1
|
Teng C, Zhang W, Zhang D, Shi X, Wu X, Qiao H, Guan C, Hu X, Zhang N. Association between clinical features and decreased degree centrality and variability in dynamic functional connectivity in the obsessive-compulsive disorder. Neuroimage Clin 2024; 44:103665. [PMID: 39270630 PMCID: PMC11416513 DOI: 10.1016/j.nicl.2024.103665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Neuroimaging studies have indicated widespread brain structural and functional disruptions in patients with obsessive-compulsive disorder (OCD). However, the underlying mechanism of these changes remains unclear. A total of 45 patients with OCD and 42 healthy controls (HC) were enrolled. The study investigated local degree centrality (DC) abnormalities and employed abnormal regions of DC as seeds to investigate variability in dynamic functional connectivity (dFC) in the whole brain using a sliding window approach to analyze resting-state functional magnetic resonance imaging. The relationship between abnormal DC and dFC as well as the clinical features of OCD were examined using correlation analysis. Our findings suggested decreased DC in the bilateral thalamus, bilateral precuneus, and bilateral cuneus in OCD patients and a nominally negative correlation between the DC value in the thalamus and illness severity measured using the Yale-Brown Obsessive Compulsive Scale (Y-BOCS). In addition, seed-based dFC analysis showed that compared to measurements in the HC, the patients had decreased dFC variability between the left thalamus and the left cuneus and right lingual gyrus, and between the bilateral cuneus and bilateral postcentral gyrus, and a nominally positive correlation between the duration of illness and dFC variability between the left cuneus and left postcentral gyrus. These results indicated that OCD patients had decreased hub importance in the bilateral thalamus and cuneus throughout the entire brain. This reduction was associated with impaired coupling with dynamic function in the visual cortex and sensorimotor network and provided novel insights into the neurophysiological mechanisms underlying OCD.
Collapse
Affiliation(s)
- Changjun Teng
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Zhang
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Da Zhang
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - XiaoMeng Shi
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Wu
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huifen Qiao
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chengbin Guan
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Xiao Hu
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Ning Zhang
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Yan H, Shan X, Li H, Liu F, Xie G, Li P, Guo W. Cerebellar functional connectivity and its associated genes: A longitudinal study in drug-naive patients with obsessive-compulsive disorder. J Psychiatr Res 2024; 177:378-391. [PMID: 39083996 DOI: 10.1016/j.jpsychires.2024.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/19/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
The role of cerebellar-cerebral functional connectivity (CC-FC) in obsessive-compulsive disorder (OCD), its trajectory post-pharmacotherapy, and its potential as a prognostic biomarker and genetic mechanism remain uncertain. To address these gaps, this study included 37 drug-naive OCD patients and 37 healthy controls (HCs). Participants underwent baseline functional magnetic resonance imaging (fMRI), followed by four weeks of paroxetine treatment for patients with OCD, and another fMRI scan post-treatment. We examined seed-based CC-FC differences between the patients and HCs, and pre- and post-treatment patients. Support vector regression (SVR) based on CC-FC was performed to predict treatment response. Correlation analysis explored associations between CC-FC and clinical features, as well as gene profiles. Compared to HCs, drug-naive OCD patients exhibited reduced CC-FC in executive, affective-limbic, and sensorimotor networks, with specific genetic profiles associated with altered CC-FC. Gene enrichment analyses highlighted the involvement of these genes in various biological processes, molecular functions, and pathways. Post-treatment, the patients showed partial clinical improvement and partial restoration of the previously decreased CC-FC. Abnormal CC-FC at baseline correlated negatively with compulsions severity and social functional impairment, while changes in CC-FC correlated with cognitive function changes post-treatment. CC-FC emerged as a potential predictor of symptom severity in patients following paroxetine treatment. This longitudinal resting-state fMRI study underscores the crucial role of CC-FC in the neuropsychological mechanisms of OCD and its pharmacological treatment. Transcriptome-neuroimaging spatial correlation analyses provide insight into the neurobiological mechanisms underlying OCD pathology. Furthermore, SVR analyses hold promise for advancing precision medicine approaches in treating patients with OCD.
Collapse
Affiliation(s)
- Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xiaoxiao Shan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
3
|
Perera MPN, Gotsis ES, Bailey NW, Fitzgibbon BM, Fitzgerald PB. Exploring functional connectivity in large-scale brain networks in obsessive-compulsive disorder: a systematic review of EEG and fMRI studies. Cereb Cortex 2024; 34:bhae327. [PMID: 39152672 PMCID: PMC11329673 DOI: 10.1093/cercor/bhae327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/19/2024] Open
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating psychiatric condition that is difficult to treat due to our limited understanding of its pathophysiology. Functional connectivity in brain networks, as evaluated through neuroimaging studies, plays a pivotal role in understanding OCD. While both electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) have been extensively employed in OCD research, few have fully synthesized their findings. To bridge this gap, we reviewed 166 studies (10 EEG, 156 fMRI) published up to December 2023. In EEG studies, OCD exhibited lower connectivity in delta and alpha bands, with inconsistent findings in other frequency bands. Resting-state fMRI studies reported conflicting connectivity patterns within the default mode network (DMN) and sensorimotor cortico-striato-thalamo-cortical (CSTC) circuitry. Many studies observed decreased resting-state connectivity between the DMN and salience network (SN), implicating the 'triple network model' in OCD. Task-related hyperconnectivity within the DMN-SN and hypoconnectivity between the SN and frontoparietal network suggest OCD-related cognitive inflexibility, potentially due to triple network dysfunction. In conclusion, our review highlights diverse connectivity differences in OCD, revealing complex brain network interplay that contributes to symptom manifestation. However, the presence of conflicting findings underscores the necessity for targeted research to achieve a comprehensive understanding of the pathophysiology of OCD.
