1
|
Li Y, Hou J, Yang L, Zhang T, Jiang Y, Du Z, Ma H, Li G, Zhu J, Chen P. ITRAQ Based Proteomics Reveals the Potential Mechanism of Placental Injury Induced by Prenatal Stress. Int J Mol Sci 2024; 25:9978. [PMID: 39337469 PMCID: PMC11432224 DOI: 10.3390/ijms25189978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/14/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Maternal stress experienced during prenatal development is recognized as a significant risk factor for neurodevelopmental and neuropsychiatric disorders across the offspring's lifespan. The placental barrier serves a crucial function in safeguarding the fetus from detrimental exposures during gestation. However, previous investigations have not yet comprehensively elucidated the extensive connections between prenatal stress and the expression of placental proteins. In this study, we used iTRAQ-based quantitative proteomics to elucidate the placental adaptive mechanisms of pregnant rats in response to fear-induced stress. Our results showed that during pregnancy, exposure to fear-induced stress led to a pathological hypercoagulable state in the mother's body. Placental circulation was also disrupted, significantly reducing placental efficiency and blood oxygen saturation in newborn rats. Proteomic analyses showed that most of the DEPs were annotated to the PI3K-Akt and ECM-receptor interaction signaling pathway. In addition, the expressions of CDC37, HSP90β, AKT, p-AKT and p-mTOR were down-regulated significantly in the placenta. Our results demonstrated that prenatal fear-induced stress led to inhibition of the cellular signal transduction of placental PI3K/AKT/mTOR, which affected biological processes such as rRNA processing, translation, protein folding, protein stability, and oxygen transport in the placenta. These abnormalities in biological functions could potentially damage the barrier function of the placenta and thereby result in abnormal development in the offspring.
Collapse
Affiliation(s)
- Yujie Li
- Department of Biochemistry, School of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China;
| | - Junlin Hou
- Department of Integrated Traditional Chinese and Western Medicine, School of Traditional Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China; (J.H.); (T.Z.); (Y.J.); (Z.D.); (H.M.); (G.L.); (J.Z.)
| | - Liping Yang
- Department of Integrated Traditional Chinese and Western Medicine, School of Traditional Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China; (J.H.); (T.Z.); (Y.J.); (Z.D.); (H.M.); (G.L.); (J.Z.)
| | - Tong Zhang
- Department of Integrated Traditional Chinese and Western Medicine, School of Traditional Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China; (J.H.); (T.Z.); (Y.J.); (Z.D.); (H.M.); (G.L.); (J.Z.)
| | - Yu Jiang
- Department of Integrated Traditional Chinese and Western Medicine, School of Traditional Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China; (J.H.); (T.Z.); (Y.J.); (Z.D.); (H.M.); (G.L.); (J.Z.)
| | - Zhixing Du
- Department of Integrated Traditional Chinese and Western Medicine, School of Traditional Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China; (J.H.); (T.Z.); (Y.J.); (Z.D.); (H.M.); (G.L.); (J.Z.)
| | - Huizi Ma
- Department of Integrated Traditional Chinese and Western Medicine, School of Traditional Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China; (J.H.); (T.Z.); (Y.J.); (Z.D.); (H.M.); (G.L.); (J.Z.)
| | - Gai Li
- Department of Integrated Traditional Chinese and Western Medicine, School of Traditional Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China; (J.H.); (T.Z.); (Y.J.); (Z.D.); (H.M.); (G.L.); (J.Z.)
| | - Jianghui Zhu
- Department of Integrated Traditional Chinese and Western Medicine, School of Traditional Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China; (J.H.); (T.Z.); (Y.J.); (Z.D.); (H.M.); (G.L.); (J.Z.)
