1
|
Zhao Y, He X, Yang X, Hong Z, Xu Y, Xu J, Zheng H, Zhang L, Zuo Z, Hu X. CircFndc3b Mediates Exercise-Induced Neuroprotection by Mitigating Microglial/Macrophage Pyroptosis via the ENO1/KLF2 Axis in Stroke Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2403818. [PMID: 39467260 PMCID: PMC11714177 DOI: 10.1002/advs.202403818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/28/2024] [Indexed: 10/30/2024]
Abstract
Circular RNA (circRNA) plays a pivotal role in regulating neurological damage post-ischemic stroke. Previous researches demonstrated that exercise mitigates neurological dysfunction after ischemic stroke, yet the specific contributions of circRNAs to exercise-induced neuroprotection remain unclear. This study reveals that mmu_circ_0001113 (circFndc3b) is markedly downregulated in the penumbral cortex of a mouse model subjected to middle cerebral artery occlusion (MCAO). However, exercise increased circFndc3b expression in microglia/macrophages, alleviating pyroptosis, reducing infarct volume, and enhancing neurological recovery in MCAO mice. Mechanistically, circFndc3b interacted with Enolase 1 (ENO1), facilitating ENO1's binding to the 3' Untranslated Region (3'UTR) of Krüppel-like Factor 2 (Klf2) mRNA, thereby stabilizing Klf2 mRNA and increasing its protein expression, which suppressed NOD-like Receptor Family Pyrin Domain Containing 3 (NLRP3) inflammasome-mediated microglial/macrophage pyroptosis. Additionally, circFndc3b enhanced ENO1's interaction with the 3'UTR of Fused in Sarcoma (FUS) mRNA, leading to increased FUS protein levels and promoting circFndc3b cyclization. These results suggest that circFndc3b mediates exercise-induced anti-pyroptotic effects via the ENO1/Klf2 axis, and a circFndc3b/ENO1/FUS positive feedback loop may potentiate exercise's neuroprotective effects. This study unveils a novel mechanism underlying exercise-induced neuroprotection in ischemic stroke and positions circFndc3b as a promising therapeutic target for stroke management, mimicking the beneficial effects of exercise.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Rehabilitation MedicineThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhouGuangdong510630China
- Department of RehabilitationZhujiang HospitalSouthern Medical University253 Industrial Middle RoadGuangzhouGuangdong510282China
| | - Xiaofei He
- Department of Rehabilitation MedicineThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhouGuangdong510630China
| | - Xiaofeng Yang
- Department of Rehabilitation MedicineThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhouGuangdong510630China
| | - Zhongqiu Hong
- Department of Rehabilitation MedicineThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhouGuangdong510630China
| | - Yin Xu
- Department of RehabilitationZhujiang HospitalSouthern Medical University253 Industrial Middle RoadGuangzhouGuangdong510282China
| | - Jinghui Xu
- Department of Rehabilitation MedicineThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhouGuangdong510630China
| | - Haiqing Zheng
- Department of Rehabilitation MedicineThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhouGuangdong510630China
| | - Liying Zhang
- Department of Rehabilitation MedicineThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhouGuangdong510630China
| | - Zejie Zuo
- Department of Rehabilitation MedicineThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhouGuangdong510630China
| | - Xiquan Hu
- Department of Rehabilitation MedicineThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhouGuangdong510630China
| |
Collapse
|
2
|
He J, Qian L, Li Z, Wang Y, Liu K, Wei H, Sun Y, He J, Yao K, Weng J, Hu X, Zhang D, He Y. A tissue bandage for pelvic ganglia injury. Nat Commun 2024; 15:8972. [PMID: 39419980 PMCID: PMC11487282 DOI: 10.1038/s41467-024-53302-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Neurogenic bladder often occurs after pelvic ganglia injury. Its symptoms, like severe urinary retention and incontinence, have a significant impact on individuals' quality of life. Unfortunately, there are currently no effective treatments available for this type of injury. Here, we designed a fiber-enhanced tissue bandage for injured pelvic ganglia. Tight junctions formed in tissue bandages create a mini tissue structure that enhances resistance in an in vivo environment and delivers growth factors to support the healing of ganglia. Strength fibers are similar to clinical bandages and guarantee ease of handling. Furthermore, tissue bandages can be stored at low temperatures over 5 months without compromising cell viability, meeting the requirements for clinical products. A tissue bandage was applied to a male rat with a bilateral major pelvic ganglia crush injury. Compared to the severe neurogenic bladder symptoms observed in the injury and scaffold groups, tissue bandages significantly improved bladder function. We found that tissue bandage increases resistance to mechanical injury by boosting the expression of cytoskeletal proteins within the major pelvic ganglia. Overall, tissue bandages show promise as a practical therapeutic approach for ganglia repair, offering hope for developing more effective treatments for this thorny condition.