Collapse
Affiliation(s)
- M Prabhavi N Perera
- College of Health and Medicine, Australian National University, Building 4, The Canberra Hospital, Hospital Rd, Garran ACT 2605, Australia
- Monarch Research Institute, Monarch Mental Health Group, Level 4, 131 York Street Sydney NSW 2000, Australia
| | - Efstathia S Gotsis
- College of Health and Medicine, Australian National University, Building 4, The Canberra Hospital, Hospital Rd, Garran ACT 2605, Australia
- Monarch Research Institute, Monarch Mental Health Group, Level 4, 131 York Street Sydney NSW 2000, Australia
| | - Neil W Bailey
- College of Health and Medicine, Australian National University, Building 4, The Canberra Hospital, Hospital Rd, Garran ACT 2605, Australia
- Monarch Research Institute, Monarch Mental Health Group, Level 4, 131 York Street Sydney NSW 2000, Australia
| | - Bernadette M Fitzgibbon
- College of Health and Medicine, Australian National University, Building 4, The Canberra Hospital, Hospital Rd, Garran ACT 2605, Australia
- Monarch Research Institute, Monarch Mental Health Group, Level 4, 131 York Street Sydney NSW 2000, Australia
| | - Paul B Fitzgerald
- College of Health and Medicine, Australian National University, Building 4, The Canberra Hospital, Hospital Rd, Garran ACT 2605, Australia
- Monarch Research Institute, Monarch Mental Health Group, Level 4, 131 York Street Sydney NSW 2000, Australia
| |
Collapse
|
4
|
Horii-Hayashi N, Masuda K, Kato T, Kobayashi K, Inutsuka A, Nambu MF, Tanaka KZ, Inoue K, Nishi M. Entrance-sealing behavior in the home cage: a defensive response to potential threats linked to the serotonergic system and manifestation of repetitive/stereotypic behavior in mice. Front Behav Neurosci 2024; 17:1289520. [PMID: 38249128 PMCID: PMC10799337 DOI: 10.3389/fnbeh.2023.1289520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
The security of animal habitats, such as burrows and nests, is vital for their survival and essential activities, including eating, mating, and raising offspring. Animals instinctively exhibit defensive behaviors to protect themselves from imminent and potential threats. In 1963, researchers reported wild rats sealing the entrances to their burrows from the inside using materials such as mud, sand, and vegetation. This behavior, known as "entrance sealing (ES)," involves repetitive movements of their nose/mouth and forepaws and is likely a proactive measure against potential intruders, which enhances burrow security. These observations provide important insights into the animals' ability to anticipate potential threats that have not yet occurred and take proactive actions. However, this behavior lacks comprehensive investigation, and the neural mechanisms underpinning it remain unclear. Hypothalamic perifornical neurons expressing urocortin-3 respond to novel objects/potential threats and modulate defensive responses to the objects in mice, including risk assessment and burying. In this study, we further revealed that chemogenetic activation of these neurons elicited ES-like behavior in the home-cage. Furthermore, behavioral changes caused by activating these neurons, including manifestations of ES-like behavior, marble-burying, and risk assessment/burying of a novel object, were effectively suppressed by selective serotonin-reuptake inhibitors. The c-Fos analysis indicated that ES-like behavior was potentially mediated through GABAergic neurons in the lateral septum. These findings underscore the involvement of hypothalamic neurons in the anticipation of potential threats and proactive defense against them. The links of this security system with the manifestation of repetitive/stereotypic behaviors and the serotonergic system provide valuable insights into the mechanisms underlying the symptoms of obsessive-compulsive disorder.
