1
|
Heyns I, Faunce AF, Mumba MN, Kumar MNVR, Arora M. Nanotechnology-Enhanced Naloxone and Alternative Treatments for Opioid Addiction. ACS Pharmacol Transl Sci 2024; 7:2237-2250. [PMID: 39144549 PMCID: PMC11320732 DOI: 10.1021/acsptsci.4c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 08/16/2024]
Abstract
Opioids are commonly prescribed to address intense, ongoing pain associated with cancer, as well as long-lasting noncancer-related pain when alternative methods have proven ineffective. Individuals who exhibit both chronic pain and misuse of opioids face a significant danger of experiencing adverse health outcomes and the potential loss of life related to opioid use. Thus, there is a current movement to prescribe naloxone to those considered high-risk for opioid overdose. Naloxone has been explored as an antidote to reverse acute respiratory depression. Conversely, naloxone can give rise to other problems, including hypertension and cardiac arrhythmias. Thus, the importance of nanotechnology-enabled drug delivery strategies and their role in mitigating naloxone side-effects are significant. In this review, we explore the latest advancements in nanotechnology-enabled naloxone and alternative methods for addressing the opioid crisis through the utilization of non-opioid natural alternatives for chronic pain management.
Collapse
Affiliation(s)
- Ingrid
Marie Heyns
- The
Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35401, United States
- Department
of Translational Science and Medicine, College of Community Health
Sciences, The University of Alabama, Tuscaloosa, Alabama 35401, United States
- Alabama
Life Research Institute, The University
of Alabama, Tuscaloosa, Alabama 35401, United States
| | - Alina Farah Faunce
- Research
Department, Alabama College of Osteopathic
Medicine, Dothan, Alabama 36303, United States
| | - Mercy Ngosa Mumba
- Center
for Substance Use Research and Related Conditions, Capstone College
of Nursing, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - M. N. V. Ravi Kumar
- The
Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35401, United States
- Department
of Translational Science and Medicine, College of Community Health
Sciences, The University of Alabama, Tuscaloosa, Alabama 35401, United States
- Alabama
Life Research Institute, The University
of Alabama, Tuscaloosa, Alabama 35401, United States
- Department
of Biological Sciences, The University of
Alabama, Tuscaloosa, Alabama 35487, United States
- Chemical
and Biological Engineering, University of
Alabama, Tuscaloosa, Alabama 35487, United States
- Center for
Free Radical Biology, University of Alabama
at Birmingham, Birmingham, Alabama 35294, United States
- Nephrology
Research and Training Center, Division of Nephrology, Department of
Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Meenakshi Arora
- The
Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35401, United States
- Department
of Translational Science and Medicine, College of Community Health
Sciences, The University of Alabama, Tuscaloosa, Alabama 35401, United States
- Alabama
Life Research Institute, The University
of Alabama, Tuscaloosa, Alabama 35401, United States
- Department
of Biological Sciences, The University of
Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
2
|
Tessema FB, Gonfa YH, Asfaw TB, Tadesse MG, Bachheti RK. In silico Molecular Docking Approach to Identify Potential Antihypertensive Compounds from Ajuga integrifolia Buch.-Ham. Ex D. Don (Armagusa). Adv Appl Bioinform Chem 2024; 17:47-59. [PMID: 38495362 PMCID: PMC10942012 DOI: 10.2147/aabc.s392878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
Background Ajuga integrifolia (Armagusa) is used as a decoction to treat high blood pressure and diabetes, widely in Ethiopia. Specific compounds for anti-hypertension activity were not identified so far. This study aims to provide a scientific basis for the therapeutic use of A. integrifolia as an antihypertension agent. Methods In silico studies were used to evaluate the antihypertensive components of A. integrifolia. Flavonoids identified using HPLC analysis and iridoid glycosides isolated from A. integrifolia in this study and those isolated from synonyms (A. remota and A. bractosa) were considered in the molecular docking study. Interactions were studied by using Autodock vina (1.2) on PyRx 0.8 and visualizing in 2D and 3D using ligPlot+ and Discovery studio software. Activities like vasoprotection and druglikeness properties were predicted using online servers. Results Flavonoids such as quercetin, myricetin, and rutin were identified and quantified by HPLC analysis from different extracts of A. integrifolia. Reptoside and 8-O-acetylharpgide isolated from the aerial part of A. integrifolia. The binding energies of all 17 candidates considered in this study range from -10.2 kcal/mol to -7.5 kcal/mol and are lower than enalapril (reference drug: -5.9 kcal/mol). The binding energies, in most case, constitute hydrogen bonding. Biological activity predicted using PASS test also showed that the flavonoids have more probability of activity than the iridoid glycosides. Druglikeness properties of the candidate molecules showed that most follow the Lipinski rule of five with few violations. Conclusion Lower binding energies involving hydrogen bonding and predicted activities concerning hypertension confirm the traditional use of the aerial part of the medicinal plant concerned. Flavonoids: rutin, myricetin, quercetin, and kaempferol take the leading role in the antihypertensive activity of the aerial part of A. integrifolia. The iridoid glycosides studied are almost similar in their effect on their antihypertensive activity and still better than the reference drug.
