1
|
Lu Y, Guo Y, Sun L, Liu T, Dong Z, Jia M, Zhuo L, Yin F, Zhu Y, Ma X, Wang Y. Adolescent morphine exposure induced long-term cognitive impairment and prefrontal neurostructural abnormality in adulthood in male mice. Heliyon 2024; 10:e40782. [PMID: 39687140 PMCID: PMC11648215 DOI: 10.1016/j.heliyon.2024.e40782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Opioids abuse in adolescence is becoming a pressing public health issue. While evidence suggests that exposure to opioids during adolescence leads to lasting alterations in brain development, the long-term cognitive implications in adulthood remain uncertain. We developed a male mouse model of adolescent morphine exposure and used the 5-choice serial reaction time task (5-CSRTT), along with the open field, novel object recognition, Y maze and Barnes maze tests, to assess changes in cognitive behavior. We found that exposure to morphine during adolescence led to deficits in multidimensional cognitive functions in mice, including attention, information processing speed, and behavior inhibition. Notable, these impairments persisted into adulthood. Furthermore, the morphine-exposed mice exhibited decreased learning efficiency and spatial memory. Adolescent morphine exposure also induced significant and persistent morphological changes and synaptic abnormalities in medial prefrontal cortex (mPFC) neurons, which may be responsible for cognitive impairments in adulthood. Together, our study suggests that opioid exposure during adolescence profoundly affects cognitive development and emphasizes that opioid-induced disruption of neurons in adolescence may link mPFC-associated cognitive impairments in adulthood.
Collapse
Affiliation(s)
- Ye Lu
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yijie Guo
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Shaanxi Key Laboratory of Biological Psychiatry, Xi'an, Shaanxi, 710061, China
| | - Lulu Sun
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Tong Liu
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ziqing Dong
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Min Jia
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Lixia Zhuo
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Fangyuan Yin
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yongsheng Zhu
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiancang Ma
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Shaanxi Key Laboratory of Biological Psychiatry, Xi'an, Shaanxi, 710061, China
| | - Yunpeng Wang
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Shaanxi Key Laboratory of Biological Psychiatry, Xi'an, Shaanxi, 710061, China
- Lead Contact, China
| |
Collapse
|
2
|
Aljabali SM, Pai S, Teperino R. Paternal impact on the developmental programming of sexual dimorphism. Front Cell Dev Biol 2024; 12:1520783. [PMID: 39712575 PMCID: PMC11659275 DOI: 10.3389/fcell.2024.1520783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
Sexual dimorphism involves distinct anatomical, physiological, behavioral, and developmental differences between males and females of the same species, influenced by factors prior to conception and during early development. These sex-specific traits contribute to varied phenotypes and individual disease risks within and across generations and understanding them is essential in mammalian studies. Hormones, sex chromosomes, and imprinted genes drive this dimorphism, with over half of quantitative traits in wildtype mice showing sex-based variation. This review focuses on the impact of paternal non-genetic factors on sexual dimorphism. We synthesize current research on how paternal health before conception affects offspring phenotypes in a sex-specific manner, examining mechanisms such as DNA methylation, paternally imprinted genes, sperm RNA, and seminal plasma. Additionally, we explore how paternal influences indirectly shape offspring through maternal behavior, uterine environment, and placental changes, affecting males and females differently. We propose mechanisms modulating sexual dimorphism during development, underscoring the need for sex-specific documentation in animal studies.
