1
|
Özbaşak H, Paliokha R, Dekhtiarenko R, Grinchii D, Dremencov E. Agmatine Enhances Dorsal Raphe Serotonergic Neuronal Activity via Dual Regulation of 5-HT 1B and 5-HT 2A Receptors. Int J Mol Sci 2025; 26:3087. [PMID: 40243752 PMCID: PMC11988524 DOI: 10.3390/ijms26073087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Agmatine is a naturally occurring biogenic amine that acts primarily as an inhibitor of neuronal nitric oxide synthase (nNOS). Previous studies have shown that both acute and chronic agmatine administration induced anxiolytic and antidepressant-like effects in rodents. In the dorsal raphe nucleus (DRN), nitric oxide (NO) donors inhibit serotonergic (5-HT) neuronal activity, with the nNOS-expressing 5-HT neurons showing lower baseline firing rates than the non-nNOS expressing neurons. Our study aimed to test the hypothesis that the psychoactive effects of agmatine are mediated, at least in part, via a mechanism involving the stimulation of the DRN 5-HT neurons, as well as to assess the molecular pathway allowing agmatine to modulate the excitability of 5-HT neurons. Using extracellular in vivo electrophysiology, we demonstrated that both acute (1-3 mg/kg, i.v.) and chronic (40 mg/kg/day, i.p., 14 days) agmatine administration significantly increased the firing rate of DRN 5-HT neurons. Quantitative PCR (qPCR) analysis revealed that chronic agmatine treatment selectively upregulated the expression of serotonin-1B (5-HT1B) and serotonin-2A (5-HT2A) receptor mRNA in the DRN. Previous studies have shown that DRN 5-HT2A receptor activation stimulates 5-HT neurons and produces antidepressant-like effects; our findings suggest that agmatine's excitatory effect on DRN 5-HT neurons may be partially 5-HT2A receptor-dependent. Given that modulation of the 5-HT neuronal firing activity is critical for the proper antidepressant efficacy, nNOS inhibitors can be potential antidepressants by their own and/or effective adjuncts to other antidepressant drugs.
Collapse
Affiliation(s)
| | | | | | | | - Eliyahu Dremencov
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia; (H.Ö.); (R.P.); (R.D.); (D.G.)
| |
Collapse
|
2
|
Yang H, Tian Q, Luan L, Yang M, Li C, Zhang X. NGF-β and BDNF levels are altered in male patients with chronic schizophrenia: effects on clinical symptoms. BMC Psychiatry 2025; 25:240. [PMID: 40082848 PMCID: PMC11908022 DOI: 10.1186/s12888-025-06685-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/05/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Schizophrenia, a severe mental disorder with complex pathophysiology, involves neurotrophic factors, which play crucial roles in neurodevelopment and neuroplasticity. This study investigated NGF-β and BDNF levels in chronic schizophrenia and their association with clinical symptoms, cognitive function, and 1,25(OH)₂D levels. METHODS In this cross-sectional study, 72 male patients with chronic schizophrenia and 70 matched healthy controls were enrolled. Psychopathological symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS), and cognitive function was evaluated using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). The serum levels of NGF-β, BDNF, and 1,25(OH)₂D were measured. RESULTS Serum levels of NGF-β (F = 35.239, P < 0.001) and BDNF (F = 12.669, P < 0.001) were significantly decreased in patients with chronic schizophrenia compared to healthy controls. NGF-β levels were negatively correlated with PANSS negative symptoms (beta = -0.205, t = -2.098, P = 0.040) and positively correlated with 1,25(OH)₂D levels (r = 0.324, P = 0.006). Decreased serum BDNF concentrations were negatively correlated with language deficits (beta = -0.301, t = -2.762, P = 0.007). Significant associations were observed between chronic schizophrenia and reduced levels of NGF-β (B = 1.040, P < 0.001, RR = 2.829, 95% CI: 2.101-3.811) and BDNF (B = 0.526, P = 0.001, RR = 1.692, 95% CI: 1.241-2.306). CONCLUSIONS Our findings indicated that NGF-β and BDNF levels were altered in chronic schizophrenia and were associated with clinical symptoms and vitamin D metabolism. These results provided new insight into the etiology of schizophrenia.
Collapse
Affiliation(s)
- Haidong Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, P.R. China
- Suzhou Psychiatric Hospital, Institute of Mental Health, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, P.R. China
| | - Qing Tian
- Suzhou Psychiatric Hospital, Institute of Mental Health, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, P.R. China
| | - Lingshu Luan
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, P.R. China
- Xuzhou Medical University, Xuzhou, 221004, P.R. China
| | - Man Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, P.R. China
| | - Chuanwei Li
- Suzhou Psychiatric Hospital, Institute of Mental Health, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, P.R. China.
| | - Xiaobin Zhang
- Suzhou Psychiatric Hospital, Institute of Mental Health, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, P.R. China.
