is known about the biological mechanisms underlying heat-induced pain crises in Fabry disease, and there is no preclinical model available to study Fabry crises. Here, we established the first model of heat-induced pain attacks in Fabry disease by exposing transgenic Fabry rats to environmental heat. Heat exposure precipitated robust mechanical hypersensitivity, closely matching temporal features reported by patients with Fabry disease. At the cellular level, heat exposure sensitized Fabry dorsal root ganglia (DRG) neurons to agonists for transient receptor potential cation channel A1 (TRPA1), but not TRPV1. The heat shock response, which normally confers heat-resilience, was impaired in Fabry disease, and we demonstrated that heat shock proteins (HSP70 and HSP90) regulate TRPA1. Strikingly, pharmacologically inhibiting HSP90 completely prevented cellular and behavioral sensitization by environmental heat in Fabry disease. Together, this work establishes the first model of episodic pain in Fabry disease, implicates the heat shock response in heat-evoked pain episodes, and identifies a novel heat shock protein-TRPA1 regulatory axis.
Collapse
Affiliation(s)
- Jonathan D Enders
- Department of Cell Biology, Neurobiology, and Anatomy; Medical College of Wisconsin, Milwaukee, WI
| | - Eve K Prodoehl
- Department of Cell Biology, Neurobiology, and Anatomy; Medical College of Wisconsin, Milwaukee, WI
| | - Signe M Penn
- Department of Cell Biology, Neurobiology, and Anatomy; Medical College of Wisconsin, Milwaukee, WI
| | - Anvitha Sriram
- Department of Cell Biology, Neurobiology, and Anatomy; Medical College of Wisconsin, Milwaukee, WI
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology, and Anatomy; Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
2
|
Hamilton KR, McGill LS, Campbell CM, Lanzkron SM, Carroll CP, Latremoliere A, Haythornthwaite JA, Korczeniewska OA. Genetic contributions to pain modulation in sickle cell: A focus on single nucleotide polymorphisms. GENE REPORTS 2024; 36:101983. [PMID: 39219841 PMCID: PMC11361162 DOI: 10.1016/j.genrep.2024.101983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Despite recent advances in our knowledge of genetic contributions to the highly variable sickle cell disease (SCD) phenotype, our understanding of genetic factors associated with pain sensitivity in SCD remains limited. Previous studies investigated specific variants in single candidate genes and their association with SCD pain variability. The primary aim of the current study was to expand the genes and polymorphisms tested to discover new risk genes (polymorphisms) associated with central sensitization for individuals with SCD. Methods Adults with sickle cell disease (n = 59, Mage = 36.8 ± 11.5, 65.8 % female) underwent quantitative sensory testing to examine central sensitization and general pain sensitivity. Participants reported average crisis and non-crisis pain intensities weekly using a 0-100 scale, and provided salivary samples for genotyping. The Hardy-Weinberg equilibrium was verified for controls, and allele distributions were tested with chi-square and odds ratio tests. The Benjamini-Hochberg procedure was used to control for false discovery rate. Regression analyses and Wilcoxon tests were used to test associations for normally distributed and skewed data, respectively. Results Central sensitization and general pain sensitivity were not associated with hemoglobin genotype (Ps > 0.05). Of 4145 SNPs tested, following false discovery rate adjustments, 11 SNPs (rs11575839, rs12185625, rs12289836, rs1493383, rs2233976, rs3131787, rs3739693, rs4292454, rs4364, rs4678, rs6773307) were significantly associated with central sensitization, and one SNP (rs7778077) was significantly associated with average weekly non-crisis pain. No SNPs were associated with general pain sensitivity. Conclusions These findings provide insights into genetic variants association with average non-crisis pain and central sensitization for individuals with SCD, and may provide support for genetic predictors of heightened pain experience within SCD.