Collapse
Affiliation(s)
- Shefa’ M. Aljabali
- Institute of Experimental Genetics, Helmholtz Munich GmbH, German Research Center for Environmental Health, Neuherberg, Germany
- DZD – German Center for Diabetes Research, Neuherberg, Germany
| | - Shruta Pai
- Institute of Experimental Genetics, Helmholtz Munich GmbH, German Research Center for Environmental Health, Neuherberg, Germany
- DZD – German Center for Diabetes Research, Neuherberg, Germany
| | - Raffaele Teperino
- Institute of Experimental Genetics, Helmholtz Munich GmbH, German Research Center for Environmental Health, Neuherberg, Germany
- DZD – German Center for Diabetes Research, Neuherberg, Germany
| |
Collapse
|
3
|
Sari Y, Swiss GM, Alrashedi FA, Baeshen KA, Alshammari SA, Alsharari SD, Ali N, Alasmari AF, Alhoshani A, Alameen AA, Childers WE, Abou-Gharbia M, Alasmari F. Effects of novel beta-lactam, MC-100093, and ceftriaxone on astrocytic glutamate transporters and neuroinflammatory factors in nucleus accumbens of C57BL/6 mice exposed to escalated doses of morphine. Saudi Pharm J 2024; 32:102108. [PMID: 38868175 PMCID: PMC11166880 DOI: 10.1016/j.jsps.2024.102108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Chronic exposure to opioids can lead to downregulation of astrocytic glutamate transporter 1 (GLT-1), which regulates the majority of glutamate uptake. Studies from our lab revealed that beta-lactam antibiotic, ceftriaxone, attenuated hydrocodone-induced downregulation of GLT-1 as well as cystine/glutamate antiporter (xCT) expression in central reward brain regions. In this study, we investigated the effects of escalating doses of morphine and tested the efficacy of novel synthetic non-antibiotic drug, MC-100093, and ceftriaxone in attenuating the effects of morphine exposure in the expression of GLT-1, xCT, and neuroinflammatory factors (IL-6 and TGF-β) in the nucleus accumbens (NAc). This study also investigated the effects of morphine and beta-lactams in locomotor activity, spontaneous alternation percentage (SAP) and number of entries in Y maze since opioids have effects in locomotor sensitization. Mice were exposed to moderate dose of morphine (20 mg/kg, i.p.) on days 1, 3, 5, 7, and a higher dose of morphine (150 mg/kg, i.p.) on day 9, and these mice were then behaviorally tested and euthanized on Day 10. Western blot analysis showed that exposure to morphine downregulated GLT-1 and xCT expression in the NAc, and both MC-100093 and ceftriaxone attenuated these effects. In addition, morphine exposure increased IL-6 mRNA and TGF-β mRNA expression, and MC-100093 and ceftriaxone attenuated only the effect on IL-6 mRNA expression in the NAc. Furthermore, morphine exposure induced an increase in distance travelled, and MC-100093 and ceftriaxone attenuated this effect. In addition, morphine exposure decreased the SAP and increased the number of arm entries in Y maze, however, neither MC-100093 nor ceftriaxone showed any attenuating effect. Our findings demonstrated for the first time that MC-100093 and ceftriaxone attenuated morphine-induced downregulation of GLT-1 and xCT expression, and morphine-induced increase in neuroinflammatory factor, IL-6, as well as hyperactivity. These findings revealed the beneficial therapeutic effects of MC-100093 and ceftriaxone against the effects of exposure to escalated doses of morphine.
Collapse
Affiliation(s)
- Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ghadeer M.S. Swiss
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fatin A. Alrashedi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kholoud A. Baeshen
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh, Saudi Arabia
| | - Sultan A. Alshammari
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh, Saudi Arabia
| | - Shakir D. Alsharari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alaa A. Alameen
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wayne E. Childers
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Magid Abou-Gharbia
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Riyahi J, Taslimi Z, Gelfo F, Petrosini L, Haghparast A. Trans-generational effects of parental exposure to drugs of abuse on offspring memory functions. Neurosci Biobehav Rev 2024; 160:105644. [PMID: 38548003 DOI: 10.1016/j.neubiorev.2024.105644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/10/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
Recent evidence reported that parental-derived phenotypes can be passed on to the next generations. Within the inheritance of epigenetic characteristics allowing the transmission of information related to the ancestral environment to the offspring, the specific case of the trans-generational effects of parental drug addiction has been extensively studied. Drug addiction is a chronic disorder resulting from complex interactions among environmental, genetic, and drug-related factors. Repeated exposures to drugs induce epigenetic changes in the reward circuitry that in turn mediate enduring changes in brain function. Addictive drugs can exert their effects trans-generally and influence the offspring of addicted parents. Although there is growing evidence that shows a wide range of behavioral, physiological, and molecular phenotypes in inter-, multi-, and trans-generational studies, transmitted phenotypes often vary widely even within similar protocols. Given the breadth of literature findings, in the present review, we restricted our investigation to learning and memory performances, as examples of the offspring's complex behavioral outcomes following parental exposure to drugs of abuse, including morphine, cocaine, cannabinoids, nicotine, heroin, and alcohol.
