Nasr MM, Wahdan SA, El-Naga RN, Salama RM. Neuroprotective effect of empagliflozin against doxorubicin-induced chemobrain in rats: Interplay between SIRT-1/MuRF-1/PARP-1/NLRP3 signaling pathways and enhanced expression of miRNA-34a and LncRNA HOTAIR.
Neurotoxicology 2024;
105:216-230. [PMID:
39426736 DOI:
10.1016/j.neuro.2024.10.006]
[Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Chemobrain, a challenging side effect of doxorubicin (DOX)-based chemotherapy, impairs cognitive abilities in cancer survivors. DOX triggers chemobrain via oxidative stress, leading to inflammation and apoptosis. Empagliflozin (EMPA), a sodium glucose co-transporter-2 inhibitor, demonstrated neuroprotective effects by reducing reactive oxygen species (ROS) and inflammation, but its protective mechanisms against DOX-induced chemobrain is not fully known. Thus, this study aimed to investigate EMPA's neuroprotective effects on DOX-induced chemobrain in rats and to uncover the underlying protective mechanisms. Fifty male Wistar rats were divided into control, EMPA, DOX (2 mg/kg, IP, once/week for 4 weeks), and two treated groups (DOX+ EMPA 5 and 10 mg/kg/day, PO, for 4 weeks). Behavioral tests showed improved memory, motor performance, and reduced anxiety in EMPA-treated groups compared to DOX, with superior results at the higher dose. Histopathological analysis revealed increased intact neurons in the cortex and hippocampus in EMPA-treated groups, with 346.4 % increase in CA3 (p < 0.0001), 19.1 % in dentate gyrus (p = 0.0006), and 362.6 % in cortex (p < 0.0001) in the high-dose EMPA group. Biochemical investigations of the high-dose EMPA group revealed significant decreases in inflammatory and apoptotic markers (JNK/PARP-1/NLRP3/MuRF-1/FOXO-1), increased SIRT-1 protein expression by 389.9 % (p < 0.0001), and reduced miRNA-34a and LncRNA HOTAIR gene expression (50.4 % and 53.4 % respectively, p < 0.0001) relative to DOX group. Conclusively, EMPA demonstrated superior behavioral and histopathological outcomes particularly at higher dose, positioning it as a promising neuroprotective candidate against DOX-induced chemobrain, possibly through modulating SIRT-1, NF-κb, NLRP3, and oxidative stress pathways.
Collapse