Collapse
Affiliation(s)
- Noriko Horii-Hayashi
- Anatomy and Cell Biology, Department of Medicine, Nara Medical University, Kashihara, Japan
| | - Kazuya Masuda
- Anatomy and Cell Biology, Department of Medicine, Nara Medical University, Kashihara, Japan
| | - Taika Kato
- Anatomy and Cell Biology, Department of Medicine, Nara Medical University, Kashihara, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, Japan
| | - Ayumu Inutsuka
- Department of Physiology, Jichi Medical University, Shimono, Japan
| | - Miyu F. Nambu
- Memory Research Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Kunigami-gun, Japan
| | - Kazumasa Z. Tanaka
- Memory Research Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Kunigami-gun, Japan
| | - Koichi Inoue
- Anatomy and Cell Biology, Department of Medicine, Nara Medical University, Kashihara, Japan
| | - Mayumi Nishi
- Anatomy and Cell Biology, Department of Medicine, Nara Medical University, Kashihara, Japan
| |
Collapse
|
5
|
Huang FF, Yang XY, Luo J, Yang XJ, Meng FQ, Wang PC, Li ZJ. Functional and structural MRI based obsessive-compulsive disorder diagnosis using machine learning methods. BMC Psychiatry 2023; 23:792. [PMID: 37904114 PMCID: PMC10617132 DOI: 10.1186/s12888-023-05299-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/23/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND The success of neuroimaging in revealing neural correlates of obsessive-compulsive disorder (OCD) has raised hopes of using magnetic resonance imaging (MRI) indices to discriminate patients with OCD and the healthy. The aim of this study was to explore MRI based OCD diagnosis using machine learning methods. METHODS Fifty patients with OCD and fifty healthy subjects were allocated into training and testing set by eight to two. Functional MRI (fMRI) indices, including amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF), regional homogeneity (ReHo), degree of centrality (DC), and structural MRI (sMRI) indices, including volume of gray matter, cortical thickness and sulcal depth, were extracted in each brain region as features. The features were reduced using least absolute shrinkage and selection operator regression on training set. Diagnosis models based on single MRI index / combined MRI indices were established on training set using support vector machine (SVM), logistic regression and random forest, and validated on testing set. RESULTS SVM model based on combined fMRI indices, including ALFF, fALFF, ReHo and DC, achieved the optimal performance, with a cross-validation accuracy of 94%; on testing set, the area under the receiver operating characteristic curve was 0.90 and the validation accuracy was 85%. The selected features were located both within and outside the cortico-striato-thalamo-cortical (CSTC) circuit of OCD. Models based on single MRI index / combined fMRI and sMRI indices underperformed on the classification, with a largest validation accuracy of 75% from SVM model of ALFF on testing set. CONCLUSION SVM model of combined fMRI indices has the greatest potential to discriminate patients with OCD and the healthy, suggesting a complementary effect of fMRI indices on the classification; the features were located within and outside the CSTC circuit, indicating an importance of including various brain regions in the model.
Collapse
Affiliation(s)
- Fang-Fang Huang
- Department of Clinical Psychology, The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Department of Preventive Medicine, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Henan, China
| | - Xiang-Yun Yang
- Department of Clinical Psychology, The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jia Luo
- Department of Clinical Psychology, The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Xiao-Jie Yang
- Department of Clinical Psychology, The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Fan-Qiang Meng
- Department of Clinical Psychology, The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Peng-Chong Wang
- Department of Clinical Psychology, The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Zhan-Jiang Li
- Department of Clinical Psychology, The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Li H, Wang Y, Xi H, Zhang J, Zhao M, Jia X. Alterations of regional spontaneous brain activity in obsessive-compulsive disorders: A meta-analysis. J Psychiatr Res 2023; 165:325-335. [PMID: 37573797 DOI: 10.1016/j.jpsychires.2023.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 07/04/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Recent studies using resting-state functional magnetic resonance imaging (rs-fMRI) demonstrate that there is aberrant regional spontaneous brain activity in obsessive-compulsive disorders (OCD). Nevertheless, the results of previous studies are contradictory, especially in the abnormal brain regions and the directions of their activities. It is necessary to perform a meta-analysis to identify the common pattern of altered regional spontaneous brain activity in patients with OCD. METHODS The present study conducted a systematic search for studies in English published up to May 2023 in PubMed, Web of Science, and Embase. These studies measured differences in regional spontaneous brain activity at the whole brain level using regional homogeneity (ReHo), the amplitude of low-frequency fluctuations (ALFF) and the fractional amplitude of low-frequency fluctuations (fALFF). Then the Anisotropic effect-size version of seed-based d mapping (AES-SDM) was used to investigate the consistent abnormality of regional spontaneous brain activity in patients with OCD. RESULTS 27 studies (33 datasets) were included with 1256 OCD patients (650 males, 606 females) and 1176 healthy controls (HCs) (588 males, 588 females). Compared to HCs, patients with OCD showed increased spontaneous brain activity in the right inferior parietal gyrus (Brodmann Area 39), left median cingulate and paracingulate gyri (Brodmann Area 24), bilateral inferior cerebellum, right middle frontal gyrus (Brodmann Area 46), left inferior frontal gyrus in triangular part (Brodmann Area 45) and left middle frontal gyrus in orbital part (Brodmann Area 11). Meanwhile, decreased spontaneous brain activity was identified in the right precentral gyrus (Brodmann Area 4), right insula (Brodmann Area 48), left postcentral gyrus (Brodmann Area 43), bilateral superior cerebellum and left caudate (Brodmann Area 25). CONCLUSIONS This meta-analysis provided a quantitative review of spontaneous brain activity in OCD. The results demonstrated that the brain regions in the frontal lobe, sensorimotor cortex, cerebellum, caudate and insula are crucially involved in the pathophysiology of OCD. This research contributes to the understanding of the pathophysiologic mechanism underlying OCD and could provide a new perspective on future diagnosis and treatment of OCD.