| |
Collapse
|
3
|
Yang H, Yang M, Zhang Y, Shi Z, Zhang X, Zhang C. Elevated serum IGFBP-1 levels correlate with cognitive deficits in treatment-resistant and chronic medicated schizophrenia patients. Cytokine 2024; 182:156728. [PMID: 39126767 DOI: 10.1016/j.cyto.2024.156728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/31/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Schizophrenia is a debilitating psychiatric disorder with diverse cognitive impairments. Insulin-like growth factor binding protein 1 (IGFBP-1), a ubiquitous negative regulator of IGF signaling, crosses the blood-brain barrier after peripheral synthesis. Given the crucial role of IGF signaling in cognitive function, we reasoned that altered serum IGFBP-1 concentrations might be associated with cognitive impairments in schizophrenia. To test this hypothesis, we examined the relationship between serum IGFBP-1 levels and cognitive performance in both medicated and treatment-resistant schizophrenia (TRS) patients. METHODS Serum IGFBP-1 was measured in 31 TRS patients, 49 chronic medicated schizophrenia (CMS) patients, and 53 healthy controls. Clinical symptom severity was evaluated using the Positive and Negative Syndrome Scale (PANSS) and cognitive functions using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). RESULTS Both TRS and CMS patients exhibited cognitive deficits compared to healthy controls (p < 0.05). Serum IGFBP-1 concentration differed significantly among groups (F=36.805, p < 0.001) and post hoc tests demonstrated significantly higher concentrations in both schizophrenia groups compared to controls (p < 0.001). Further, serum IGFBP-1 concentration was higher in the TRS group than the CMS group (p = 0.048). Correlation analysis identified a significant relationship between serum IGFBP-1 and attention in the TRS group (r = 0.411, p = 0.021), immediate memory in the CMS group (r = -0.417, p = 0.003), and RBANS total score in the CMS group (r = -0.368, p = 0.009). Multiple regression analysis adjusting for confounding factors revealed that serum IGFBP-1 was independently associated with attention in TRS patients (p = 0.016, 95 %CI. 0.002-0.015) and immediate memory in CMS patients (p = 0.022, 95 %CI-0.012 to -0.001). CONCLUSIONS Elevated serum IGFBP-1 concentration may serve as a predictive biomarker for distinct cognitive deficits in TRS and CMS patients. Further investigations are warranted.
Collapse
Affiliation(s)
- Haidong Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, China; Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, China.
| | - Man Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, China.
| | - Yuting Zhang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, China.
| | - Zhihui Shi
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, China.
| | - Xiaobin Zhang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, China.
| | - Caiyi Zhang
- Department of Psychiatry, The Second Medical College of Xuzhou Medical University, Xuzhou, 221004, China; Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
4
|
Chen P, Chen W, Xu L, Luan L, Peng R, Zhang X, Yang H. Decreased serum VEGF and NRG1β1 levels in male patients with chronic schizophrenia: VEGF correlation with clinical symptoms and cognitive deficits. J Psychiatr Res 2024; 176:85-92. [PMID: 38850582 DOI: 10.1016/j.jpsychires.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/19/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) and neuregulin1 (NRG1) are multifunctional trophic factors reported to be dysregulated in schizophrenia. However, the relationships between serum concentrations and schizophrenia symptoms have differed markedly across studies, possibly because schizophrenia is a highly heterogenous disorder. The aim of this study was to investigate the associations of serum VEGF and NRG1 with clinical symptoms and cognitive deficits specifically in male patients with chronic schizophrenia. METHODS The study included 79 male patients with chronic schizophrenia and 79 matched healthy individuals. Serum VEGF, NRG1β1, S100B, S100A8, and neuropilin1 were measured using the Luminex liquid suspension chip detection method, psychopathological symptom severity using the Positive and Negative Symptom Scale (PANSS), and cognitive dysfunction using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). RESULTS Serum VEGF and NRG1β1 concentrations were significantly lower in male chronic schizophrenic patients than healthy controls (P < 0.05), while serum S100B, S100A8, and neuropilin1 concentrations did not differ between groups (P > 0.05). Serum VEGF concentration was negatively correlated with PANSS negative subscore (beta = -0.220, t = -2.07, P = 0.042), general psychopathology subscore (beta = -0.269, t = -2.55, P = 0.013), and total score (beta = -0.234, t = -2.12, P = 0.038), and positively correlated with RBANS language score (beta = 0.218, t = 2.03, P = 0.045). Alternatively, serum NRG1β1 concentration was not correlated with clinical symptoms or cognitive deficits (all P > 0.05). CONCLUSION Dysregulation of VEGF and NRG1β1 signaling may contribute to the pathogenesis of chronic schizophrenia in males. Moreover, abnormal VEGF signaling may contribute directly or through intermediary processes to neuropsychiatric and cognitive symptom expression.
