1
|
Bu C, Ren Y, Chen Y, Zheng X. Noncoding RNAs and their influence on maternal mental health: insights into perinatal depression: a review. Mol Biol Rep 2025; 52:448. [PMID: 40338400 DOI: 10.1007/s11033-025-10541-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 04/23/2025] [Indexed: 05/09/2025]
Abstract
Perinatal depression profoundly influences the psychological and physiological well-being of women both during and after pregnancy. This condition encompasses depressive symptoms that manifest as antenatal as well as postnatal depression. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), are integral to various cellular processes and have been implicated in the pathophysiology of perinatal depression. These ncRNAs are involved in the regulation of gene expression, maintenance of neuronal function, and modulation of stress responses. Dysregulation of ncRNAs, particularly lncRNAs and miRNAs, has been associated with psychiatric disorders, including perinatal depression. This review explores the classification and functions of ncRNAs, their biological roles, and the evidence linking them to perinatal depression. The investigation of ncRNAs in the context of perinatal depression holds promise for the development of novel therapeutic strategies and the enhancement of health outcomes for both mothers and their children. Future research should prioritize the standardization of methodologies and approaches in this field.
Collapse
Affiliation(s)
- Chaozhi Bu
- Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, Jiangsu, 214002, China
| | - Yongwei Ren
- Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, Jiangsu, 214002, China
| | - Yuejuan Chen
- Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, Jiangsu, 214002, China
| | - Xiaomin Zheng
- Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, Jiangsu, 214002, China.
| |
Collapse
|
2
|
Chen L, Wang X, Jia X, Bade R, Liu X, Jiang S, Xie Y, Xie W, Gao M, Shao G. Hypoxic preconditioning modulates BDNF signaling to alleviate depression-like behaviors in mice and its whole transcriptome sequencing analysis. Sci Rep 2025; 15:15363. [PMID: 40316595 PMCID: PMC12048720 DOI: 10.1038/s41598-025-00355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025] Open
Abstract
Depression, a neurological disorder triggered by stressful stimuli such as hypoxia, is associated with high morbidity and mortality. Hypoxic preconditioning (HPC) is an endogenous mechanism that has been used in recent research to upregulate BDNF, a marker of depression, to elicit neuroprotective effects. However, the mechanisms by which HPC protects against depression remain poorly understood. Therefore, this study aimed to investigate the effects of HPC on depressive behaviors via BDNF signaling. Initially, ICR mice were subjected to HPC, followed by the establishment of a 24-hour restraint stress model to mimic depressive behaviors. Subsequent analysis focused on changes in depressive behaviors, biochemical markers, and the levels of BDNF and its ability to modulate synaptic structure and neurogenesis. Furthermore, whole transcriptome sequencing was conducted. The results indicated that HPC relieved characteristic depressive behaviors in restraint stress model mice, regulated neurotransmitter levels, elevated antioxidant capacity, and promoted BDNF signaling in the hippocampus. PSD-95 expression, the number and complexity of neuronal dendritic spines, and hippocampal neurogenesis in model mice were increased via HPC. Restraint stress regulated 373 DElncRNAs, 166 DEcircRNAs, 29 DEmiRNAs and 1235 DEmRNAs, which were also modulated by HPC. The ceRNA networks were constructed on the basis of these DERNAs. Functional enrichment analysis revealed that these genes are related to synapses, neurogenesis and neurotrophin signaling. These results suggested that HPC upregulated BDNF and activated BDNF/PLCγ/CREB signaling to alleviate synaptic deficits and promote hippocampal neurogenesis, ultimately ameliorating depressive behaviors in mice. The identification of various mRNAs and ncRNAs and their constituent ceRNAs provides theoretical guidance for the clinical treatment of depression with HPC.
Collapse
Affiliation(s)
- Lizhu Chen
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, 014060, China
| | - Xujie Wang
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, 014060, China
| | - Xiaoe Jia
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, 014060, China
- School of Basic Medicine and Forensic Sciences, Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, 014060, China
| | - Rengui Bade
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, 014060, China
- School of Medical Technology and Anesthesia, Baotou Medical College, Baotou, 014060, China
| | - Xiaolei Liu
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, 014060, China
| | - Shuyuan Jiang
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, 014060, China
| | - Yabin Xie
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, 014060, China
- School of Medical Technology and Anesthesia, Baotou Medical College, Baotou, 014060, China
| | - Wei Xie
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, 014060, China.