Collapse
Affiliation(s)
- Jing He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Lin Qian
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhuang Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yanpeng Wang
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Kai Liu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haibin Wei
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuan Sun
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiaoyan He
- Department of Postgraduate Education, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ke Yao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiahao Weng
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xuanhan Hu
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Dahong Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.
| |
Collapse
|
3
|
Cui Z, Xu L, Wu H, Wang M, Lu L, Wu S. Glutathione peroxidase 2: A key factor in the development of microsatellite instability in colon cancer. Pathol Res Pract 2023; 243:154372. [PMID: 36796200 DOI: 10.1016/j.prp.2023.154372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Much research has focused on detecting microsatellite instability (MSI), which is frequently employed in the diagnosis and treatment of patients with colon cancer. However, the causes and progression of MSI in colon cancer have not yet been thoroughly elucidated. In this study, we screened and validated the genes associated with MSI in colorectal adenocarcinoma (COAD) using bioinformatics analysis. METHODS MSI-related genes of COAD were obtained from the Gene Expression Omnibus dataset, Search Tool for the Retrieval of Interaction Gene/Proteins, Gene Set Enrichment Analysis, and Human Protein Atlas. The function, prognostic value, and immune connection of MSI-related genes in COAD were examined using Cytoscape 3.9.1, the Human Gene Database, and the Tumor IMmune Estimation Resource. Key genes were verified using The Cancer Genome Atlas database and immunohistochemistry of clinical tumor samples. RESULTS We identified 59 MSI-related genes in patients with colon cancer. The protein interaction network of these genes was developed, and numerous functional modules associated with MSI were discovered. Pathways related to MSI were identified using KEGG enrichment analysis, and these included chemokine signaling, thyroid hormone synthesis, cytokine receptor interaction, estrogen signaling, and Wnt signaling pathways. Further analyses were used to identify the MSI-related gene, glutathione peroxidase 2 (GPX2), which was closely related to the occurrence of COAD and tumor immunity. CONCLUSIONS In COAD, GPX2 may be crucial for the establishment of MSI and tumor immunity, and its deficiency may result in MSI and immune cell infiltration in colon cancer.