Collapse
Affiliation(s)
- Peng Chen
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, PR China.
| | - Wanming Chen
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, PR China; Yangzhou University, Yangzhou, 225003, PR China.
| | - Li Xu
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, PR China; Yangzhou University, Yangzhou, 225003, PR China.
| | - Lingshu Luan
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, PR China.
| | - Ruijie Peng
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, PR China.
| | - Xiaobin Zhang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, PR China.
| | - Haidong Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, PR China.
| |
Collapse
|
5
|
Tizabi Y, Getachew B, Hauser SR, Tsytsarev V, Manhães AC, da Silva VDA. Role of Glial Cells in Neuronal Function, Mood Disorders, and Drug Addiction. Brain Sci 2024; 14:558. [PMID: 38928557 PMCID: PMC11201416 DOI: 10.3390/brainsci14060558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Mood disorders and substance use disorder (SUD) are of immense medical and social concern. Although significant progress on neuronal involvement in mood and reward circuitries has been achieved, it is only relatively recently that the role of glia in these disorders has attracted attention. Detailed understanding of the glial functions in these devastating diseases could offer novel interventions. Here, following a brief review of circuitries involved in mood regulation and reward perception, the specific contributions of neurotrophic factors, neuroinflammation, and gut microbiota to these diseases are highlighted. In this context, the role of specific glial cells (e.g., microglia, astroglia, oligodendrocytes, and synantocytes) on phenotypic manifestation of mood disorders or SUD are emphasized. In addition, use of this knowledge in the potential development of novel therapeutics is touched upon.
Collapse
Affiliation(s)
- Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA;
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA;
| | - Sheketha R. Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Vassiliy Tsytsarev
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Alex C. Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-170, RJ, Brazil
| | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-100, BA, Brazil;
| |
Collapse
|
6
|
Keszler G, Vékony B, Elek Z, Nemoda Z, Angyal N, Bánlaki Z, Kovács-Nagy R, Rónai Z, Réthelyi JM. MicroRNA-Mediated Suppression of Glial Cell Line-Derived Neurotrophic Factor Expression Is Modulated by a Schizophrenia-Associated Non-Coding Polymorphism. Int J Mol Sci 2024; 25:4477. [PMID: 38674063 PMCID: PMC11050407 DOI: 10.3390/ijms25084477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Plasma levels of glial cell line-derived neurotrophic factor (GDNF), a pivotal regulator of differentiation and survival of dopaminergic neurons, are reportedly decreased in schizophrenia. To explore the involvement of GDNF in the pathogenesis of the disease, a case-control association analysis was performed between five non-coding single nucleotide polymorphisms (SNP) across the GDNF gene and schizophrenia. Of them, the 'G' allele of the rs11111 SNP located in the 3' untranslated region (3'-UTR) of the gene was found to associate with schizophrenia. In silico analysis revealed that the rs11111 'G' allele might create binding sites for three microRNA (miRNA) species. To explore the significance of this polymorphism, transient co-transfection assays were performed in human embryonic kidney 293T (HEK293T) cells with a luciferase reporter construct harboring either the 'A' or 'G' allele of the 3'-UTR of GDNF in combination with the hsa-miR-1185-1-3p pre-miRNA. It was demonstrated that in the presence of the rs11111 'G' (but not the 'A') allele, hsa-miR-1185-2-3p repressed luciferase activity in a dose-dependent manner. Deletion of the miRNA binding site or its substitution with the complementary sequence abrogated the modulatory effect. Our results imply that the rs11111 'G' allele occurring more frequently in patients with schizophrenia might downregulate GDNF expression in a miRNA-dependent fashion.
Collapse
Affiliation(s)
- Gergely Keszler
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1094 Budapest, Hungary; (Z.E.); (Z.N.); (N.A.); (Z.B.); (R.K.-N.); (Z.R.)
| | - Bálint Vékony
- Doctoral School, Semmelweis University, 1085 Budapest, Hungary;
| | - Zsuzsanna Elek
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1094 Budapest, Hungary; (Z.E.); (Z.N.); (N.A.); (Z.B.); (R.K.-N.); (Z.R.)
| | - Zsófia Nemoda
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1094 Budapest, Hungary; (Z.E.); (Z.N.); (N.A.); (Z.B.); (R.K.-N.); (Z.R.)
| | - Nóra Angyal
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1094 Budapest, Hungary; (Z.E.); (Z.N.); (N.A.); (Z.B.); (R.K.-N.); (Z.R.)
| | - Zsófia Bánlaki
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1094 Budapest, Hungary; (Z.E.); (Z.N.); (N.A.); (Z.B.); (R.K.-N.); (Z.R.)
| | - Réka Kovács-Nagy
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1094 Budapest, Hungary; (Z.E.); (Z.N.); (N.A.); (Z.B.); (R.K.-N.); (Z.R.)
| | - Zsolt Rónai
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1094 Budapest, Hungary; (Z.E.); (Z.N.); (N.A.); (Z.B.); (R.K.-N.); (Z.R.)