- School of Medical Technology and Anesthesia, Baotou Medical College, Baotou, 014060, China.
| | - Manhai Gao
- Department of Anaesthesiology, The First Affiliated Hospital of Baotou Medical College, Baotou, 014060, China.
| | - Guo Shao
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, 014060, China
- Center for Translational Medicine, Department of Laboratory Medicine, The Third People's Hospital of Longgang District, Shenzhen, 518112, China
| |
Collapse
|
3
|
Shaikh M, Doshi G. Epigenetic aging in major depressive disorder: Clocks, mechanisms and therapeutic perspectives. Eur J Pharmacol 2024; 978:176757. [PMID: 38897440 DOI: 10.1016/j.ejphar.2024.176757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/09/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Depression, a chronic mental disorder characterized by persistent sadness, loss of interest, and difficulty in daily tasks, impacts millions globally with varying treatment options. Antidepressants, despite their long half-life and minimal effectiveness, leave half of patients undertreated, highlighting the need for new therapies to enhance well-being. Epigenetics, which studies genetic changes in gene expression or cellular phenotype without altering the underlying Deoxyribonucleic Acid (DNA) sequence, is explored in this article. This article delves into the intricate relationship between epigenetic mechanisms and depression, shedding light on how environmental stressors, early-life adversity, and genetic predispositions shape gene expression patterns associated with depression. We have also discussed Histone Deacetylase (HDAC) inhibitors, which enhance cognitive function and mood regulation in depression. Non-coding RNAs, (ncRNAs) such as Long Non-Coding RNAs (lncRNAs) and micro RNA (miRNAs), are highlighted as potential biomarkers for detecting and monitoring major depressive disorder (MDD). This article also emphasizes the reversible nature of epigenetic modifications and their influence on neuronal growth processes, underscoring the dynamic interplay between genetics, environment, and epigenetics in depression development. It explores the therapeutic potential of targeting epigenetic pathways in treating clinical depression. Additionally, it examines clinical findings related to epigenetic clocks and their role in studying depression and biological aging.
Collapse
Affiliation(s)
- Muqtada Shaikh
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, 400 056, India
| | - Gaurav Doshi
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, 400 056, India.
| |
Collapse
|
4
|
Lai G, Malavolta M, Marcozzi S, Bigossi G, Giuliani ME, Casoli T, Balietti M. Late-onset major depressive disorder: exploring the therapeutic potential of enhancing cerebral brain-derived neurotrophic factor expression through targeted microRNA delivery. Transl Psychiatry 2024; 14:352. [PMID: 39227372 PMCID: PMC11371930 DOI: 10.1038/s41398-024-02935-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 09/05/2024] Open
Abstract
Major depressive disorder (MDD) is a severe psychiatric condition that significantly impacts the overall quality of life. Although MDD can occur across all age groups, it is notably prevalent among older individuals, with the aggravating circumstance that the clinical condition is frequently overlooked and undertreated. Furthermore, older adults often encounter resistance to standard treatments, experience adverse events, and face challenges associated with polypharmacy. Given that late-life MDD is associated with heightened rates of disability and mortality, as well as imposing a significant economic and logistical burden on healthcare systems, it becomes imperative to explore novel therapeutic approaches. These could serve as either supplements to standard guidelines or alternatives for non-responsive patients, potentially enhancing the management of geriatric MDD patients. This review aims to delve into the potential of microRNAs targeting Brain-Derived Neurotrophic Factor (BDNF). In MDD, a significant decrease in both central and peripheral BDNF has been well-documented, raising implications for therapy response. Notably, BDNF appears to be a key player in the intricate interplay between microRNA-induced neuroplasticity deficits and neuroinflammation, both processes deeply implicated in the onset and progression of the disease. Special emphasis is placed on delivery methods, with a comprehensive comparison of the strengths and weaknesses of each proposed approach. Our hypothesis proposes that employing multiple microRNAs concurrently, with the ability to directly influence BDNF and activate closely associated pathways, may represent the most promising strategy. Regarding vehicles, although the perfect nanoparticle remains elusive, considering the trade-offs, liposomes emerge as the most suitable option.