Collapse
Affiliation(s)
- Katrina R. Hamilton
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Lakeya S. McGill
- Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Claudia M. Campbell
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Sophie M. Lanzkron
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - C. Patrick Carroll
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Alban Latremoliere
- Department of Neurosurgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Jennifer A. Haythornthwaite
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Olga A. Korczeniewska
- Center for Orofacial Pain and Temporomandibular Disorders, Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Newark, NJ, USA
| |
Collapse
|
3
|
Mahmoud O, Oladipo O, Mahmoud RH, Yosipovitch G. Itch: from the skin to the brain - peripheral and central neural sensitization in chronic itch. Front Mol Neurosci 2023; 16:1272230. [PMID: 37849619 PMCID: PMC10577434 DOI: 10.3389/fnmol.2023.1272230] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/05/2023] [Indexed: 10/19/2023] Open
Abstract
Similar to chronic pain, chronic itch is frequently linked to neural sensitization, a phenomenon wherein the nervous system becomes hypersensitive to stimuli. This process of neural sensitization of chronic itch is orchestrated by various signaling pathways and mediators in both the peripheral and central nervous systems. At the level of the peripheral nervous system, inflammation and neuroimmune interactions induce plastic changes to peripheral nerve fibers, thereby amplifying the transmission of itch signaling. Neural sensitization in the central nervous system occurs at both the spinal cord and brain levels. At the level of the spinal cord, it involves hyperactivity of itch-activating spinal pathways, dysfunction of spinal inhibitory circuits, and attenuation of descending supraspinal inhibitory pathways. In the brain, neural sensitization manifests as structural and functional changes to itch-associated brain areas and networks. Currently, we have a diverse array of neuroimmune-modulating therapies targeting itch neural sensitization mechanisms to help with providing relief to patients with chronic itch. Itch research is a dynamic and continually evolving field, and as we grow in our understanding of chronic itch mechanisms, so will our therapeutic toolbox. Further studies exploring the peripheral and central neural sensitization mechanisms in the context of chronic itch are needed.
Collapse
Affiliation(s)
| | | | | | - Gil Yosipovitch
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
4
|
Ehlers VL, Sadler KE, Stucky CL. Peripheral transient receptor potential vanilloid type 4 hypersensitivity contributes to chronic sickle cell disease pain. Pain 2023; 164:1874-1886. [PMID: 36897169 PMCID: PMC10363186 DOI: 10.1097/j.pain.0000000000002889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/08/2022] [Indexed: 03/11/2023]
Abstract
ABSTRACT Debilitating pain affects the lives of patients with sickle cell disease (SCD). Current pain treatment for patients with SCD fail to completely resolve acute or chronic SCD pain. Previous research indicates that the cation channel transient receptor potential vanilloid type 4 (TRPV4) mediates peripheral hypersensitivity in various inflammatory and neuropathic pain conditions that may share similar pathophysiology with SCD, but this channel's role in chronic SCD pain remains unknown. Thus, the current experiments examined whether TRPV4 regulates hyperalgesia in transgenic mouse models of SCD. Acute blockade of TRPV4 alleviated evoked behavioral hypersensitivity to punctate, but not dynamic, mechanical stimuli in mice with SCD. TRPV4 blockade also reduced the mechanical sensitivity of small, but not large, dorsal root ganglia neurons from mice with SCD. Furthermore, keratinocytes from mice with SCD showed sensitized TRPV4-dependent calcium responses. These results shed new light on the role of TRPV4 in SCD chronic pain and are the first to suggest a role for epidermal keratinocytes in the heightened sensitivity observed in SCD.