| | - János M. Réthelyi
- Department of Psychiatry and Psychotherapy, Semmelweis University, 1083 Budapest, Hungary;
| |
Collapse
|
7
|
Grinchii D, Janáková Csatlósová K, Viñas-Noguera M, Dekhtiarenko R, Paliokha R, Lacinová Ľ, Dremencov E, Dubovický M. Effects of pre-gestational exposure to the stressors and perinatal bupropion administration on the firing activity of serotonergic neurons and anxiety-like behavior in rats. Behav Brain Res 2024; 459:114796. [PMID: 38048911 DOI: 10.1016/j.bbr.2023.114796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
Exposure by women to stressors before pregnancy increases their risk of contracting prenatal depression, a condition which typically may require antidepressant treatment. And even though such perinatal antidepressant treatment is generally considered to be safe. For the mother, its effects on the development and functioning of the offspring`s brain remain unknown. In this study, we aimed to investigate the effects of pregestational chronic unpredictable stress (CUS) and perinatal bupropion on the anxiety behavior and firing activity of the dorsal raphe nucleus (DRN) serotonin (5-HT) neurons. Female rats underwent CUS for three weeks before mating. Bupropion was administered to them from gestation day ten until their offspring were weaned. Behavioral (elevated plus maze or EPM test) and neurophysiological (single-unit in vivo electrophysiology) assessments were performed on offspring who reached the age of 48-56 days. We found that maternal CUS and perinatal bupropion, as separate factors on their own, did not change offspring behavior. There was, however, an interaction between their effects on the number of entries to the open arms and time spent in the intersection: maternal CUS tended to decrease these values, and perinatal bupropion tended to diminish CUS effect. Maternal CUS increased the firing activity of 5-HT neurons in males, but not females. Perinatal bupropion did not alter the firing activity of 5-HT neurons but tended to potentiate the maternal CUS-induced increase in 5-HT neuronal firing activity. The CUS-induced increase in firing activity of 5-HT neurons might be a compensatory mechanism that diminishes the negative effects of maternal stress. Perinatal bupropion does not alter the offspring`s anxiety and firing activity of 5-HT, but it does intervene in the effects of maternal stress.
Collapse
Affiliation(s)
- Daniil Grinchii
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Kristína Janáková Csatlósová
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mireia Viñas-Noguera
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Roman Dekhtiarenko
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ruslan Paliokha
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ľubica Lacinová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Eliyahu Dremencov
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Dubovický
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
8
|
Lee JJ, Piras E, Tamburini S, Bu K, Wallach DS, Remsen B, Cantor A, Kong J, Goetz D, Hoffman KW, Bonner M, Joe P, Mueller BR, Robinson-Papp J, Lotan E, Gonen O, Malaspina D, Clemente JC. Gut and oral microbiome modulate molecular and clinical markers of schizophrenia-related symptoms: A transdiagnostic, multilevel pilot study. Psychiatry Res 2023; 326:115279. [PMID: 37331068 PMCID: PMC10595250 DOI: 10.1016/j.psychres.2023.115279] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/09/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023]
Abstract
Although increasing evidence links microbial dysbiosis with the risk for psychiatric symptoms through the microbiome-gut-brain axis (MGBA), the specific mechanisms remain poorly characterized. In a diagnostically heterogeneous group of treated psychiatric cases and nonpsychiatric controls, we characterized the gut and oral microbiome, plasma cytokines, and hippocampal inflammatory processes via proton magnetic resonance spectroscopic imaging (1H-MRSI). Using a transdiagnostic approach, these data were examined in association with schizophrenia-related symptoms measured by the Positive and Negative Syndrome Scale (PANSS). Psychiatric cases had significantly greater heterogeneity of gut alpha diversity and an enrichment of pathogenic taxa, like Veillonella and Prevotella, in the oral microbiome, which was an accurate classifier of phenotype. Cases exhibited significantly greater positive, negative, and general PANSS scores that uniquely correlated with bacterial taxa. Strong, positive correlations of bacterial taxa were also found with cytokines and hippocampal gliosis, dysmyelination, and excitatory neurotransmission. This pilot study supports the hypothesis that the MGBA influences psychiatric symptomatology in a transdiagnostic manner. The relative importance of the oral microbiome in peripheral and hippocampal inflammatory pathways was highlighted, suggesting opportunities for probiotics and oral health to diagnose and treat psychiatric conditions.
Collapse
Affiliation(s)
- Jakleen J Lee
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Enrica Piras
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sabrina Tamburini
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kevin Bu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - David S Wallach
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Brooke Remsen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Adam Cantor
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jennifer Kong
- Academy for the Advancement of Science and Technology, Bergen County Academies, Hackensack, NJ, United States
| | - Deborah Goetz
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kevin W Hoffman
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mharisi Bonner
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Peter Joe
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bridget R Mueller
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jessica Robinson-Papp
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Eyal Lotan
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Oded Gonen
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Dolores Malaspina
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Jose C Clemente
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
9
|
Grinchii D, Levin-Greenwald M, Lezmy N, Gordon T, Paliokha R, Khoury T, Racicky M, Herburg L, Grothe C, Dremencov E, Barak S. FGF2 activity regulates operant alcohol self-administration and mesolimbic dopamine transmission. Drug Alcohol Depend 2023; 248:109920. [PMID: 37224676 DOI: 10.1016/j.drugalcdep.2023.109920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/21/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
Fibroblast growth factor 2 (FGF2) is involved in the development and maintenance of the brain dopamine system. We previously showed that alcohol exposure alters the expression of FGF2 and its receptor, FGF receptor 1 (FGFR1) in mesolimbic and nigrostriatal brain regions, and that FGF2 is a positive regulator of alcohol drinking. Here, we determined the effects of FGF2 and of FGFR1 inhibition on alcohol consumption, seeking and relapse, using a rat operant self-administration paradigm. In addition, we characterized the effects of FGF2-FGFR1 activation and inhibition on mesolimbic and nigrostriatal dopamine neuron activation using in vivo electrophysiology. We found that recombinant FGF2 (rFGF2) increased the firing rate and burst firing activity of dopaminergic neurons in the mesolimbic and nigrostriatal systems and led to increased operant alcohol self-administration. In contrast, the FGFR1 inhibitor PD173074 suppressed the firing rate of these dopaminergic neurons, and reduced operant alcohol self-administration. Alcohol seeking behavior was not affected by PD173074, but this FGFR1 inhibitor reduced post-abstinence relapse to alcohol consumption, albeit only in male rats. The latter was paralleled by the increased potency and efficacy of PD173074 in inhibiting dopamine neuron firing. Together, our findings suggest that targeting the FGF2-FGFR1 pathway can reduce alcohol consumption, possibly via altering mesolimbic and nigrostriatal neuronal activity.