Collapse
Affiliation(s)
- Huayun Li
- School of Psychology, Zhejiang Normal University, Jinhua, China; Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China; Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Jinhua, China.
| | - Yihe Wang
- School of Psychology, Zhejiang Normal University, Jinhua, China; Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China; Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Jinhua, China
| | - Hongyu Xi
- School of Western Language, Heilongjiang University, Harbin, China
| | - Jianxin Zhang
- School of Foreign Studies, China University of Petroleum (East China), Qingdao, China
| | - Mengqi Zhao
- School of Psychology, Zhejiang Normal University, Jinhua, China; Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Xize Jia
- School of Psychology, Zhejiang Normal University, Jinhua, China; Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China.
| |
Collapse
|
7
|
Bendriss G, MacDonald R, McVeigh C. Microbial Reprogramming in Obsessive-Compulsive Disorders: A Review of Gut-Brain Communication and Emerging Evidence. Int J Mol Sci 2023; 24:11978. [PMID: 37569349 PMCID: PMC10419219 DOI: 10.3390/ijms241511978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating mental health disorder characterized by intrusive thoughts (obsessions) and repetitive behaviors (compulsions). Dysbiosis, an imbalance in the gut microbial composition, has been associated with various health conditions, including mental health disorders, autism, and inflammatory diseases. While the exact mechanisms underlying OCD remain unclear, this review presents a growing body of evidence suggesting a potential link between dysbiosis and the multifaceted etiology of OCD, interacting with genetic, neurobiological, immunological, and environmental factors. This review highlights the emerging evidence implicating the gut microbiota in the pathophysiology of OCD and its potential as a target for novel therapeutic approaches. We propose a model that positions dysbiosis as the central unifying element in the neurochemical, immunological, genetic, and environmental factors leading to OCD. The potential and challenges of microbial reprogramming strategies, such as probiotics and fecal transplants in OCD therapeutics, are discussed. This review raises awareness of the importance of adopting a holistic approach that considers the interplay between the gut and the brain to develop interventions that account for the multifaceted nature of OCD and contribute to the advancement of more personalized approaches.
Collapse
|
8
|
Ding Z, Ding Z, Chen Y, Lv D, Li T, Shang T, Ma J, Zhan C, Yang X, Xiao J, Sun Z, Wang N, Guo W, Li C, Yu Z, Li P. Decreased gray matter volume and dynamic functional alterations in medicine-free obsessive-compulsive disorder. BMC Psychiatry 2023; 23:289. [PMID: 37098479 PMCID: PMC10131325 DOI: 10.1186/s12888-023-04740-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/31/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Previous studies discovered the presence of abnormal structures and functions in the brain regions of patients with obsessive-compulsive disorder (OCD). Nevertheless, whether structural changes in brain regions are coupled with alterations in dynamic functional connectivity (dFC) at rest in medicine-free patients with OCD remains vague. METHODS Three-dimensional T1-weighed magnetic resonance imaging (MRI) and resting-state functional MRI were performed on 50 medicine-free OCD and 50 healthy controls (HCs). Firstly, the differences in gray matter volume (GMV) between OCD and HCs were compared. Then, brain regions with aberrant GMV were used as seeds for dFC analysis. The relationship of altered GMV and dFC with clinical parameters in OCD was explored using partial correlation analysis. Finally, support vector machine was applied to examine whether altered multimodal imaging data might be adopted to distinguish OCD from HCs. RESULTS Our findings indicated that GMV in the left superior temporal gyrus (STG) and right supplementary motor area (SMA) was reduced in OCD, and the dFC between the left STG and the left cerebellum Crus I and left thalamus, and between the right SMA and right dorsolateral prefrontal cortex (DLPFC) and left precuneus was decreased at rest in OCD. The brain regions both with altered GMV and dFC values could discriminate OCD from HCs with the accuracy of 0.85, sensitivity of 0.90 and specificity of 0.80. CONCLUSION The decreased gray matter structure coupling with dynamic function in the left STG and right SMA at rest may be crucial in the pathophysiology of OCD. TRIAL REGISTRATION Study on the mechanism of brain network in obsessive-compulsive disorder with multi-model magnetic resonance imaging (registration date: 08/11/2017; registration number: ChiCTR-COC-17,013,301).
Collapse
Affiliation(s)
- Zhenning Ding
- Medical Technology Department, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Zhipeng Ding
- Medical Technology Department, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Yunhui Chen
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Dan Lv
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Tong Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Tinghuizi Shang
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Jidong Ma
- Department of Psychiatry, Baiyupao Psychiatric Hospital of Harbin, Harbin, Heilongjiang, 150050, China
| | - Chuang Zhan
- Department of Psychiatry, Baiyupao Psychiatric Hospital of Harbin, Harbin, Heilongjiang, 150050, China
| | - Xu Yang
- Medical Technology Department, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Jian Xiao
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Zhenghai Sun
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Na Wang
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Wenbin Guo
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Chengchong Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China.
| | - Zengyan Yu
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China.
