1
|
Li Y, Zeng S, Zhou F, Jie H, Yu D, Hou S, Chen P, Gao D, Liu Y, Yang J, He J. Overexpression of XIAP inhibits cisplatin-induced hair cell loss. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119204. [PMID: 35026350 DOI: 10.1016/j.bbamcr.2021.119204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/09/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Cisplatin is a platinum-containing drug with ototoxicity commonly used clinically and has significant efficacy against a variety of solid tumors. One of the most important mechanisms of ototoxicity is that cisplatin induces apoptosis of hair cells. According to relevant literature, X-linked inhibitor of apoptosis protein (XIAP, anti-apoptotic protein) could inhibit the apoptotic pathway. We hypothesized that this protein might protect cochlear hair cells from cisplatin-induced injury. To figure it out, we treated cochlea of normal mice with various concentrations of cisplatin to observe the response and morphology of hair cells and determine a reasonable concentration. Next, Western Blot and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) experiments were conducted to make an investigation about the expression of XIAP protein and mRNA. In addition, we constructed and identified XIAP overexpressing mice. Finally, we treated cochlear tissues of normal and overexpressing mice with cisplatin to investigate the cyto-protection of XIAP on hair cells, respectively. It was found that 50 μmol/L cisplatin resulted in significant loss and disorganization of hair cells, while simultaneously downregulating the protein and mRNA of XIAP. In XIAP overexpressing mice, the loss and disorganization of hair cells were significantly lessened. These results showed that XIAP can lessen cisplatin-induced hair cell loss and play a role in otoprotection.
Collapse
Affiliation(s)
- Yue Li
- Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200092, China
| | - Shan Zeng
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, China
| | - Fengjie Zhou
- General Hospital of the Central Theater Command of the PLA, China
| | - Huiqun Jie
- Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200092, China
| | - Dongzhen Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shule Hou
- Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200092, China
| | - Penghui Chen
- Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200092, China
| | - Dekun Gao
- Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200092, China
| | - Yupeng Liu
- Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200092, China.
| | - Jun Yang
- Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200092, China.
| | - Jingchun He
- Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200092, China.
| |
Collapse
|
2
|
Zu M, Guo WW, Cong T, Ji F, Zhang SL, Zhang Y, Song X, Sun W, He DZZ, Shi WG, Yang SM. SCN11A gene deletion causes sensorineural hearing loss by impairing the ribbon synapses and auditory nerves. BMC Neurosci 2021; 22:18. [PMID: 33752606 PMCID: PMC7986359 DOI: 10.1186/s12868-021-00613-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/20/2021] [Indexed: 11/10/2022] Open
Abstract
Background The SCN11A gene, encoded Nav1.9 TTX resistant sodium channels, is a main effector in peripheral inflammation related pain in nociceptive neurons. The role of SCN11A gene in the auditory system has not been well characterized. We therefore examined the expression of SCN11A in the murine cochlea, the morphological and physiological features of Nav1.9 knockout (KO) ICR mice. Results Nav1.9 expression was found in the primary afferent endings beneath the inner hair cells (IHCs). The relative quantitative expression of Nav1.9 mRNA in modiolus of wild-type (WT) mice remains unchanged from P0 to P60. The number of presynaptic CtBP2 puncta in Nav1.9 KO mice was significantly lower than WT. In addition, the number of SGNs in Nav1.9 KO mice was also less than WT in the basal turn, but not in the apical and middle turns. There was no lesion in the somas and stereocilia of hair cells in Nav1.9 KO mice. Furthermore, Nav1.9 KO mice showed higher and progressive elevated ABR threshold at 16 kHz, and a significant increase in CAP thresholds. Conclusions These data suggest a role of Nav1.9 in regulating the function of ribbon synapses and the auditory nerves. The impairment induced by Nav1.9 gene deletion mimics the characters of cochlear synaptopathy.
Collapse
Affiliation(s)
- Mian Zu
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Wei-Wei Guo
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Tao Cong
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Fei Ji
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Shi-Li Zhang
- Clinical Hearing Center of Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yue Zhang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Xin Song
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Wei Sun
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, The State University of New York at Buffalo, Buffalo, NY, USA
| | - David Z Z He
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Wei-Guo Shi
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| | - Shi-Ming Yang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China. .,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China. .,Key Lab of Hearing Science, Ministry of Education, Beijing, China. .,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China.
| |
Collapse
|