Collapse
Affiliation(s)
- Daniil Grinchii
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Noa Lezmy
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv69978, Israel
| | - Tamar Gordon
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv69978, Israel
| | - Ruslan Paliokha
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Talah Khoury
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Matej Racicky
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Leonie Herburg
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Carl-Neuberg-Straße 1, Hanover30625, Germany; Center for Systems Neuroscience (ZSN), Hanover, Germany
| | - Claudia Grothe
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Carl-Neuberg-Straße 1, Hanover30625, Germany; Center for Systems Neuroscience (ZSN), Hanover, Germany
| | - Eliyahu Dremencov
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Segev Barak
- School of Psychological Sciences, Tel Aviv University, Tel Aviv69978, Israel; The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv69978, Israel.
| |
Collapse
|
10
|
Villoslada P, Masso M, Paris S, Hutchings S, Koch A. A Phase 1 randomized study on the safety and pharmacokinetics of OCS-05, a neuroprotective disease modifying treatment for Acute Optic Neuritis and Multiple Sclerosis. Sci Rep 2023; 13:5099. [PMID: 36991169 PMCID: PMC10060579 DOI: 10.1038/s41598-023-32278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
OCS-05 (aka BN201) is a peptidomimetic that binds to serum glucocorticoid kinase-2 (SGK2), displaying neuroprotective activity. The objective of this randomized, double-blind 2-part study was to test safety and pharmacokinetics of OCS-05 administered by intravenous (i.v.) infusion in healthy volunteers. Subjects (n = 48) were assigned to receive placebo (n = 12) or OCS-05 (n = 36). , Doses tested were 0.05, 0.2, 0.4, 0.8, 1.6, 2.4 and 3.2 mg/kg in the single ascending dose (SAD) part. In the multiple ascending dose (MAD) part, 2.4 and 3.0 mg/kg doses were administered with 2 h i.v. infusion for 5 consecutive days. Safety assessments included adverse events, blood tests, ECG, Holter monitoring, brain MRI and EEG. No serious adverse events were reported in the OCS-05 group (there was one serious adverse event in the placebo group). Adverse events reported in the MAD part were not clinically significant, and no changes on the ECG, EEG or brain MRI were observed. Single-dose (0.05-3.2 mg/kg) exposure (Cmax and AUC) increased in a dose-proportional manner. Steady state was reached by Day 4 and no accumulation was observed. Elimination half-life ranged from 3.35 to 8.23 h (SAD) and 8.63 to 12.2 h (MAD). Mean individual Cmax concentrations in the MAD part were well below the safety thresholds. OCS-05 administered as 2-h i.v. infusions of multiple doses up to 3.0 mg/Kg daily for up to 5 consecutive days was safe and well tolerated. Based on this safety profile, OCS-05 is currently being tested in a phase 2 trial in patient with acute optic neuritis (NCT04762017, date registration 21/02/2021).
Collapse
Affiliation(s)
- Pablo Villoslada
- Institut d'Investigacions Biomediques August Pi Sunyer, Rosello 149, 08036, Barcelona, Spain.
| | - Mar Masso
- Bionure Farma/Accure Therapeutics SL, Barcelona, Spain
| | | | | | | |
Collapse
|
11
|
Deng L, Chu Z, Liu P, Li B, Lei G, Li S, Ma Y, Dang Y. Effects of brain-derived neurotrophic factor and adeno-associated viral vector on morphine-induced condition through target concentration changes in the ventral tegmental area and nucleus accumbens. Behav Brain Res 2023; 445:114385. [PMID: 36889465 DOI: 10.1016/j.bbr.2023.114385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/25/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023]
Abstract
Morphine remains the standard analgesic for severe pain. However, the clinical use of morphine is limited by the innate tendency of opiates to become addictive. Brain-derived neurotrophic factor (BDNF) is a growth factor that is protective against many mental disorders. This study aimed to evaluate the protective function of BDNF on morphine addiction based on the behavioural sensitisation (BS) model and assess potential changes in downstream molecular tropomyosin-related kinase receptor B (TrkB) and cyclic adenosine monophosphate response element binding protein (CREB) expression caused by overexpression of BDNF. We divided 64 male C57BL/6 J mice into saline, morphine, morphine plus adeno-associated viral vector (AAV), and morphine plus BDNF groups. After administering the treatments, behavioural tests were conducted during the development and expression phases of BS, followed by a western blot analysis. All data were analysed by one- or two-way analysis of variance. The overexpression of BDNF in the ventral tegmental area (VTA) caused by BDNF-AAV injection decreased the total distance of locomotion in mice who underwent morphine-induced BS and increased the concentrations of BDNF, TrkB, and CREB in the VTA and nucleus accumbens (NAc). BDNF exerts protective effects against morphine-induced BS by altering target gene expression in the VTA and NAc.