Collapse
Affiliation(s)
- Giovanni Lai
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy.
| | - Serena Marcozzi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | - Giorgia Bigossi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | - Maria Elisa Giuliani
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | - Tiziana Casoli
- Center of Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| | - Marta Balietti
- Center of Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
5
|
Carneiro BA, Franco Guerreiro-Costa LN, Lins-Silva D, Faria Guimaraes D, Souza LS, Leal GC, Caliman-Fontes AT, Beanes G, Costa RDS, Quarantini LC. MicroRNAs as Diagnostic Biomarkers and Predictors of Antidepressant Response in Major Depressive Disorder: A Systematic Review. Cureus 2024; 16:e56910. [PMID: 38665721 PMCID: PMC11043793 DOI: 10.7759/cureus.56910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2024] [Indexed: 04/28/2024] Open
Abstract
Despite the hardships of major depressive disorder (MDD), biomarkers for the diagnosis and pharmacological management of this condition are lacking. MicroRNAs are epigenetic mechanisms that could provide promising MDD biomarkers. Our aim was to summarize the findings and provide validation for the selection and use of specific microRNAs as biomarkers in the diagnosis and treatment of MDD. A systematic review was conducted using the PubMed/Medline, Cochrane, PsycINFO, Embase, and LILACS databases from March 2022 to November 2023, with clusters of terms based on "microRNA" and "antidepressant". Studies involving human subjects, animal models, and cell cultures were included, whereas those that evaluated herbal medicines, non-pharmacological therapies, or epigenetic mechanisms other than miRNA were excluded. The review revealed differences in the expression of various microRNAs when considering the time of assessment (before or after antidepressant treatment) and the population studied. However, due to the heterogeneity of the microRNAs investigated, the limited size of the samples, and the wide variety of antidepressants used, few conclusions could be made. Despite the observed heterogeneity, the following microRNAs were determined to be important factors in MDD and the antidepressant response: mir-1202, mir-135, mir-124, and mir-16. The findings indicate the potential for the use of microRNAs as biomarkers for the diagnosis and treatment of MDD; however, more homogeneous studies are needed.
Collapse
Affiliation(s)
- Beatriz A Carneiro
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
| | | | - Daniel Lins-Silva
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
| | - Daniela Faria Guimaraes
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
| | - Lucca S Souza
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
| | - Gustavo C Leal
- Medicine, Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
| | - Ana Teresa Caliman-Fontes
- Medicine, Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
| | - Graziele Beanes
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
| | - Ryan Dos S Costa
- Medicine, Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, BRA
| | | |
Collapse
|
6
|
Gupta R, Advani D, Yadav D, Ambasta RK, Kumar P. Dissecting the Relationship Between Neuropsychiatric and Neurodegenerative Disorders. Mol Neurobiol 2023; 60:6476-6529. [PMID: 37458987 DOI: 10.1007/s12035-023-03502-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/11/2023] [Indexed: 09/28/2023]
Abstract
Neurodegenerative diseases (NDDs) and neuropsychiatric disorders (NPDs) are two common causes of death in elderly people, which includes progressive neuronal cell death and behavioral changes. NDDs include Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and motor neuron disease, characterized by cognitive defects and memory impairment, whereas NPDs include depression, seizures, migraine headaches, eating disorders, addictions, palsies, major depressive disorders, anxiety, and schizophrenia, characterized by behavioral changes. Mounting evidence demonstrated that NDDs and NPDs share an overlapping mechanism, which includes post-translational modifications, the microbiota-gut-brain axis, and signaling events. Mounting evidence demonstrated that various drug molecules, namely, natural compounds, repurposed drugs, multitarget directed ligands, and RNAs, have been potentially implemented as therapeutic agents against NDDs and NPDs. Herein, we highlighted the overlapping mechanism, the role of anxiety/stress-releasing factors, cytosol-to-nucleus signaling, and the microbiota-gut-brain axis in the pathophysiology of NDDs and NPDs. We summarize the therapeutic application of natural compounds, repurposed drugs, and multitarget-directed ligands as therapeutic agents. Lastly, we briefly described the application of RNA interferences as therapeutic agents in the pathogenesis of NDDs and NPDs. Neurodegenerative diseases and neuropsychiatric diseases both share a common signaling molecule and molecular phenomenon, namely, pro-inflammatory cytokines, γCaMKII and MAPK/ERK, chemokine receptors, BBB permeability, and the gut-microbiota-brain axis. Studies have demonstrated that any alterations in the signaling mentioned above molecules and molecular phenomena lead to the pathophysiology of neurodegenerative diseases, namely, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, and neuropsychiatric disorders, such as bipolar disorder, schizophrenia, depression, anxiety, autism spectrum disorder, and post-traumatic stress disorder.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Divya Yadav
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India.