Collapse
Affiliation(s)
- Fekade Beshah Tessema
- Department of Chemistry, College of Natural and Computational Science, Woldia University, Woldia, Ethiopia
- Department of Industrial Chemistry, College of Natural and Applied Sciences, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Yilma Hunde Gonfa
- Department of Industrial Chemistry, College of Natural and Applied Sciences, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Department of Chemistry, College of Natural and Computational Science, Ambo University, Ambo, Ethiopia
| | - Tilahun Belayneh Asfaw
- Department of Chemistry, College of Natural and Computational Science, Gondar University, Gondar, Ethiopia
| | - Mesfin Getachew Tadesse
- Department of Industrial Chemistry, College of Natural and Applied Sciences, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Centre of Excellence in Biotechnology and Bioprocess, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Rakesh Kumar Bachheti
- Department of Industrial Chemistry, College of Natural and Applied Sciences, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Department of Allied Sciences, Graphic Era Hill University, Society Area, Clement Town, Dehradun, 248002, India
| |
Collapse
|
3
|
Yalniz Y, Yunusoğlu O, Berköz M, Demirel ME. Effects of fisetin on ethanol-induced rewarding properties in mice. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2024; 50:75-83. [PMID: 38235981 DOI: 10.1080/00952990.2023.2292976] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
Background: Alcohol use disorder (AUD) is a chronic relapsing disorder associated with compulsive drinking of alcohol. Natural flavonoid fisetin affects a variety of transmitter systems relevant to AUD, such as aminobutyric acid, N-methyl-D-aspartate, and dopamine, as well as peroxisome proliferator-activated receptors.Objectives: This study investigated fisetin's impact on the motivational properties of ethanol using conditioned place preference (CPP) in mice (n = 50).Methods: Mice were conditioned with ethanol (2 g/kg, i.p.) or saline on alternating days for 8 consecutive days and were given intragastric (i.g.) fisetin (10, 20, or 30 mg/kg, i.g.), 45 min before ethanol conditioning. During extinction, physiological saline was injected to the control and ethanol groups, and fisetin was administered to the fisetin groups. To evaluate the effect of fisetin on the reinstatement of ethanol-induced CPP, fisetin was given 45 min before a priming dose of ethanol (0.4 g/kg, i.p.; reinstatement test day).Results: Fisetin decreased the acquisition of ethanol-induced CPP (30 mg/kg, p < .05) and accelerated extinction (20 and 30 mg/kg, p < .05). Furthermore, fisetin attenuated reinstatement of ethanol-induced CPP (30 mg/kg, p < .05).Conclusions: Fisetin appears to diminish the rewarding properties of ethanol, as indicated by its inhibitory effect and facilitation of extinction in ethanol-induced CPP. These findings imply a potential therapeutic application of fisetin in preventing ethanol-seeking behavior, promoting extinction, and reducing the risk of relapse.