Collapse
Affiliation(s)
- Lisha Deng
- Department of Psychiatry, First Affiliated Hospital of Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China; College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zheng Chu
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Peng Liu
- Department of Pharmacology and Toxicology, Institute of Basic Medicine Science, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Baijia Li
- Department of Psychiatry, First Affiliated Hospital of Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Gang Lei
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shaofu Li
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yongkang Ma
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yonghui Dang
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
12
|
Grinchii D, Hoener MC, Khoury T, Dekhtiarenko R, Nejati Bervanlou R, Jezova D, Dremencov E. Effects of acute and chronic administration of trace amine-associated receptor 1 (TAAR1) ligands on in vivo excitability of central monoamine-secreting neurons in rats. Mol Psychiatry 2022; 27:4861-4868. [PMID: 36045279 PMCID: PMC9763099 DOI: 10.1038/s41380-022-01739-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 01/19/2023]
Abstract
Trace amine-associated receptor 1 (TAAR1) has been recently identified as a target for the future antidepressant, antipsychotic, and anti-addiction drugs. Full (e.g. RO5256390) and partial (e.g. RO5263397) TAAR1 agonists showed antidepressant-, antipsychotic- and anti-addiction-like behavioral effects in rodents and primates. Acute RO5256390 suppressed, and RO5263397 stimulated serotonin (5-HT) neurons of the dorsal raphe nucleus (DRN) and dopamine neurons of the ventral tegmental area (VTA) in brain slices, suggesting that the behavioral effects of TAAR1 ligands involve 5-HT and dopamine. For more comprehensive testing of this hypothesis, we examined acute and chronic effects of RO5256390 and RO5263397 on monoamine neurons in in vivo conditions. Excitability of 5-HT neurons of the DRN, noradrenaline neurons of the locus coeruleus (LC), and dopamine neurons of the VTA was assessed using single-unit electrophysiology in anesthetized rats. For acute experiments, RO5256390 and RO5263397 were administered intravenously; neuronal excitability after RO5256390 and RO5263397 administration was compared to the basal activity of the same neuron. For chronic experiments, RO5256390 was administered orally for fourteen days prior to electrophysiological assessments. The neuronal excitability in RO5256390-treated rats was compared to vehicle-treated controls. We found that acute RO5256390 inhibited 5-HT and dopamine neurons. This effect of RO5256390 was reversed by the subsequent and prevented by the earlier administration of RO5263397. Acute RO5256390 and RO5263397 did not alter the excitability of LC noradrenaline neurons in a statistically significant way. Chronic RO5256390 increased excitability of 5-HT neurons of the DRN and dopamine neurons of the VTA. In conclusion, the putative antidepressant and antipsychotic effects of TAAR1 ligands might be mediated, at least in part, via the modulation of excitability of central 5-HT and dopamine neurons.
Collapse
Affiliation(s)
- Daniil Grinchii
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marius C Hoener
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Talah Khoury
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Roman Dekhtiarenko
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Reyhaneh Nejati Bervanlou
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Daniela Jezova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Eliyahu Dremencov
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
13
|
Zhang Q, Liu M, Nong H, Zhang Y, Bai Y, Liu P, Zong S, Zeng G. Total flavonoids of hawthorn leaves protect spinal motor neurons via promotion of autophagy after spinal cord injury. Front Pharmacol 2022; 13:925568. [PMID: 36071834 PMCID: PMC9441667 DOI: 10.3389/fphar.2022.925568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/29/2022] [Indexed: 12/03/2022] Open
Abstract
The death of spinal motor neurons (SMNs) after spinal cord injury (SCI) is a crucial cause, contributing to a permanent neurological deficit. Total flavonoids of hawthorn leaves (TFHL) have been confirmed to have potentially therapeutic for SCI. Nonetheless, the roles and mechanisms of TFHL in recovering neuromotor function and regenerating axons of SMNs have not been fully elucidated. In this study, TFHL was applied to treat rats with SCI and injured SMNs for 7 days. In vivo experiment, rats with SCI were evaluated by a BBB (Basso-Beattie-Bresnahan) score to assess their motor functional recovery. The morphology, microstructure, apoptosis, Nissl bodies, and autophagy of SMNs in spinal cord tissue were detected by Hematoxylin-eosin (HE) staining, transmission electron microscopy, TUNEL staining, Nissl staining, and immunohistochemistry respectively. In vitro experiment, the co-culture model of SMNs and astrocytes was constructed to simulate the internal environment around SMNs in the spinal cord tissue. The cell morphology, microstructure, axonal regeneration, and autophagy were observed via optical microscope, transmission electron microscopy, and immunofluorescence. The content of neurotrophic factors in the cell culture medium of the co-culture model was detected by ELISA. Moreover, the expression of axon-related and autophagy-related proteins in the spinal cord tissue and SMNs was measured by Western Blot. We demonstrated that TFHL improved the neuromotor function recovery in rats after SCI. We then found that TFHL significantly promoted injured spinal cord tissue repair, reduced apoptosis, and improved the functional status of neurons in spinal cord tissue in vivo. Meanwhile, the cell morphology, microstructure, and axonal regeneration of damaged SMNs also obviously were improved, and the secretion of neurotrophic factors was facilitated after treatment with TFHL in vitro. Further, we revealed that TFHL promoted autophagy and related protein expression in vivo and vitro. Taken together, our study suggested that TFHL might facilitate autophagy and have neuroprotective properties in SMNs to enhance the recovery of neuromotor function of rats with SCI.