| |
Collapse
|
7
|
Ding R, Su D, Zhao Q, Wang Y, Wang JY, Lv S, Ji X. The role of microRNAs in depression. Front Pharmacol 2023; 14:1129186. [PMID: 37063278 PMCID: PMC10090555 DOI: 10.3389/fphar.2023.1129186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Major depressive disorder (MDD) is a psychiatric disorder with increasing prevalence worldwide. It is a leading cause of disability and suicide, severely affecting physical and mental health. However, the study of depression remains at an exploratory stage in terms of diagnostics and treatment due to the complexity of its pathogenesis. MicroRNAs are endogenous short-stranded non-coding RNAs capable of binding to the 3’untranslated region of mRNAs. Because of their ability to repress translation process of genes and are found at high levels in brain tissues, investigation of their role in depression has gradually increased recently. This article summarizes recent research progress on the relationship between microRNAs and depression. The microRNAs play a regulatory role in the pathophysiology of depression, involving dysregulation of monoamines, abnormalities in neuroplasticity and neurogenesis, hyperactivity of the HPA axis, and dysregulation of inflammatory responses. These microRNAs might provide new clue for the diagnosis and treatment of MDD, and the development of antidepressant drugs.
Collapse
Affiliation(s)
- Ruidong Ding
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Dingyuan Su
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Qian Zhao
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Yu Wang
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Jia-Yi Wang
- San-Quan College, Xinxiang Medical University, Xinxiang, Henan, China
| | - Shuangyu Lv
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
- *Correspondence: Shuangyu Lv, ; Xinying Ji,
| | - Xinying Ji
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
- Kaifeng Key Laboratory for Infectious Diseases and Biosafety, Kaifeng, Henan, China
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China
- *Correspondence: Shuangyu Lv, ; Xinying Ji,
| |
Collapse
|
8
|
Ryan KM, Smyth P, Blackshields G, Kranaster L, Sartorius A, Sheils O, McLoughlin DM. Electroconvulsive Stimulation in Rats Induces Alterations in the Hippocampal miRNome: Translational Implications for Depression. Mol Neurobiol 2023; 60:1150-1163. [PMID: 36414911 DOI: 10.1007/s12035-022-03131-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022]
Abstract
MicroRNAs (miRNAs) may contribute to the development of depression and its treatment. Here, we used the hypothesis-neutral approach of next-generation sequencing (NGS) to gain comprehensive understanding of the effects of a course of electroconvulsive stimulation (ECS), the animal model equivalent of electroconvulsive therapy (ECT), on rat hippocampal miRNAs. Significant differential expression (p < 0.001) of six hippocampal miRNAs was noted following NGS, after correcting for multiple comparisons. Three of these miRNAs were upregulated (miR-132, miR-212, miR-331) and three downregulated (miR-204, miR-483, miR-301a). qRT-PCR confirmed significant changes in four of the six miRNAs (miR-132, miR-212, miR-204, miR-483). miR-483 was also significantly reduced in frontal cortex, though no other significant alterations were noted in frontal cortex, cerebellum, or whole blood. Assessing the translatability of the results, miR-132 and miR-483 were significantly reduced in whole blood samples from medicated patients with depression (n = 50) compared to healthy controls (n = 45), though ECT had no impact on miRNA levels. Notably, pre-ECT miR-204 levels moderately positively correlated with depression severity at baseline and moderately negatively correlated with mood score reduction post-ECT. miRNAs were also examined in cerebrospinal fluid and serum from a separate cohort of patients (n = 8) treated with ECT; no significant changes were noted post-treatment. However, there was a large positive correlation between changes in miR-212 and mood score post-ECT in serum. Though replication studies using larger sample sizes are required, alterations in miRNA expression may be informative about the mechanism of action of ECS/ECT and in turn might give insight into the neurobiology of depression.