Collapse
Affiliation(s)
- Javad Riyahi
- Department of Cognitive and Behavioral Science and Technology in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Zahra Taslimi
- Behavioral Disorders and Substance Abuse Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Fertility and Infertility Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Francesca Gelfo
- IRCCS Santa Lucia Foundation, Rome, Italy; Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| | | | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Khani F, Pourmotabbed A, Hosseinmardi N, Nedaei SE, Fathollahi Y, Azizi H. Development of anxiety-like behaviors during adolescence: Persistent effects of adolescent morphine exposure in male rats. Dev Psychobiol 2022; 64:e22315. [PMID: 36282759 DOI: 10.1002/dev.22315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/20/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023]
Abstract
Epidemiological studies show the prevalence of opioid use, misuse and abuse in adolescents, which imposes social and economic accountability worldwide. Chronic opioid exposure, especially in adolescents, may have lasting effects on emotional behaviors that persist into adulthood. The current experiments were therefore designed to study the effects of sustained opioid exposure during adolescence on anxiety-like behaviors. Adolescent male Wistar rats underwent increasing doses of morphine for 10 days (PNDs 31-40). After that the open field test (OFT) and elevated plus maze (EPM) test were performed over a 4-week postmorphine treatment from adolescence to adulthood. Moreover, the weight of the animals was measured at these time points. We found that chronic adolescent morphine exposure reduces the weight gain during the period of morphine treatment and 4 weeks after that. It had no significant effect on the locomotor activity in the animals. Moreover, anxiolytic-like behavior was observed in the rats exposed to morphine during adolescence evaluated by OFT and EPM test. Thus, long-term exposure to morphine during adolescence has the profound potential of altering the anxiety-like behavior profile in the period from adolescence to adulthood. The maturation of the nervous system can be affected by drug abuse during the developmental window of adolescence and these effects may lead to behaviorally stable alterations.
Collapse
Affiliation(s)
- Fatemeh Khani
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Pourmotabbed
- Department of Physiology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ershad Nedaei
- Department of Physiology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
6
|
Liu J, Liu C, Gao Z, Zhou L, Gao J, Luo Y, Liu T, Fan X. GW4064 Alters Gut Microbiota Composition and Counteracts Autism-Associated Behaviors in BTBR T+tf/J Mice. Front Cell Infect Microbiol 2022; 12:911259. [PMID: 35811667 PMCID: PMC9257030 DOI: 10.3389/fcimb.2022.911259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is considered a heterogeneous neurodevelopmental disorder characterized by significant social, communication, and behavioral impairments. The gut microbiota is increasingly considered a promising therapeutic target in ASD. Farnesoid X receptor (FXR) has recently been shown to modulate the gut microbiota. We hypothesized that FXR agonist GW4064 could ameliorate behavioral deficits in an animal model for autism: BTBR T+Itpr3tf/J (BTBR) mouse. As expected, administration of GW4064 rescued the sociability of BTBR mice in the three-chamber sociability test and male-female social reciprocal interaction test, while no effects were observed in C57BL/6J mice. We also found that GW4064 administration increased fecal microbial abundance and counteracted the common ASD phenotype of a high Firmicutes to Bacteroidetes ratio in BTBR mice. In addition, GW4064 administration reversed elevated Lactobacillus and decreased Allobaculum content in the fecal matter of BTBR animals. Our findings show that GW4064 administration alleviates social deficits in BTBR mice and modulates selective aspects of the composition of the gut microbiota, suggesting that GW4064 supplementation might prove a potential strategy for improving ASD symptoms.