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China.
| |
Collapse
|
9
|
Lin S, Nie M, Wang B, Duan S, Huang Q, Wu N, Chen Z, Zhao H, Han Y. Intrinsic brain abnormalities in chronic rhinosinusitis associated with mood and cognitive function. Front Neurosci 2023; 17:1131114. [PMID: 36968506 PMCID: PMC10036396 DOI: 10.3389/fnins.2023.1131114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
BackgroundChronic rhinosinusitis (CRS) poses a risk for developing emotional and cognitive disorders. However, the neural evidence for this association is largely unclear. Resting-state functional magnetic resonance imaging (rs-fMRI) analysis can demonstrate abnormal brain activity and functional connectivity and contribute to explaining the potential pathophysiology of CRS-related mood and cognitive alterations.MethodsChronic rhinosinusitis patients (CRS, n = 26) and gender- and age-matched healthy control subjects (HCs, n = 38) underwent resting-state functional MRI scanning. The amplitude of low-frequency fluctuations (ALFF) was calculated to observe the intrinsic brain activity. The brain region with altered ALFF was further selected as the seed for functional connectivity (FC) analysis. Correlation analysis was performed between the ALFF/FC and clinical parameters in CRS patients.ResultsCompared with HCs, CRS patients exhibited significantly increased ALFF in the left orbital superior frontal cortex and reduced connectivity in the right precuneus using the orbital superior frontal cortex as the seed region. The magnitude of the orbital superior frontal cortex increased with inflammation severity. In addition, ALFF values in the orbital superior frontal cortex were positively correlated with the hospital anxiety and depression scale (HADS) scores. The ROC curves of altered brain regions indicated great accuracy in distinguishing between CRS patients and HCs.ConclusionIn this study, patients with CRS showed increased neural activity in the orbital superior frontal cortex, a critical region in emotional regulation, and this region also indicated hypoconnectivity to the precuneus with a central role in modulating cognition. This study provided preliminary insights into the potential neural mechanism related to mood and cognitive dysfunctions in CRS patients.
Collapse
Affiliation(s)
- Simin Lin
- Department of Radiology, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Miaomiao Nie
- Department of Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Bingshan Wang
- Department of Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shaoyin Duan
- Department of Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qianwen Huang
- Department of Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Naiming Wu
- Department of Radiology, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhishang Chen
- Department of Radiology, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Hengyu Zhao
- Department of Radiology, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Hengyu Zhao,
| | - Yi Han
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- *Correspondence: Yi Han,
| |
Collapse
|
10
|
Raposo-Lima C, Moreira P, Magalhães R, Ferreira S, Sousa N, Picó-Pérez M, Morgado P. Differential patterns of association between resting-state functional connectivity networks and stress in OCD patients. Prog Neuropsychopharmacol Biol Psychiatry 2022; 118:110563. [PMID: 35569618 DOI: 10.1016/j.pnpbp.2022.110563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/11/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
Obsessive-compulsive disorder (OCD) is a highly prevalent psychiatric disorder that is characterized by its complex pathophysiology and heterogenous presentation. Multiple studies to date have identified a variety of factors that are involved in the development of symptoms, but little is known about how these affect brain function. In this study, we have tried to understand how stress, one of the most studied risk factors for OCD, may influence resting-state functional connectivity (rsFC) by comparing resting brain activity of OCD patients with healthy control subjects, while assessing self-reported levels of perceived stress using the Perceived Stress Scale-10 (PSS-10). Seventy-five OCD patients and seventy-one healthy matched control subjects were enrolled in this study, where we used a data-driven, independent component analysis approach. Our results show differences in connectivity between patients and healthy controls involving the dorsal attention (DAN) and lateral visual networks, with patients presenting increased rsFC within the DAN and decreased rsFC within the lateral visual network. Moreover, connectivity in the anterior default mode (aDMN), dorsal attention and basal ganglia networks was associated with PSS scores in OCD patients. Specifically, rsFC within the DAN and aDMN was positively correlated with PSS scores, while the opposite was observed for the basal ganglia network. This study is the first to report such association between rsFC alterations and self-reported stress levels. Our findings are relevant in the context of OCD pathophysiology given evidence of functional dysconnectivity involving the same networks in previous OCD studies and the possible involvement of these changes in the generation of obsessions.
Collapse
Affiliation(s)
- Catarina Raposo-Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal; Clinical Academic Center - Braga, Braga, Portugal
| | - Pedro Moreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal; Clinical Academic Center - Braga, Braga, Portugal; Psychology Research Centre (CIPsi), School of Psychology, University of Minho, Braga, Portugal
| | - Ricardo Magalhães
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal; Clinical Academic Center - Braga, Braga, Portugal
| | - Sónia Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal; Clinical Academic Center - Braga, Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal; Clinical Academic Center - Braga, Braga, Portugal
| | - Maria Picó-Pérez
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal; Clinical Academic Center - Braga, Braga, Portugal
| | - Pedro Morgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal; Clinical Academic Center - Braga, Braga, Portugal; Hospital de Braga, Braga, Portugal.