Collapse
Affiliation(s)
- Zhongze Cui
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Lei Xu
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Han Wu
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Miaomiao Wang
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Lizhen Lu
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Shuhua Wu
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
4
|
Peng Q, Chen W, E Y, Deng Y, Xu Z, Wang S, Fu X, Wei B, Wang M, Hou J, Zhang Y, Duan R. The Relationship Between Neuron-Specific Enolase and Clinical Outcomes in Patients Undergoing Mechanical Thrombectomy. Neuropsychiatr Dis Treat 2023; 19:709-719. [PMID: 37038387 PMCID: PMC10082584 DOI: 10.2147/ndt.s400925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/30/2023] [Indexed: 04/12/2023] Open
Abstract
Purpose Neuron-specific enolase (NSE) is considered a biomarker for the severity of nervous system diseases. We sought to explore whether serum NSE concentration in ischemic stroke patients undergoing mechanical thrombectomy (MT) is related to 3-month functional outcome and symptomatic intracranial hemorrhage (sICH). Patients and Methods We retrospectively collected the data of acute ischemic stroke patients with anterior circulation infarction receiving MT within 6 h in our stroke center. Favorable outcome and poor outcome at 3 months were defined as modified Rankin Scale (mRS) score 0-2 and 3-6, respectively. sICH was defined according to the Heidelberg bleeding classification. We used multivariate logistic regression model and receiver operating characteristic curves to investigate the correlation between NSE and clinical outcomes. Results Among the 426 patients enrolled, 40 (9.4%) patients developed sICH. Three-month favorable outcome in 160 (37.6%) and poor outcome in 266 (62.4%) patients were observed. Serum NSE levels was significantly correlated with 3-month mRS score (R = 0.473, P < 0.001). A cutoff value of 15.29 and 23.12 ng/mL for serum NSE was detected in discriminating 3-month poor outcome (area under the curve, 0.724) and sICH (area under the curve, 0.716), respectively. Multivariate analysis showed that high serum NSE levels were independently associated with 3-month poor outcome (odds ratio [OR] 5.049, 95% confidence interval [CI] 2.933-8.689, P<0.001) and sICH (OR 5.111, 95% CI 2.210-11.820, P < 0.001). Conclusion Our study demonstrated that high serum NSE levels after receiving MT were independently associated with 3-month poor outcome and sICH in acute ischemic stroke patients. Serum NSE levels could be a good predictor of clinical outcomes for patients receiving MT.
Collapse
Affiliation(s)
- Qiang Peng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| | - Wenxiu Chen
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| | - Yan E
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| | - Yang Deng
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210000, People’s Republic of China
| | - Zhaohan Xu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| | - Siyu Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| | - Xinxin Fu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210000, People’s Republic of China
| | - Bin Wei
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| | - Meng Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| | - Jiankang Hou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| | - Yingdong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
- Correspondence: Yingdong Zhang; Rui Duan, Department of Neurology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, People’s Republic of China, Email ;
| | - Rui Duan
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| |
Collapse
|
5
|
Yang Z, Qi Z, Yang X, Gao Q, Hu Y, Yuan X. Inhibition of RIP3 increased ADSC viability under OGD and modified the competency of adipogenesis, angiogenesis, and inflammation regulation. Biosci Rep 2022; 42:BSR20212808. [PMID: 35302166 PMCID: PMC8965819 DOI: 10.1042/bsr20212808] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/03/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) showed decreased cell viability and increased cell death under oxygen-glucose deprivation (OGD). Meanwhile, vital necroptotic proteins, including receptor-interacting protein kinase (RIP) 3 (RIP3) and mixed lineage kinase domain-like pseudokinase (MLKL), were expressed in the early stage. The present study aims to explore the effect of necroptosis inhibition on ADSCs. ADSCs were obtained from normal human subcutaneous fat and verified by multidirectional differentiation and flow cytometry. By applying cell counting kit-8 (CCK-8), calcein/propidium iodide (PI) staining and immunostaining, we determined the OGD treatment time of 4 h, a timepoint when the cells showed a significant decrease in viability and increased protein expression of RIP3, phosphorylated RIP3 (pRIP3) and phosphorylated MLKL (pMLKL). After pretreatment with the inhibitor of RIP3, necroptotic protein expression decreased under OGD conditions, and cell necrosis decreased. Transwell assays proved that cell migration ability was retained. Furthermore, the expression of the adipogenic transcription factor peroxisome proliferator-activated receptor γ (PPARγ) and quantitative analysis of Oil Red O staining increased in the inhibitor group. The expression of vascular endothelial growth factor-A (VEGFA) and fibroblast growth factor 2 (FGF2) and the migration test suggest that OGD increases the secretion of vascular factors, promotes the migration of human umbilical vein endothelial cells (HUVECs), and forms unstable neovascularization. ELISA revealed that inhibition of RIP3 increased the secretion of the anti-inflammatory factor, interleukin (IL)-10 (IL-10) and reduced the expression of the proinflammatory factor IL-1β. Inhibition of RIP3 can reduce the death of ADSCs, retain their migration ability and adipogenic differentiation potential, reduce unstable neovascularization and inhibit the inflammatory response.