Collapse
Affiliation(s)
- Jiayin Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chuanqi Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhanyuan Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lianyu Zhou
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yi Luo
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tianyao Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
7
|
Azadi M, Aref E, Pazhoohan S, Raoufy MR, Semnanian S, Azizi H. Paternal preconception exposure to chronic morphine alters respiratory pattern in response to morphine in male offspring. Respir Physiol Neurobiol 2022; 296:103811. [PMID: 34740834 DOI: 10.1016/j.resp.2021.103811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/12/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
The clinical use of opioids is restricted by its deleterious impacts on respiratory system. Gaining a better understanding of an individual's susceptibility to adverse opioid effects is important to recognize patients at risk. Ancestral drug addiction has been shown to be associated with alterations in drug responsiveness in the progenies. In the current study, we sought to evaluate the effects of preconception paternal morphine consumption on respiratory parameters in response to acute morphine in male offspring during adulthood, using plethysmography technique. Male Wistar rats administered 10 days of increasing doses of morphine in the period of adolescence. Thereafter, following a 30-day abstinence time, adult males copulated with naïve females. The adult male offspring were examined for breathing response to morphine. Our results indicated that sires who introduce chronic morphine during adolescence leads to increase irregularity of respiratory pattern and asynchronization between inter-breath interval (IBI) and respiratory volume (RV) time series in male offspring. These findings provide evidence that chronic morphine use by parents even before pregnancy can affect respiratory pattern and response to morphine in the offspring.
Collapse
Affiliation(s)
- Maryam Azadi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Aref
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Pazhoohan
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Saeed Semnanian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
8
|
Azadi M, Moazen P, Wiskerke J, Semnanian S, Azizi H. Preconception paternal morphine exposure leads to an impulsive phenotype in male rat progeny. Psychopharmacology (Berl) 2021; 238:3435-3446. [PMID: 34427719 DOI: 10.1007/s00213-021-05962-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022]
Abstract
RATIONALE Identifying the long-term neurocognitive implications of opioid addiction may further our understanding of the compulsive nature of this brain disorder. The aim of this study was to examine the effects of paternal adolescent opiate exposure on cognitive performance (visual attention, impulsivity, and compulsivity) in the next generation. METHODS Male Wistar rats received escalating doses of morphine (2.5-25 mg/kg, s.c.) or saline for 10 days during adolescence (P30-39). In adulthood (P70-80), these rats were allowed to mate with drug-naive females. Male offspring from morphine- and saline-exposed sires, once in adulthood, were trained and tested in the 5-choice serial reaction time test (5-CSRTT) to evaluate their cognitive abilities under baseline, drug-free conditions as well as following acute (1, 3, 5 mg/kg morphine) and subchronic morphine (5 mg/kg morphine for 5 days) treatment. Behavioral effects of the opioid receptor antagonist naloxone were also assessed. RESULTS Morphine-sired offspring exhibited delayed learning when the shortest stimulus duration (1 s) was introduced, i.e., when cognitive load was highest. These subjects also exhibited a reduced ability to exert inhibitory control, as reflected by increased premature and perseverative responding under drug-free baseline conditions in comparison to saline-sired rats. These impairments could not be reversed by administration of naloxone. Moreover, impulsive behavior was further enhanced in morphine-sired rats following acute and subchronic morphine treatment. CONCLUSION Paternal opiate exposure during adolescence was found to primarily impair inhibitory control in male progeny. These results further our understanding of the long-term costs and risk of opioid abuse, extending across generations.
Collapse
Affiliation(s)
- Maryam Azadi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Parisa Moazen
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Joost Wiskerke
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| | - Saeed Semnanian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|