| |
Collapse
|
11
|
Liu J, Cao L, Li H, Gao Y, Bu X, Liang K, Bao W, Zhang S, Qiu H, Li X, Hu X, Lu L, Zhang L, Hu X, Huang X, Gong Q. Abnormal resting-state functional connectivity in patients with obsessive-compulsive disorder: A systematic review and meta-analysis. Neurosci Biobehav Rev 2022; 135:104574. [DOI: 10.1016/j.neubiorev.2022.104574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/12/2021] [Accepted: 02/07/2022] [Indexed: 12/31/2022]
|
12
|
Hasuzawa S, Tomiyama H, Murayama K, Ohno A, Kang M, Mizobe T, Kato K, Matsuo A, Kikuchi K, Togao O, Nakao T. Inverse Association Between Resting-State Putamen Activity and Iowa Gambling Task Performance in Patients With Obsessive-Compulsive Disorder and Control Subjects. Front Psychiatry 2022; 13:836965. [PMID: 35633792 PMCID: PMC9136000 DOI: 10.3389/fpsyt.2022.836965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Symptoms of obsessive-compulsive disorder (OCD) have been conceptualized as manifestations of decision-making deficits. Patients with OCD exhibit impairment during the decision-making process, as assessed by the Iowa Gambling Task (IGT). This impairment is independent of clinical severity and disease progression. However, the association between the decision-making deficit and resting-state brain activity of patients with OCD has not been examined. METHODS Fifty unmedicated patients with OCD and 55 matched control subjects completed IGT. Resting-state brain activity was examined using the fractional amplitude of low-frequency fluctuations (fALFFs). fALFF analysis focused on the slow-4 and 5 bands. Group comparisons were performed to determine the association between IGT performance and fALFFs. RESULTS There was a significant group difference in the association between the IGT total net score and slow-4 fALFFs in the left putamen (voxel height threshold of p < 0.001; cluster size threshold of p < 0.05; family wise error-corrected). Higher putamen slow-4 fALFFs were correlated with lower IGT scores for OCD patients (r = -0.485; p < 0.0005) and higher IGT scores for control subjects (r = 0.402; p < 0.005). There was no group difference in the association between the IGT total net score and slow-5 fALFFs. CONCLUSIONS These findings in unmedicated patients demonstrate the importance of resting-state putamen activity for decision-making deficit associated with OCD, as measured by IGT. The inverse correlation may be explained by the hypersensitive response of the putamen in patients with OCD.
Collapse
Affiliation(s)
- Suguru Hasuzawa
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirofumi Tomiyama
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keitaro Murayama
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Aikana Ohno
- Graduate School of Human Environment Studies, Kyushu University, Fukuoka, Japan
| | - Mingi Kang
- Graduate School of Human Environment Studies, Kyushu University, Fukuoka, Japan
| | - Taro Mizobe
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenta Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Matsuo
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazufumi Kikuchi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Osamu Togao
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
13
|
Gao J, Yang X, Chen X, Liu R, Wang P, Meng F, Li Z, Zhou Y. Resting-state functional connectivity of the amygdala subregions in unmedicated patients with obsessive-compulsive disorder before and after cognitive behavioural therapy. J Psychiatry Neurosci 2021; 46:E628-E638. [PMID: 34785511 PMCID: PMC8598242 DOI: 10.1503/jpn.210084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/03/2021] [Accepted: 08/25/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Cognitive behavioural therapy (CBT) is considered an effective first-line treatment for obsessive-compulsive disorder (OCD). However, the neural basis of CBT for OCD has not yet been elucidated. The role of the amygdala in OCD and its functional coupling with the cerebral cortex have received increasing attention, and may provide new understanding of the neural basis of CBT for OCD. METHODS We acquired baseline resting-state functional MRI (fMRI) scans from 45 unmedicated patients with OCD and 40 healthy controls; we then acquired another wave of resting-state fMRI scans from the patients with OCD after 12 weeks of CBT. We performed seed-based resting-state functional connectivity analyses of the amygdala subregions to examine changes in patients with OCD as a result of CBT. RESULTS Compared to healthy controls, patients with OCD showed significantly increased resting-state functional connectivity at baseline between the left basolateral amygdala and the right middle frontal gyrus, and between the superficial amygdala and the right cuneus. In patients with OCD who responded to CBT, we found decreased resting-state functional connectivity after CBT between the amygdala subregions and the visual association cortices and increased resting-state functional connectivity between the amygdala subregions and the right inferior parietal lobe. Furthermore, these changes in resting-state functional connectivity were positively associated with changes in scores on the compulsion or obsession subscales of the Yale-Brown Obsessive-Compulsive Scale. LIMITATIONS Because of the lack of a second scan for healthy controls after 12 weeks, our results may have been confounded by other variables. CONCLUSION Our findings yield insights into the pathophysiology of OCD; they also reveal the potential neural changes elicited by CBT, and thus have implications for guiding effective treatment strategies with CBT for OCD.
Collapse
|
14
|
Altered Functional Connectivity Strength at Rest in Medication-Free Obsessive-Compulsive Disorder. Neural Plast 2021; 2021:3741104. [PMID: 34539777 PMCID: PMC8443365 DOI: 10.1155/2021/3741104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/25/2021] [Accepted: 08/17/2021] [Indexed: 11/25/2022] Open
Abstract
Background Previous studies explored the whole-brain functional connectome using the degree approach in patients with obsessive-compulsive disorder (OCD). However, whether the altered degree values can be used to discriminate OCD from healthy controls (HCs) remains unclear. Methods A total of 40 medication-free patients with OCD and 38 HCs underwent a resting-state functional magnetic resonance imaging (rs-fMRI) scan. Data were analyzed with the degree approach and a support vector machine (SVM) classifier. Results Patients with OCD showed increased degree values in the left thalamus and left cerebellum Crus I and decreased degree values in the left dorsolateral prefrontal cortex, right precuneus, and left postcentral gyrus. SVM classification analysis indicated that the increased degree value in the left thalamus is a marker of OCD, with an acceptable accuracy of 88.46%, sensitivity of 87.50%, and specificity of 89.47%. Conclusion Altered degree values within and outside the cortical-striatal-thalamic-cortical (CSTC) circuit may cocontribute to the pathophysiology of OCD. Increased degree values of the left thalamus can be used as a future marker for OCD understanding-classification.