| | - Ping Chen
- Gynaecology and Obstetrics, College of First Clinical Medical, Henan University of Chinese Medicine, Zhengzhou 450003, China;
| |
Collapse
|
2
|
Wang B, Liu S, Hao K, Wang Y, Li Z, Lou Y, Chang Y, Qi W. HDAC6 modulates the cognitive behavioral function and hippocampal tissue pathological changes of APP/PS1 transgenic mice through HSP90-HSF1 pathway. Exp Brain Res 2024; 242:1983-1998. [PMID: 38935089 DOI: 10.1007/s00221-024-06858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024]
Abstract
The aim of this study was to investigate histone deacetylase 6 (HDAC6) modifies the heat shock protein 90 (HSP90) and heat shock transcription factor 1 (HSF1) affect the levels of pathological markers such as Aβ oligomers (Aβo) and Tau phosphorylation (p-Tau) in APP/PS1 double transgenic mice hippocampal tissues or HT22 neurons as well as the changes in cognitive behavioral functions of mice. (1) APP/PS1 transgenic mice (6 months old, 25 ~ 30 g) were randomly assigned to 5 experimental groups, C57BL/6J mice (6 months old, 25 ~ 30 g) were used as 4 control groups, with 8 mice in each group. All mice underwent intracerebroventricular (i.c.v.) cannulation, and the experimental groups were administered with normal saline (APP + NS group), HDAC6 agonist tubastatin A hydrochloride (TSA) (APP + TSA group) or HDAC6 agonist theophylline (Theo) (APP + Theo group), HSP90 inhibitor Ganetespib (Gane) (APP + Gane group), or a combination of pre-injected Gane by TSA (APP + Gane + TSA group); the control group received i.c.v. injections of Gane (Gane group), TSA (TSA group), Theo (Theo group) or NS (NS group), respectively. (2) Mouse hippocampal neurons HT22 were randomly divided into a control group (Control) and an Aβ1-42 intervention group (Aβ). Within the Aβ group, further divisions were made for knockdown HSP90 (Aβ + siHSP90 group), overexpression HSP90 (Aβ + OE-HSP90 group), knockdown HSF1(Aβ + siHSF1 group) and knockdown HSF1 followed by overexpression HSP90 (Aβ + siHSF1 + OE-HSP90 group), resulting in a total of 6 groups. Morris water maze test was used to evaluate the cognitive behavior of the mice. Western blot and immunohistochemistry or immunofluorescence were performed to detect the levels of HDAC6, HSP90, HSF1, Aβ1-42, Tau protein, and p-Tau in the hippocampal tissue or HT22 cells. qRT-PCR was used to measure the levels of hdac6, hsp90, and hsf1 mRNA in the hippocampus or nerve cells. (1) The levels of HDAC6, Aβ1-42 and p-Tau were elevated, while HSP90 and HSF1 were decreased in the hippocampal tissue of APP/PS1 transgenic mice (all P < 0.01). Inhibiting HDAC6 upregulated the expressions of HSP90 and HSF1 in the hippocampal tissue of APP/PS1 mice, while decreasing the levels of Aβ1-42 and p-Tau as well as improving the spatial cognitive behavior in mice (P < 0.05 or P < 0.01). The opposite effects were observed upon HDAC6 activation. However, inhibiting HSP90 reduced the expression of HSF1 (P < 0.01) and increased the levels of Aβ1-42 and p-Tau (P < 0.05 or P < 0.01) but did not significantly affect the expression of HDAC6 (P > 0.05). No significant changes were observed in the aforementioned indicators in the 4 control groups (P > 0.05). (2) In the Aβ1-42 intervention group, HDAC6 and Aβ1-42, p-Tau expression levels were elevated, while HSP90 and HSF1 expressions were all decreased, and cell viability was reduced (P < 0.05 or P < 0.01). Overexpression of HSP90 upregulated HSF1 expression, decreased the levels of Aβ1-42 and p-Tau, and increased cell viability (P < 0.05 or P < 0.01). Knocking down HSP90 had the opposite effect; and knocking down HSF1 increased the levels of Aβ1-42 and p-Tau and decreased cells viability (all P < 0.01), but did not result in significant changes in the expression levels of HSP90 (P > 0.05). Inhibiting HDAC6 can upregulate the expressions of HSP90 and HSF1 but reduce the levels of Aβ1-42 and p-Tau in the hippocampus of APP/PS1 mice and improvement of cognitive behavioral function in mice; Overexpression of HSP90 can increase HSF1 but decrease Aβ1-42 and p-Tau levels in the hippocampal neurons and increase cell activity. It is suggested that HDAC6 may affect the formation of Aβ oligomers and the changes in Tau protein phosphorylation levels in the hippocampus of AD transgenic mouse as well as the alterations in cognitive behavioral functions by regulating the HSP90-HSF1 pathway.
Collapse
Affiliation(s)
- Bingyi Wang
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, 032200, China
| | - Siyu Liu
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, 032200, China
| | - Kaimin Hao
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, 032200, China
| | - YaruWang Wang
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, 032200, China
| | - Zongjing Li
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, 032200, China
| | - Yuanyuan Lou
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, 032200, China
| | - Yuan Chang
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, 032200, China
| | - Wenxiu Qi
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, 032200, China.