Collapse
Affiliation(s)
- Vanessa L Ehlers
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | | |
Collapse
|
5
|
Allison RL, Burand A, Torres DN, Brandow AM, Stucky CL, Ebert AD. Sickle cell disease patient plasma sensitizes iPSC-derived sensory neurons from sickle cell disease patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523446. [PMID: 36711992 PMCID: PMC9882050 DOI: 10.1101/2023.01.10.523446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Individuals living with sickle cell disease (SCD) experience severe recurrent acute and chronic pain. In order to develop novel therapies, it is necessary to better understand the neurobiological mechanisms underlying SCD pain. There are many barriers to gaining mechanistic insight into pathogenic SCD pain processes, such as differential gene expression and function of sensory neurons between humans and mice with SCD, as well as the limited availability of patient samples. These can be overcome by utilizing SCD patient-derived induced pluripotent stem cells (iPSCs) differentiated into sensory neurons (SCD iSNs). Here, we characterize the key gene expression and function of SCD iSNs to establish a model for higher-throughput investigation of intrinsic and extrinsic factors that may contribute to increased SCD patient pain. Importantly, identified roles for C-C Motif Chemokine Ligand 2 (CCL2) and endothelin 1 (ET1) in SCD pain can be recapitulated in SCD iSNs. Further, we find that plasma taken from SCD patients during acute pain increases SCD iSN calcium response to the nociceptive stimulus capsaicin compared to those treated with paired SCD patient plasma at baseline or healthy control plasma samples. Together, these data provide the framework necessary to utilize iSNs as a powerful tool to investigate the neurobiology of SCD and identify potential intrinsic mechanisms of SCD pain which may extend beyond a blood-based pathology.
Collapse
Affiliation(s)
- Reilly L. Allison
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | - Anthony Burand
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | - Damaris Nieves Torres
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI
| | - Amanda M. Brandow
- Department of Pediatrics, Section of Hematology/Oncology/Bone Marrow Transplantation, Medical College of Wisconsin, Milwaukee, WI
| | - Cheryl L. Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | - Allison D. Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
6
|
Palmaers NE, Wiegand SB, Herzog C, Echtermeyer FG, Eberhardt MJ, Leffler A. Distinct Mechanisms Account for In Vitro Activation and Sensitization of TRPV1 by the Porphyrin Hemin. Int J Mol Sci 2021; 22:ijms221910856. [PMID: 34639197 PMCID: PMC8509749 DOI: 10.3390/ijms221910856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 12/02/2022] Open
Abstract
TRPV1 mediates pain occurring during sickling episodes in sickle cell disease (SCD). We examined if hemin, a porphyrin released during intravascular hemolysis modulates TRPV1. Calcium imaging and patch clamp were employed to examine effects of hemin on mouse dorsal root ganglion (DRG) neurons and HEK293t cells expressing TRPV1 and TRPA1. Hemin induced a concentration-dependent calcium influx in DRG neurons which was abolished by the unspecific TRP-channel inhibitor ruthenium red. The selective TRPV1-inhibitor BCTC or genetic deletion of TRPV1 only marginally impaired hemin-induced calcium influx in DRG neurons. While hTRPV1 expressed in HEK293 cells mediated a hemin-induced calcium influx which was blocked by BCTC, patch clamp recordings only showed potentiated proton- and heat-evoked currents. This effect was abolished by the PKC-inhibitor chelerythrine chloride and in protein kinase C (PKC)-insensitive TRPV1-mutants. Hemin-induced calcium influx through TRPV1 was only partly PKC-sensitive, but it was abolished by the reducing agent dithiothreitol (DTT). In contrast, hemin-induced potentiation of inward currents was not reduced by DTT. Hemin also induced a redox-dependent calcium influx, but not inward currents on hTRPA1. Our data suggest that hemin induces a PKC-mediated sensitization of TRPV1. However, it also acts as a photosensitizer when exposed to UVA-light used for calcium imaging. The resulting activation of redox-sensitive ion channels such as TRPV1 and TRPA1 may be an in vitro artifact with limited physiological relevance.
Collapse
|
7
|
Abstract
Abstract
Purpose of review
As fields such as neurotoxicity evaluation and neuro-related drug research are increasing in popularity, there is a demand for the expansion of neurotoxicity research. Currently, neurotoxicity is assessed by measuring changes in weight and behavior. However, measurement of such changes does not allow the detection of subtle and inconspicuous neurotoxicity. In this review, methods for advancing neurotoxicity research are divided into molecule-, cell-, circuit-, and animal model-based methods, and the results of previous studies assessing neurotoxicity are provided and discussed.