Collapse
Affiliation(s)
- Qiong Zhang
- School of Public Health of Guangxi Medical University, Nanning, China
| | - Mingfu Liu
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Haibin Nong
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanan Zhang
- Collaborative Innovation Center of Guangxi Biological Medicine, Guangxi Medical University, Nanning, China
| | - Yiguang Bai
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Pan Liu
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shaohui Zong
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
- *Correspondence: Shaohui Zong, ; Gaofeng Zeng,
| | - Gaofeng Zeng
- School of Public Health of Guangxi Medical University, Nanning, China
- *Correspondence: Shaohui Zong, ; Gaofeng Zeng,
| |
Collapse
|
14
|
Hrivikova K, Zelena D, Graban J, Puhova A, Miklya I, Balazsfi D, Jezova D. Chronic treatment with enhancer drugs modifies the gene expression of selected parameters related to brain plasticity in rats under stress conditions. Neurochem Int 2022; 159:105404. [PMID: 35853552 DOI: 10.1016/j.neuint.2022.105404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022]
Abstract
Selegiline, also known as L-deprenyl, and (2R)-1-(1-benzofuran-2-yl)-N-propylpentane-2-amine (BPAP) were found to induce enhancement of monoamine neurotransmission in low and very low doses. In addition, these enhancers may modify glutamatergic neurotransmission. The aim of the present study was to test the hypothesis that under stress conditions, chronic treatment with enhancer drugs has a positive impact on the glutamatergic system and other parameters related to brain plasticity, stress-related systems, and anxiety behavior. We exposed male Wistar rats to a chronic mild stress procedure combined with chronic treatment with two synthetic enhancer drugs. The gene expression of GluR1, an AMPA receptor subunit was reduced by repeated treatment with deprenyl in the hippocampus and with both BPAP and deprenyl in the prefrontal cortex. A significant reduction of NMDA receptor subunit GluN2B expression was observed in the hippocampus but not in the prefrontal cortex. Deprenyl treatment led to an enhancement of hippocampal BDNFmRNA concentrations in stress-exposed rats. Treatment with enhancer drugs failed to induce significant changes in stress hormone concentrations or anxiety behavior. In conclusion, the present study in chronically stressed rats showed that concomitant treatment with enhancer drugs did not provoke substantial neuroendocrine changes, but modified gene expression of selected parameters associated with brain plasticity. Observed changes may indicate a positive influence of enhancer drugs on brain plasticity, which is important for preventing negative consequences of chronic stress and enhancement of stress resilience. It may be suggested that the changes in glutamate receptor subunits induced by enhancer drugs are brain region-specific and not dose-related.
Collapse
Affiliation(s)
- K Hrivikova
- Laboratory of Pharmacological Neuroendocrinology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - D Zelena
- Institute of Physiology, Medical School, University of Pécs, Centre for Neuroscience, Szentágothai Research Centre, 7624, Pécs, Hungary; Department of Behavioral Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083, Budapest, Szigony 43, Hungary
| | - J Graban
- Laboratory of Pharmacological Neuroendocrinology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - A Puhova
- Laboratory of Pharmacological Neuroendocrinology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - I Miklya
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089, Budapest, Nagyvarad Ter 4, Hungary
| | - D Balazsfi
- Department of Behavioral Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083, Budapest, Szigony 43, Hungary
| | - D Jezova
- Laboratory of Pharmacological Neuroendocrinology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
15
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
16
|
Chang GQ, Yasmin N, Collier AD, Karatayev O, Khalizova N, Onoichenco A, Fam M, Albeg AS, Campbell S, Leibowitz SF. Fibroblast growth factor 2: Role in prenatal alcohol-induced stimulation of hypothalamic peptide neurons. Prog Neuropsychopharmacol Biol Psychiatry 2022; 116:110536. [PMID: 35176416 PMCID: PMC8920779 DOI: 10.1016/j.pnpbp.2022.110536] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022]
Abstract
Prenatal alcohol exposure (PAE) increases alcohol consumption and risk for alcohol use disorder. This phenomenon in rodents is suggested to involve a stimulatory effect of PAE, in female more than male offspring, on neurogenesis and density of neurons expressing neuropeptides in lateral hypothalamus (LH), including melanin-concentrating hormone (MCH), known to promote alcohol intake. With evidence suggesting a role for fibroblast growth factor 2 (FGF2) and its receptor FGFR1 in stimulating neurogenesis and alcohol drinking, we investigated here whether the FGF2-FGFR1 system is involved in the PAE-induced increase in MCH neurons, in postnatal offspring of pregnant rats given ethanol orally (embryonic day 10-15) at a low-moderate (2 g/kg/day) or high (5 g/kg/day) dose. Our results demonstrate that PAE at the low-moderate but not high dose stimulates FGF2 and FGFR1 gene expression and increases the density of MCH neurons co-expressing FGF2, only in females, but FGFR1 in both sexes. PAE induces this effect in the dorsal but not ventral area of the LH. Further analysis of FGF2 and FGFR1 transcripts within individual MCH neurons reveals an intracellular, sex-dependent effect, with PAE increasing FGF2 transcripts positively related to FGFR1 in the nucleus as well as cytoplasm of females but transcripts only in the cytoplasm of males. Peripheral injection of FGF2 itself (80 μg/kg, s.c.) in pregnant rats mimics these effects of PAE. Together, these results support the involvement of the FGF2-FGFR1 system in mediating the PAE-induced, sex dependent increase in density of MCH neurons, possibly contributing to increased alcohol consumption in the offspring.