Collapse
Affiliation(s)
- Zhenyu Yang
- Chinese Academy of Medical Sciences and Peking Union Medical College Plastic Surgery Hospital and Institute, Beijing, China
| | - Zuoliang Qi
- Chinese Academy of Medical Sciences and Peking Union Medical College Plastic Surgery Hospital and Institute, Beijing, China
| | - Xiaonan Yang
- Chinese Academy of Medical Sciences and Peking Union Medical College Plastic Surgery Hospital and Institute, Beijing, China
| | - Qiuni Gao
- Chinese Academy of Medical Sciences and Peking Union Medical College Plastic Surgery Hospital and Institute, Beijing, China
| | - Yuling Hu
- Chinese Academy of Medical Sciences and Peking Union Medical College Plastic Surgery Hospital and Institute, Beijing, China
| | - Xihang Yuan
- Chinese Academy of Medical Sciences and Peking Union Medical College Plastic Surgery Hospital and Institute, Beijing, China
| |
Collapse
|
6
|
Xiong H, Chen Z, Zhao J, Li W, Zhang S. TNF-α/ENO1 signaling facilitates testicular phagocytosis by directly activating Elmo1 gene expression in mouse Sertoli cells. FEBS J 2021; 289:2809-2827. [PMID: 34919331 DOI: 10.1111/febs.16326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/10/2021] [Accepted: 12/15/2021] [Indexed: 11/27/2022]
Abstract
Phagocytic clearance of apoptotic germ cells (GCs), as well as residual bodies (RBs) released from developing spermatids, is critical for Sertoli cells (SCs) to maintain inner environment homeostasis within testis. However, the molecular mechanisms controlling the phagocytosis are ill defined. Here, we identify a new role for alpha-enolase (ENO1), a key enzyme during glycolysis, as a molecule that facilitates testicular phagocytosis via transactivation of the engulfment and cell motility 1 (Elmo1) gene. Using immunohistochesmitry and double-labeling immunofluorescence, ENO1 was observed to be expressed exclusively in the nuclei of SCs and its expression correlated with the completion of Sertoli cell differentiation. By incubating TM4 cells with different pharmacological inhibitors and establishing TM4Tnfr1-/- cells, we demonstrated that Sertoli cell-specific expression of ENO1 was under a delicate paracrine control from apoptotic GCs. In turn, persistent blockade of ENO1 expression by a validated siRNA protocol resulted in the disturbance of spermatogenesis and impairment of male fertility. Furthermore, using chromatin immunoprecipitation, electrophoretic mobility shift assay and luciferase reporter assay, we showed that in the presence of apoptotic GCs, ENO1 binds to the distal region of the Elmo1 promoter and facilitates transactivation of the Elmo1 gene. In agreement, overexpression of ELMO1 ameliorated ENO1 deficiency-induced impairment of phagocytosis in TM4 cells. These data reveal a novel role for Sertoli cell-specific expression of ENO1 in regulating phagocytosis in testis, identify TNF-α and ELMO1 as critical upstream and downstream factors in mediating ENO1 action, and have important implications for understanding paracrine control of Sertoli cell function by adjacent GCs.
Collapse
Affiliation(s)
- Hu Xiong
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, P.R.China
| | - Zhenzhen Chen
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, 710032, P.R.China
| | - Jie Zhao
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, 710032, P.R.China
| | - Wei Li
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, 710032, P.R.China
| | - Shun Zhang
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, P.R.China
| |
Collapse
|