| |
Collapse
|
3
|
Huang Z, Zhong X, Shen T, Gu S, Chen M, Xu W, Chen R, Wu J, Yang X. Associations between PM 2.5, ambient heat exposure and congenital hydronephrosis in southeastern China. Front Public Health 2024; 12:1389969. [PMID: 39135922 PMCID: PMC11317401 DOI: 10.3389/fpubh.2024.1389969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/04/2024] [Indexed: 08/15/2024] Open
Abstract
Objectives This research aims to analyze how exposure to fine particulate matter (PM2.5) and ambient heat during pregnancy increases the risk of congenital hydronephrosis (CH) in newborns. Methods A case-control study was conducted to investigate the relationship between exposure to PM2.5 and ambient heat during pregnancy and the occurrence of CH in newborns. The study, which was conducted from 2015 to 2020, included 409 infants with CH as the case group and 409 infants without any abnormalities as the control group. Using spatial remote sensing technology, the exposure of each pregnant mother to PM2.5 concentration was meticulously mapped. Additionally, data on the ambient temperature of exposure for each participant were also collected. A logistics regression model was used to calculate the influence of exposure to PM2.5 and ambient heat on the occurrence of CH. Stratified analysis and interaction analysis were used to study the interaction between ambient heat exposure and PM2.5 on the occurrence of CH. Results At the 6th week of gestation, exposure to PM2.5 may increase the risk of CH. For every 10 μg/m3 increase in PM2.5 exposure, the risk of CH increased by 2% (95%CI = 0.98, 1.05) at a p-value of >0.05, indicating that there was no significant relationship between the results. Exposure to intense heat at 6th and 7th weeks of gestation increased the risk of CH. Specifically, for every 1°C increase in heat exposure, the risk of CH in offspring increased by 21% (95%CI = 1.04, 1.41) during the 6th week and 13% during the 7th week (95%CI = 1.02, 1.24). At 5th and 6th weeks of gestation, the relative excess risk due to interaction (RERI) was greater than 0 at the 50th percentile (22.58°C), 75th percentile (27.25°C), and 90th percentile (29.13°C) of daily maximum temperature (Tmax) distribution, indicating that the risk of CH was higher when exposed to both ambient heat and PM2.5 at the same time compared to exposure to a single risk factor. Conclusion Exposure to higher levels of PM2.5 and ambient heat during pregnancy increases the risk of CH in infants. There was a positive interaction between exposure to intense heat and high concentration of PM2.5 on the occurrence of CH.
Collapse
Affiliation(s)
- ZhiMeng Huang
- Department Pediatrics, School of Medicine, Women and Children's Hospital, Xiamen University, Xiamen, Fujian, China
| | - XiaoHong Zhong
- Department Pediatrics, School of Medicine, Women and Children's Hospital, Xiamen University, Xiamen, Fujian, China
| | - Tong Shen
- Department Pediatrics, School of Medicine, Women and Children's Hospital, Xiamen University, Xiamen, Fujian, China
| | - SongLei Gu
- Department Pediatrics, School of Medicine, Women and Children's Hospital, Xiamen University, Xiamen, Fujian, China
| | - MengNan Chen
- Department Prenatal Diagnosis, School of Medicine, Women and Children's Hospital, Xiamen University, Xiamen, Fujian, China
| | - WenLi Xu
- Department Pediatrics, School of Medicine, Women and Children's Hospital, Xiamen University, Xiamen, Fujian, China
| | - RuiQi Chen
- Department Pediatrics, School of Medicine, Women and Children's Hospital, Xiamen University, Xiamen, Fujian, China
| | - JinZhun Wu
- Department Pediatrics, School of Medicine, Women and Children's Hospital, Xiamen University, Xiamen, Fujian, China
| | - XiaoQing Yang
- Department Pediatrics, School of Medicine, Women and Children's Hospital, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
4
|
Souza JADCR, Souza T, Quintans ILADCR, Farias D. Network Toxicology and Molecular Docking to Investigate the Non-AChE Mechanisms of Organophosphate-Induced Neurodevelopmental Toxicity. TOXICS 2023; 11:710. [PMID: 37624215 PMCID: PMC10458981 DOI: 10.3390/toxics11080710] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
Organophosphate pesticides (OPs) are toxic substances that contaminate aquatic environments, interfere with the development of the nervous system, and induce Neurodevelopmental Toxicity (NDT) in animals and humans. The canonical mechanism of OP neurotoxicity involves the inhibition of acetylcholinesterase (AChE), but other mechanisms non-AChE are also involved and not fully understood. We used network toxicology and molecular docking to identify molecular targets and toxicity mechanisms common to OPs. Targets related to diazinon-oxon, chlorpyrifos oxon, and paraoxon OPs were predicted using the Swiss Target Prediction and PharmMapper databases. Targets related to NDT were compiled from GeneCards and OMIM databases. In order to construct the protein-protein interaction (PPI) network, the common targets between OPs and NDT were imported into the STRING. Network topological analyses identified EGFR, MET, HSP90AA1, and SRC as hub nodes common to the three OPs. Using the Reactome pathway and gene ontology, we found that signal transduction, axon guidance, cellular responses to stress, and glutamatergic signaling activation play key roles in OP-induced NDT.
Collapse
Affiliation(s)
- Juliana Alves da Costa Ribeiro Souza
- Postgraduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-970, Brazil;
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, Brazil;
| | - Terezinha Souza
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, Brazil;
| | | | - Davi Farias
- Postgraduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-970, Brazil;
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, Brazil;
| |
Collapse
|
5
|
Somogyvári M, Khatatneh S, Sőti C. Hsp90: From Cellular to Organismal Proteostasis. Cells 2022; 11:cells11162479. [PMID: 36010556 PMCID: PMC9406713 DOI: 10.3390/cells11162479] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Assuring a healthy proteome is indispensable for survival and organismal health. Proteome disbalance and the loss of the proteostasis buffer are hallmarks of various diseases. The essential molecular chaperone Hsp90 is a regulator of the heat shock response via HSF1 and a stabilizer of a plethora of signaling proteins. In this review, we summarize the role of Hsp90 in the cellular and organismal regulation of proteome maintenance.
Collapse
|