Collapse
Affiliation(s)
- Guo-Qing Chang
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Nushrat Yasmin
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Adam D Collier
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Olga Karatayev
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Nailya Khalizova
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Amanda Onoichenco
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Milisia Fam
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Avi S Albeg
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Samantha Campbell
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America.
| |
Collapse
|
17
|
Pandey M, Jain N, Kanoujia J, Hussain Z, Gorain B. Advances and Challenges in Intranasal Delivery of Antipsychotic Agents Targeting the Central Nervous System. Front Pharmacol 2022; 13:865590. [PMID: 35401164 PMCID: PMC8988043 DOI: 10.3389/fphar.2022.865590] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
Treatment of central nervous system (CNS) disorders is challenging using conventional delivery strategies and routes of administration because of the presence of the blood–brain barrier (BBB). This BBB restricts the permeation of most of the therapeutics targeting the brain because of its impervious characteristics. Thus, the challenges of delivering the therapeutic agents across the BBB to the brain overcoming the issue of insufficient entry of neurotherapeutics require immediate attention for recovering from the issues by the use of modern platforms of drug delivery and novel routes of administration. Therefore, the advancement of drug delivery tools and delivering these tools using the intranasal route of drug administration have shown the potential of circumventing the BBB, thereby delivering the therapeutics to the brain at a significant concentration with minimal exposure to systemic circulation. These novel strategies could lead to improved efficacy of antipsychotic agents using several advanced drug delivery tools while delivered via the intranasal route. This review emphasized the present challenges of delivering the neurotherapeutics to the brain using conventional routes of administration and overcoming the issues by exploring the intranasal route of drug administration to deliver the therapeutics circumventing the biological barrier of the brain. An overview of different problems with corresponding solutions in administering therapeutics via the intranasal route with special emphasis on advanced drug delivery systems targeting to deliver CNS therapeutics has been focused. Furthermore, preclinical and clinical advancements on the delivery of antipsychotics using this intranasal route have also been emphasized.
Collapse
Affiliation(s)
- Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- *Correspondence: Manisha Pandey, ; Bapi Gorain,
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Jovita Kanoujia
- Amity Institute of Pharmacy, Amity University, Gwalior, India
| | - Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, India
- *Correspondence: Manisha Pandey, ; Bapi Gorain,
| |
Collapse
|
18
|
Romanova Z, Hlavacova N, Jezova D. Psychotropic Drug Effects on Steroid Stress Hormone Release and Possible Mechanisms Involved. Int J Mol Sci 2022; 23:ijms23020908. [PMID: 35055090 PMCID: PMC8779609 DOI: 10.3390/ijms23020908] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 12/16/2022] Open
Abstract
There is no doubt that chronic stress accompanied by adrenocortical stress hormone release affects the development and treatment outcome of several mental disorders. Less attention has been paid to the effects of psychotropic drugs on adrenocortical steroids, particularly in clinical studies. This review focuses on the knowledge related to the possible modulation of cortisol and aldosterone secretion under non-stress and stress conditions by antipsychotic drugs, which are being used in the treatment of several psychotic and affective disorders. The molecular mechanisms by which antipsychotic drugs may influence steroid stress hormones include the modulation of central and/or adrenocortical dopamine and serotonin receptors, modulation of inflammatory cytokines, influence on regulatory mechanisms in the central part of the hypothalamic-pituitary axis, inhibition of corticotropin-releasing hormone gene promoters, influencing glucocorticoid receptor-mediated gene transcription, indirect effects via prolactin release, alteration of signaling pathways of glucocorticoid and mineralocorticoid actions. Clinical studies performed in healthy subjects, patients with psychosis, and patients with bipolar disorder suggest that single and repeated antipsychotic treatments either reduce cortisol concentrations or do not affect its secretion. A single and potentially long-term treatment with dopamine receptor antagonists, including antipsychotics, has a stimulatory action on aldosterone release.
Collapse
Affiliation(s)
- Zuzana Romanova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (Z.R.); (N.H.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, 83232 Bratislava, Slovakia
| | - Natasa Hlavacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (Z.R.); (N.H.)
| | - Daniela Jezova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (Z.R.); (N.H.)
- Correspondence:
| |
Collapse
|