Recent findings
In coming decades, cooperation between universities, national research institutes, industrial research institutes, governments, and the private sector will become necessary when identifying alternative methods for neurotoxicity evaluation, which is a current goal related to improving neurotoxicity assessment and an appropriate approach to neurotoxicity prediction. Many methods for measuring neurotoxicity in the field of neuroscience have recently been reported. This paper classifies the supplementary and complementary experimental measures for evaluating neurotoxicity.
Collapse
|
8
|
Argueta DA, Aich A, Muqolli F, Cherukury H, Sagi V, DiPatrizio NV, Gupta K. Considerations for Cannabis Use to Treat Pain in Sickle Cell Disease. J Clin Med 2020; 9:E3902. [PMID: 33271850 PMCID: PMC7761429 DOI: 10.3390/jcm9123902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022] Open
Abstract
Pain in Sickle Cell Disease (SCD) is a major comorbidity and unique with acute pain due to recurrent and episodic vaso-occlusive crises as well as chronic pain, which can span an individual's entire life. Opioids are the mainstay treatment for pain in SCD. Due to recent health crises raised by adverse effects including deaths from opioid use, pain management in SCD is adversely affected. Cannabis and its products are most widely used for pain in multiple conditions and also by patients with SCD on their own. With the availability of "Medical Cannabis" and approval to use cannabis as medicine across majority of States in the United States as well as over-the-counter preparations, cannabis products are being used increasingly for SCD. The reliability of many of these products remains questionable, which poses a major health risk to the vulnerable individuals seeking pain relief. Therefore, this review provides up to date insights into available categories of cannabis-based treatment strategies, their mechanism of action and pre-clinical and clinical outcomes in SCD. It provides evidence for the benefits and risks of cannabis use in SCD and cautions about the unreliable and unvalidated products that may be adulterated with life-threatening non-cannabis compounds.
Collapse
Affiliation(s)
- Donovan A. Argueta
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92868, USA; (D.A.A.); (A.A.); (F.M.); (H.C.)
| | - Anupam Aich
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92868, USA; (D.A.A.); (A.A.); (F.M.); (H.C.)
| | - Fjolla Muqolli
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92868, USA; (D.A.A.); (A.A.); (F.M.); (H.C.)
| | - Hemanth Cherukury
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92868, USA; (D.A.A.); (A.A.); (F.M.); (H.C.)
| | - Varun Sagi
- Department of Hematology, Oncology, and Transplantation, University of Minnesota, Twin Cities, MN 55455, USA;
| | - Nicholas V. DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA;
| | - Kalpna Gupta
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92868, USA; (D.A.A.); (A.A.); (F.M.); (H.C.)
- Southern California Institute for Research and Education, Long Beach VA Medical Center, Long Beach, CA 90822, USA
| |
Collapse
|
9
|
Painful and painless mutations of SCN9A and SCN11A voltage-gated sodium channels. Pflugers Arch 2020; 472:865-880. [PMID: 32601768 PMCID: PMC7351857 DOI: 10.1007/s00424-020-02419-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/25/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022]
Abstract
Chronic pain is a global problem affecting up to 20% of the world’s population and has a significant economic, social and personal cost to society. Sensory neurons of the dorsal root ganglia (DRG) detect noxious stimuli and transmit this sensory information to regions of the central nervous system (CNS) where activity is perceived as pain. DRG neurons express multiple voltage-gated sodium channels that underlie their excitability. Research over the last 20 years has provided valuable insights into the critical roles that two channels, NaV1.7 and NaV1.9, play in pain signalling in man. Gain of function mutations in NaV1.7 cause painful conditions while loss of function mutations cause complete insensitivity to pain. Only gain of function mutations have been reported for NaV1.9. However, while most NaV1.9 mutations lead to painful conditions, a few are reported to cause insensitivity to pain. The critical roles these channels play in pain along with their low expression in the CNS and heart muscle suggest they are valid targets for novel analgesic drugs.