Collapse
Affiliation(s)
- Yasin Yalniz
- Department of Pharmacology, Faculty of Medicine, Bolu Izzet Baysal University, Bolu, Turkey
| | - Oruç Yunusoğlu
- Department of Pharmacology, Faculty of Medicine, Bolu Izzet Baysal University, Bolu, Turkey
| | - Mehmet Berköz
- Department of Biochemistry, Faculty of Pharmacy, Van Yuzuncu Yıl University, Van, Turkey
| | - Mustafa Enes Demirel
- Emergency Department, School of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| |
Collapse
|
4
|
Osman A, Hofford RS, Meckel KR, Dave YA, Zeldin SM, Shipman AL, Lucerne KE, Trageser KJ, Oguchi T, Kiraly DD. Dietary polyphenols drive dose-dependent behavioral and molecular alterations to repeated morphine. Sci Rep 2023; 13:12223. [PMID: 37500710 PMCID: PMC10374644 DOI: 10.1038/s41598-023-39334-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023] Open
Abstract
Opioid Use Disorder (OUD) is associated with tremendous morbidity and mortality. Despite this burden, current pharmacotherapies for OUD are ineffective or intolerable for many patients. As such, interventions aimed at promoting resilience against OUD are of immense clinical interest. Treatment with a Bioactive Dietary Polyphenol Preparation (BDPP) promotes resilience and adaptive neuroplasticity in multiple models of neuropsychiatric disease. Here, we assessed effects of BDPP treatment on behavioral and molecular responses to repeated morphine treatment in male mice. BDPP pre-treatment alters responses for both locomotor sensitization and conditioned place preference. Most notably, polyphenol treatment consistently reduced formation of preference at low dose (5 mg/kg) morphine but enhanced it at high dose (15 mg/kg). In parallel, we performed transcriptomic profiling of the nucleus accumbens, which again showed a dose × polyphenol interaction. We also profiled microbiome composition and function, as polyphenols are metabolized by the microbiome and can act as prebiotics. The profile revealed polyphenol treatment markedly altered microbiome composition and function. Finally, we investigated involvement of the SIRT1 deacetylase, and the role of polyphenol metabolites in behavioral responses. These results demonstrate polyphenols have robust dose-dependent effects on behavioral and physiological responses to morphine and lay the foundation for future translational work.
Collapse
Affiliation(s)
- Aya Osman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Seaver Center for Autism Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rebecca S Hofford
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Physiology, Pharmacology and Psychiatry, Wake Forest School of Medicine, 115 S. Chestnut Street, Winston-Salem, NC, 27104, USA
| | - Katherine R Meckel
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yesha A Dave
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sharon M Zeldin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ava L Shipman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kelsey E Lucerne
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kyle J Trageser
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Tatsunori Oguchi
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Drew D Kiraly
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Seaver Center for Autism Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Physiology, Pharmacology and Psychiatry, Wake Forest School of Medicine, 115 S. Chestnut Street, Winston-Salem, NC, 27104, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA.
| |
Collapse
|
5
|
Akünal Türel C, Yunusoğlu O. Oleanolic acid suppresses pentylenetetrazole-induced seizure in vivo. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:529-540. [PMID: 36812380 DOI: 10.1080/09603123.2023.2167947] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/07/2023] [Indexed: 06/18/2023]
Abstract
The aim of this study was to investigate the protective effects of triterpene oleanolic acid on the brain tissue of mice with pentylenetetrazole (PTZ)-induced epileptic seizures. Male Swiss albino mice were randomly separated into five groups as the PTZ, control, and oleanolic acid (10, 30, and 100 mg/kg) groups. PTZ injection was seen to cause significant seizures compared with the control group. Oleanolic acid significantly prolonged the latency to onset of myoclonic jerks and the duration of clonic convulsions, and decreased mean seizure scores following PTZ administration. Pretreatment with oleanolic acid also led to an increase in antioxidant enzyme activity (CAT and AChE) and levels (GSH and SOD) in the brain. The data obtained from this study support oleanolic acid may have anticonvulsant potential in PTZ-induced seizures, prevent oxidative stress and protect against cognitive disturbances. These results may provide useful information for the inclusion of oleanolic acid in epilepsy treatment.