Collapse
|
15
|
Liu J, Bu X, Hu X, Li H, Cao L, Gao Y, Liang K, Zhang L, Lu L, Hu X, Wang Y, Gong Q, Huang X. Temporal variability of regional intrinsic neural activity in drug-naïve patients with obsessive-compulsive disorder. Hum Brain Mapp 2021; 42:3792-3803. [PMID: 33949731 PMCID: PMC8288087 DOI: 10.1002/hbm.25465] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/08/2021] [Accepted: 04/26/2021] [Indexed: 02/05/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) displays alterations in regional brain activity represented by the amplitude of low-frequency fluctuation (ALFF), but the time-varying characteristics of this local neural activity remain to be clarified. We aimed to investigate the dynamic changes of intrinsic brain activity in a relatively large sample of drug-naïve OCD patients using univariate and multivariate analyses. We applied a sliding-window approach to calculate the dynamic ALFF (dALFF) and compared the difference between 73 OCD patients and age- and sex-matched healthy controls (HCs). We also utilized multivariate pattern analysis to determine whether dALFF could differentiate OCD patients from HCs at the individual level. Compared with HCs, OCD patients exhibited increased dALFF mainly within regions of the cortical-striatal-thalamic-cortical (CSTC) circuit, including the bilateral dorsal anterior cingulate cortex, medial prefrontal cortex and striatum, and right dorsolateral prefrontal cortex (dlPFC). Decreased dALFF was identified in the bilateral inferior parietal lobule (IPL), posterior cingulate cortex, insula, fusiform gyrus, and cerebellum. Moreover, we found negative correlations between illness duration and dALFF values in the right IPL and between dALFF values in the left cerebellum and Hamilton Depression Scale scores. Furthermore, dALFF can distinguish OCD patients from HCs with the most discriminative regions located in the IPL, dlPFC, middle occipital gyrus, and cuneus. Taken together, in the current study, we demonstrated a characteristic pattern of higher variability of regional brain activity within the CSTC circuits and lower variability in regions outside the CSTC circuits in drug-naïve OCD patients.
Collapse
Affiliation(s)
- Jing Liu
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of RadiologyWest China Hospital, Sichuan UniversityChengduChina
- Psychoradiology Research Unit of the Chinese Academy of Medical SciencesWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Xuan Bu
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of RadiologyWest China Hospital, Sichuan UniversityChengduChina
- Psychoradiology Research Unit of the Chinese Academy of Medical SciencesWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Xinyu Hu
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of RadiologyWest China Hospital, Sichuan UniversityChengduChina
- Psychoradiology Research Unit of the Chinese Academy of Medical SciencesWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Hailong Li
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of RadiologyWest China Hospital, Sichuan UniversityChengduChina
- Psychoradiology Research Unit of the Chinese Academy of Medical SciencesWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Lingxiao Cao
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of RadiologyWest China Hospital, Sichuan UniversityChengduChina
- Psychoradiology Research Unit of the Chinese Academy of Medical SciencesWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Yingxue Gao
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of RadiologyWest China Hospital, Sichuan UniversityChengduChina
- Psychoradiology Research Unit of the Chinese Academy of Medical SciencesWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Kaili Liang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of RadiologyWest China Hospital, Sichuan UniversityChengduChina
- Psychoradiology Research Unit of the Chinese Academy of Medical SciencesWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Lianqing Zhang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of RadiologyWest China Hospital, Sichuan UniversityChengduChina
- Psychoradiology Research Unit of the Chinese Academy of Medical SciencesWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Lu Lu
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of RadiologyWest China Hospital, Sichuan UniversityChengduChina
- Psychoradiology Research Unit of the Chinese Academy of Medical SciencesWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Xinyue Hu
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of RadiologyWest China Hospital, Sichuan UniversityChengduChina
- Psychoradiology Research Unit of the Chinese Academy of Medical SciencesWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Yanlin Wang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of RadiologyWest China Hospital, Sichuan UniversityChengduChina
- Psychoradiology Research Unit of the Chinese Academy of Medical SciencesWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of RadiologyWest China Hospital, Sichuan UniversityChengduChina
- Psychoradiology Research Unit of the Chinese Academy of Medical SciencesWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of RadiologyWest China Hospital, Sichuan UniversityChengduChina
- Psychoradiology Research Unit of the Chinese Academy of Medical SciencesWest China Hospital of Sichuan UniversityChengduSichuanChina
| |
Collapse
|
16
|
Murayama K, Tomiyama H, Tsuruta S, Ohono A, Kang M, Hasuzawa S, Mizobe T, Kato K, Togao O, Hiwatashi A, Nakao T. Aberrant Resting-State Cerebellar-Cerebral Functional Connectivity in Unmedicated Patients With Obsessive-Compulsive Disorder. Front Psychiatry 2021; 12:659616. [PMID: 33967861 PMCID: PMC8102723 DOI: 10.3389/fpsyt.2021.659616] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/29/2021] [Indexed: 01/05/2023] Open
Abstract
Background: Although abnormality of cerebellar-cerebral functional connectivity at rest in obsessive-compulsive disorder (OCD) has been hypothesized, only a few studies have investigated the neural mechanism. To verify the findings of previous studies, a large sample of patients with OCD was studied because OCD shows possible heterogeneity. Methods: Forty-seven medication-free patients with OCD and 62 healthy controls (HCs) underwent resting-state functional magnetic imaging scans. Seed-based connectivity was examined to investigate differences in cerebellar-cerebral functional connectivity in OCD patients compared with HCs. Correlations between functional connectivity and the severity of obsessive-compulsive symptoms were analyzed. Results: In OCD, we found significantly increased functional connectivity between the right lobule VI and the left precuneus, which is a component of the default mode network (DMN), compared to HCs. However, there was no correlation between the connectivity of the right lobule VI-left precuneus and obsessive-compulsive severity. Conclusions: These findings suggest that altered functional connectivity between the cerebellum and DMN might cause changes in intrinsic large-scale brain networks related to the traits of OCD.