Collapse
|
10
|
Takaoka K, Cyril AC, Jinesh S, Radhakrishnan R. Mechanisms of pain in sickle cell disease. Br J Pain 2020; 15:213-220. [PMID: 34055342 DOI: 10.1177/2049463720920682] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objectives The hallmark of sickle cell disease (SCD) is acute and chronic pain, and the pain dominates the clinical characteristics of SCD patients. Although pharmacological treatments of SCD targeting the disease mechanisms have been improved, many SCD patients suffer from pain. To overcome the pain of the disease, there have been renewed requirements to understand the novel molecular mechanisms of the pain in SCD. Methods We concisely summarized the molecular mechanisms of SCD-related acute and chronic pain, focusing on potential drug targets to treat pain. Results Acute pain of SCD is caused by vaso-occulusive crisis (VOC), impaired oxygen supply or infarction-reperfusion tissue injuries. In VOC, inflammatory cytokines include tryptase activate nociceptors and transient receptor potential vanilloid type 1. In tissue injury, the secondary inflammatory response is triggered and causes further tissue injuries. Tissue injury generates cytokines and pain mediators including bradykinin, and they activate nociceptive afferent nerves and trigger pain. The main causes of chronic pain are from extended hyperalgesia after a VOC and central sensitization. Neuropathic pain could be due to central or peripheral nerve injury, and protein kinase C might be associated with the pain. In central sensitization, neuroplasticity in the brain and the activation of glial cells may be related with the pain. Discussion In this review, we summarized the molecular mechanisms of SCD-related acute and chronic pain. The novel treatments targeting the disease mechanisms would interrupt complications of SCD and reduce the pain of the SCD patients.
Collapse
Affiliation(s)
- Kensuke Takaoka
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Asha Caroline Cyril
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | | | - Rajan Radhakrishnan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| |
Collapse
|
11
|
Molokie RE, Wang ZJ, Yao Y, Powell-Roach KL, Schlaeger JM, Suarez ML, Shuey DA, Angulo V, Carrasco J, Ezenwa MO, Fillingim RB, Wilkie DJ. Sensitivities to Thermal and Mechanical Stimuli: Adults With Sickle Cell Disease Compared to Healthy, Pain-Free African American Controls. THE JOURNAL OF PAIN 2019; 21:957-967. [PMID: 31733363 DOI: 10.1016/j.jpain.2019.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 02/02/2023]
Abstract
Evidence supports, but is inconclusive that sensitization contributes to chronic pain in some adults with sickle cell disease (SCD). We determined the prevalence of pain sensitization among adults with SCD pain compared with pain-free healthy adults. In a cross sectional, single session study of 186 African American outpatients with SCD pain (age 18-74 years, 59% female) and 124 healthy age, gender, and race matched control subjects (age 18-69 years, 49% female), we compared responses to standard thermal (Medoc TSA II) and mechanical stimuli (von Frey filaments). Although we observed no significant differences in thermal thresholds between controls and patients, patients with SCD had lower pain thresholds to mechanical stimuli and reported higher pain intensity scores to all thermal and mechanical stimuli at a non-painful body site. Compared with controls, about twice as many patients with SCD showed sensitization: 12% versus 23% at the anterior forearm site (P = .02), and 16% versus 32% across 3 tested sites (P = .004). Among patients with SCD, 18% exhibited some element of central sensitization. Findings indicate that persistent allodynia and hyperalgesia can be part of the SCD pain experience and should be considered when selecting therapies for SCD pain. PERSPECTIVE: Compared with matched healthy controls, quantitative sensory testing in adults with pain and sickle cell disease (SCD) demonstrates higher prevalence of sensitization, including central sensitization. The findings of allodynia and hyperalgesia may indicate neuropathic pain and could contribute to a paradigm shift in assessment and treatment of SCD pain.