Collapse
Affiliation(s)
- Karen M Ryan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland. .,Department of Psychiatry, Trinity College Dublin, St Patrick's University Hospital, Dublin 8, Ireland.
| | - Paul Smyth
- Department of Histopathology, Trinity Translational Medicine Institute, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Gordon Blackshields
- Department of Histopathology, Trinity Translational Medicine Institute, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Laura Kranaster
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty, Mannheim/Heidelberg University, Mannheim, Germany
| | - Alexander Sartorius
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty, Mannheim/Heidelberg University, Mannheim, Germany
| | - Orla Sheils
- Department of Histopathology, Trinity Translational Medicine Institute, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Declan M McLoughlin
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.,Department of Psychiatry, Trinity College Dublin, St Patrick's University Hospital, Dublin 8, Ireland
| |
Collapse
|
9
|
Serretti A. Clinical Utility of Fluid Biomarker in Depressive Disorder. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2022; 20:585-591. [PMID: 36263634 PMCID: PMC9606424 DOI: 10.9758/cpn.2022.20.4.585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 01/25/2023]
Abstract
Major depressive disorders are ranked as the single largest contributor to non-fatal health loss and biomarkers could largely improve our routine clinical activity by predicting disease course and guiding treatment. However there is still a dearth of valid biomarkers in the field of psychiatry. The initial assumption that a single biomarker can capture the myriad of complex processes proved to be naive. The purpose of this paper is to critically review the field and to illustrate the possible practical application for routine clinical care. Biomarkers derived from DNA analysis are the ones that have received the most attention. Other potential candidates include circulating transcription products, proteins, and inflammatory markers. DNA polygenic risk scores proved to be useful in other fields of medicine and preliminary results suggest that they could be useful both as risk and diagnostic biomarkers also in depression and for the choice of treatment. A number of other possible fluid biomarkers are currently under investigation for diagnosis, outcome prediction, staging, and stratification of interventions, however research is still needed before they can be used for routine clinical care. When available, clinicians may be able to receive a lab report with detailed information about disease risk, outcome prediction, and specific indications about preferred treatments.
Collapse
Affiliation(s)
- Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy,Address for correspondence: Alessandro Serretti Department of Biomedical and Neuromotor Sciences, University of Bologna, Viale Carlo Pepoli 5, 40123 Bologna, Italy, E-mail: , ORCID: https://orcid.org/0000-0003-4363-3759
| |
Collapse
|
10
|
Li QS, Galbraith D, Morrison RL, Trivedi MH, Drevets WC. Circulating microRNA associated with future relapse status in major depressive disorder. Front Psychiatry 2022; 13:937360. [PMID: 36061300 PMCID: PMC9428445 DOI: 10.3389/fpsyt.2022.937360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/25/2022] [Indexed: 12/19/2022] Open
Abstract
Major depressive disorder (MDD) is an episodic condition with relapsing and remitting disease course. Elucidating biomarkers that can predict future relapse in individuals responding to an antidepressant treatment holds the potential to identify those patients who are prone to illness recurrence. The current study explored relationships between relapse risk in recurrent MDD and circulating microRNAs (miRNAs) that participate in RNA silencing and post-transcriptional regulation of gene expression. Serum samples were acquired from individuals with a history of recurrent MDD who were followed longitudinally in the observational study, OBSERVEMDD0001 (ClinicalTrials.gov Identifier: NCT02489305). Circulating miRNA data were obtained in 63 participants who relapsed ("relapsers") and 154 participants who did not relapse ("non-relapsers") during follow-up. The miRNA was quantified using the ID3EAL™ miRNA Discovery Platform from MiRXES measuring 575 circulating miRNAs using a patented qPCR technology and normalized with a standard curve from spike-in controls in each plate. The association between miRNAs and subsequent relapse was tested using a linear model, adjusting for age, gender, and plate. Four miRNAs were nominally associated with relapse status during the observational follow-up phase with a false discover rate adjusted p-value < 0.1. Enrichment analysis of experimentally validated targets revealed 112 significantly enriched pathways, including neurogenesis, response to cytokine, neurotrophin signaling, vascular endothelial growth factor signaling, relaxin signaling, and cellular senescence pathways. These data suggest these miRNAs putatively associated with relapse status may have the potential to regulate genes involved in multiple signaling pathways that have previously been associated with MDD. If shown to be significant in a larger, independent sample, these data may hold potential for developing a miRNA signature to identify patients likely to relapse, allowing for earlier intervention.