Collapse
Affiliation(s)
- Keitaro Murayama
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirofumi Tomiyama
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sae Tsuruta
- Graduate School of Human-Environment Studies, Kyushu University, Fukuoka, Japan.,Karatsu Red Cross Hospital, Karatsu, Japan
| | - Aikana Ohono
- Graduate School of Human-Environment Studies, Kyushu University, Fukuoka, Japan
| | - Mingi Kang
- Graduate School of Human-Environment Studies, Kyushu University, Fukuoka, Japan
| | - Suguru Hasuzawa
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taro Mizobe
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenta Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Osamu Togao
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akio Hiwatashi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
17
|
A voxel-based analysis of cerebral blood flow abnormalities in obsessive-compulsive disorder using pseudo-continuous arterial spin labeling MRI. PLoS One 2020; 15:e0236512. [PMID: 32706796 PMCID: PMC7380600 DOI: 10.1371/journal.pone.0236512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/07/2020] [Indexed: 11/19/2022] Open
Abstract
Objective To identify abnormalities of regional cerebral blood flow (rCBF) in individuals with obsessive-compulsive disorder (OCD) by conducting a voxel-based analysis of pseudo-continuous arterial spin labeling (pCASL) perfusion images. Materials and methods This prospective study included 23 OCD patients (nine males, 14 females; age 21–62 years; mean ± SD 37.2 ± 10.7 years) diagnosed based on DSM-IV-TR criteria and 64 healthy controls (27 males, 37 females; age 20–64 years; mean ± SD 38.3 ± 12.8 years). Subjects were recruited from October 2011 to August 2017. Imaging was performed on a 3T scanner. Quantitative rCBF maps generated from pCASL images were co-registered and resliced with the three-dimensional T1-weighted images, and then spatially normalized to a brain template and smoothed. We used statistical nonparametric mapping to assess the differences in rCBF and gray matter volume between the OCD and control groups. The significance level was set at the p-value <0.05 with family-wise error rate correction for multiple comparisons. Results Compared to the control group, there were significant rCBF reductions in the right putamen, right frontal operculum, left midcingulate cortex, and right temporal pole in the OCD group. There were no significant between-group differences in the gray matter volume. Conclusion The pCASL imaging noninvasively detected physiologically disrupted areas without structural abnormalities in OCD patients. The rCBF reductions observed in these regions in OCD patients could be associated with the pathophysiology of OCD.
Collapse
|
18
|
Wang X, Cui S, Wu MS, Wang Y, Gao Q, Zhou Y. Victim Sensitivity and Its Neural Correlates Among Patients With Major Depressive Disorder. Front Psychiatry 2020; 11:622. [PMID: 32848898 PMCID: PMC7432150 DOI: 10.3389/fpsyt.2020.00622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/15/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Dysfunctional beliefs about the self are common in the development of depressive symptoms, but it remains unclear how depressed patients respond to unfair treatment, both dispositionally and neurally. The present research is an attempt to explore the differences in sensitivity to injustice as a victim and its neural correlates in patients with major depressive disorder (MDD) versus healthy controls. METHODS First episodic, drug-naïve patients with MDD (n = 30) and a control group (n = 30) were recruited to compare their differences in victim sensitivity. A second group of patients with MDD (n = 23) and their controls (n = 28) were recruited to replicate the findings and completed resting-state functional magnetic resonance imaging (fMRI) scanning. Spontaneous brain activity measured by fractional amplitude of low-frequency fluctuation (fALFF) was used to characterize the neural correlates of victim sensitivity both in patients and in healthy controls. RESULTS Higher victim sensitivity was consistently found in patients with MDD than healthy controls in both datasets. Multiple regression analysis on the fALFF showed a significant interaction effect between diagnosis and victim sensitivity in the right dorsolateral prefrontal cortex (DLPFC). CONCLUSIONS The patients with MDD show higher sensitivity to injustice as a victim, which may be independent of their disease course. The MDD patients differ from healthy controls in the neural correlates of victim sensitivity. These findings shed light on the linkage between cognitive control subserved by the DLPFC and negative bias towards the self implicated by higher victim sensitivity among the depressed patients.
Collapse
Affiliation(s)
- Xiaoming Wang
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Shaojuan Cui
- Department of Psychology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | | | - Yun Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Qinglin Gao
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Zhou
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| |
Collapse
|