Collapse
Affiliation(s)
- Robert E Molokie
- College of Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; College of Pharmacy, Department of Biopharmaceutical Sciences, College of Nursing, College of Nursing, University of Illinois at Chicago, Chicago, Illinois; Jesse Brown VA Medical Center, Chicago, Illinois
| | - Zaijie J Wang
- College of Pharmacy, Department of Biopharmaceutical Sciences, College of Nursing, College of Nursing, University of Illinois at Chicago, Chicago, Illinois
| | - Yingwei Yao
- Department of Biobehavioral Health Science, University of Illinois at Chicago, Chicago, Illinois; College of Nursing, Department of Biobehavioral Nursing Science, University of Florida, Gainesville, Florida
| | - Keesha L Powell-Roach
- Department of Women, Children and Family Health Science, University of Illinois at Chicago, Chicago, Illinois; College of Nursing, Department of Biobehavioral Nursing Science, University of Florida, Gainesville, Florida; College of Dentistry, Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, Florida
| | - Judith M Schlaeger
- Department of Women, Children and Family Health Science, University of Illinois at Chicago, Chicago, Illinois
| | - Marie L Suarez
- Department of Biobehavioral Health Science, University of Illinois at Chicago, Chicago, Illinois
| | - David A Shuey
- Department of Biobehavioral Health Science, University of Illinois at Chicago, Chicago, Illinois
| | - Veronica Angulo
- Department of Biobehavioral Health Science, University of Illinois at Chicago, Chicago, Illinois
| | - Jesus Carrasco
- Department of Biobehavioral Health Science, University of Illinois at Chicago, Chicago, Illinois
| | - Miriam O Ezenwa
- College of Nursing, Department of Biobehavioral Nursing Science, University of Florida, Gainesville, Florida
| | - Roger B Fillingim
- College of Dentistry, Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, Florida
| | - Diana J Wilkie
- Department of Biobehavioral Health Science, University of Illinois at Chicago, Chicago, Illinois; College of Nursing, Department of Biobehavioral Nursing Science, University of Florida, Gainesville, Florida.
| |
Collapse
|
12
|
Du S, Lin C, Tao YX. Updated mechanisms underlying sickle cell disease-associated pain. Neurosci Lett 2019; 712:134471. [PMID: 31505241 PMCID: PMC6815235 DOI: 10.1016/j.neulet.2019.134471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Sickle cell disease (SCD) is one of the most common severe genetic diseases around the world. A majority of SCD patients experience intense pain, leading to hospitalization, and poor quality of life. Opioids form the bedrock of pain management, but their long-term use is associated with severe side effects including hyperalgesia, tolerance and addiction. Recently, excellent research has shown some new potential mechanisms that underlie SCD-associated pain. This review focused on how transient receptor potential vanilloid 1, endothelin-1/endothelin type A receptor, and cannabinoid receptors contributed to the pathophysiology of SCD-associated pain. Understanding these mechanisms may open a new avenue in managing SCD-associated pain and improving quality of life for SCD patients.
Collapse
Affiliation(s)
- Shibin Du
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Corinna Lin
- Rutgers Graduate School of Biomedical Sciences, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA; Rutgers Graduate School of Biomedical Sciences, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA.
| |
Collapse
|
13
|
Abstract
Introduction: Acute pain from episodic vaso-occlusion (VOC) spans the lifespan of almost everyone with sickle cell disease (SCD), while additional chronic pain develops in susceptible individuals in early adolescences. Frequent acute pain with chronic pain causes significant physical and psychological morbidity, and frequent health-care utilization. Available pharmacologic therapies reduce acute pain frequency but few evidence-based therapies are available for chronic pain. Areas covered: An extensive PubMed literature search was performed with appropriate search criteria. The pathophysiology of acute pain from VOC in SCD is very complex with many events subsequent to sickle polymer formation. Sensitization of pain pathways and alterations of brain networks contributes to the experience of chronic pain. Numerous therapies targeting putative VOC mechanisms are in clinical trials, and show considerable promise. Alternative analgesic treatments for acute and chronic pain have been examined in small patient cohorts, but formal clinical trials are lacking. Expert opinion: Childhood is likely a critical window for prevention of acute and later chronic pain. New multimodal analgesic therapies are needed, particularly for chronic pain, and should be examined in clinical trials. Given the multifactorial nature of both pain and VOC, simultaneously targeting multiple mechanisms may be the optimal approach for effective preventive therapies.
Collapse
Affiliation(s)
- Carlton Dampier
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta , Atlanta , GA , USA
| |
Collapse
|