Collapse
Affiliation(s)
- Qingqin S Li
- Neuroscience Therapeutic Area, Janssen Research and Development, LLC, Titusville, NJ, United States.,JRD Data Science, Janssen Research and Development, LLC, Titusville, NJ, United States
| | | | - Randall L Morrison
- Neuroscience Therapeutic Area, Janssen Research and Development, LLC, Titusville, NJ, United States
| | - Madhukar H Trivedi
- Department of Psychiatry, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, United States
| | - Wayne C Drevets
- Neuroscience Therapeutic Area, Janssen Research and Development, LLC, San Diego, CA, United States
| |
Collapse
|
11
|
Grimm SL, Mendez EF, Stertz L, Meyer TD, Fries GR, Gandhi T, Kanchi R, Selvaraj S, Teixeira AL, Kosten TR, Gunaratne P, Coarfa C, Walss-Bass C. MicroRNA-mRNA networks are dysregulated in opioid use disorder postmortem brain: Further evidence for opioid-induced neurovascular alterations. Front Psychiatry 2022; 13:1025346. [PMID: 36713930 PMCID: PMC9878702 DOI: 10.3389/fpsyt.2022.1025346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/05/2022] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION To understand mechanisms and identify potential targets for intervention in the current crisis of opioid use disorder (OUD), postmortem brains represent an under-utilized resource. To refine previously reported gene signatures of neurobiological alterations in OUD from the dorsolateral prefrontal cortex (Brodmann Area 9, BA9), we explored the role of microRNAs (miRNA) as powerful epigenetic regulators of gene function. METHODS Building on the growing appreciation that miRNAs can cross the blood-brain barrier, we carried out miRNA profiling in same-subject postmortem samples from BA9 and blood tissues. RESULTS miRNA-mRNA network analysis showed that even though miRNAs identified in BA9 and blood were fairly distinct, their target genes and corresponding enriched pathways overlapped strongly. Among the dominant enriched biological processes were tissue development and morphogenesis, and MAPK signaling pathways. These findings point to robust, redundant, and systemic opioid-induced miRNA dysregulation with a potential functional impact on transcriptomic changes. Further, using correlation network analysis, we identified cell-type specific miRNA targets, specifically in astrocytes, neurons, and endothelial cells, associated with OUD transcriptomic dysregulation. Finally, leveraging a collection of control brain transcriptomes from the Genotype-Tissue Expression (GTEx) project, we identified a correlation of OUD miRNA targets with TGF beta, hypoxia, angiogenesis, coagulation, immune system, and inflammatory pathways. DISCUSSION These findings support previous reports of neurovascular and immune system alterations as a consequence of opioid abuse and shed new light on miRNA network regulators of cellular response to opioid drugs.
Collapse
Affiliation(s)
- Sandra L Grimm
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States.,Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Emily F Mendez
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Laura Stertz
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Thomas D Meyer
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Gabriel R Fries
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tanmay Gandhi
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Rupa Kanchi
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Sudhakar Selvaraj
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Antonio L Teixeira
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Thomas R Kosten
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Department of Psychiatry, Baylor College of Medicine, Houston, TX, United States
| | - Preethi Gunaratne
- Department of Biology and Biochemistry, University of Houston, TX, United States
| | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States.,Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Consuelo Walss-Bass
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|