Collapse
Affiliation(s)
- Canan Akünal Türel
- Department of Neurology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Oruç Yunusoğlu
- Department of Pharmacology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| |
Collapse
|
6
|
ElShebiney S, Elgohary R, El-Shamarka M, Mowaad N, Abulseoud OA. Natural Polyphenols-Resveratrol, Quercetin, Magnolol, and β-Catechin-Block Certain Aspects of Heroin Addiction and Modulate Striatal IL-6 and TNF-α. TOXICS 2023; 11:379. [PMID: 37112606 PMCID: PMC10145039 DOI: 10.3390/toxics11040379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 06/19/2023]
Abstract
We have examined the effects of four different polyphenols in attenuating heroin addiction using a conditioned place preference (CPP) paradigm. Adult male Sprague Dawley rats received heroin (alternating with saline) in escalating doses starting from 10 mg/kg, i.p. up to 80 mg/kg/d for 14 consecutive days. The rats were treated with distilled water (1 mL), quercetin (50 mg/kg/d), β-catechin (100 mg/kg/d), resveratrol (30 mg/kg/d), or magnolol (50 mg/kg/d) through oral gavage for 7 consecutive days, 30 min before heroin administration, starting on day 8. Heroin withdrawal manifestations were assessed 24 h post last heroin administration following the administration of naloxone (1 mg/kg i.p). Heroin CPP reinstatement was tested following a single dose of heroin (10 mg/kg i.p.) administration. Striatal interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) were quantified (ELISA) after naloxone-precipitated heroin withdrawal. Compared to the vehicle, the heroin-administered rats spent significantly more time in the heroin-paired chamber (p < 0.0001). Concomitant administration of resveratrol and quercetin prevented the acquisition of heroin CPP, while resveratrol, quercetin, and magnolol blocked heroin-triggered reinstatement. Magnolol, quercetin, and β-catechin blocked naloxone-precipitated heroin withdrawal and increased striatal IL-6 concentration (p < 0.01). Resveratrol administration was associated with significantly higher withdrawal scores compared to those of the control animals (p < 0.0001). The results of this study show that different polyphenols target specific behavioral domains of heroin addiction in a CPP model and modulate the increase in striatal inflammatory cytokines TNF-α and IL-6 observed during naloxone-precipitated heroin withdrawal. Further research is needed to study the clinical utility of polyphenols and to investigate the intriguing finding that resveratrol enhances, rather than attenuates naloxone-precipitated heroin withdrawal.
Collapse
Affiliation(s)
- Shaimaa ElShebiney
- Department of Narcotics, Ergogenics, and Poisons, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Rania Elgohary
- Department of Narcotics, Ergogenics, and Poisons, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Marwa El-Shamarka
- Department of Narcotics, Ergogenics, and Poisons, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Noha Mowaad
- Department of Narcotics, Ergogenics, and Poisons, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Osama A. Abulseoud
- Department of Psychiatry and Psychology, Mayo Clinic, Phoenix, AZ 85001, USA
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ 85001, USA
| |
Collapse
|
7
|
Hasegawa H, Tanaka T, Kondo M, Teramoto K, Nakayama K, Hwang GW. Blood vessel remodeling in the cerebral cortex induced by binge alcohol intake in mice. Toxicol Res 2023; 39:169-177. [PMID: 36726835 PMCID: PMC9839917 DOI: 10.1007/s43188-022-00164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Ethanol is toxic to the brain and causes various neurological disorders. Although ethanol can directly exert toxicity on neurons, it also acts on other cell types in the central nervous system. Blood vessel endothelial cells interact with, and are affected by blood ethanol. However, the effects of ethanol on the vascular structures of the brain have not been well documented. In this study, we examined the effects of binge levels of ethanol on brain vasculature. Immunostaining analysis indicated structural alterations of blood vessels in the cerebral cortex, which became more tortuous than those in the control mice after ethanol administration. The interaction between the blood vessels and astrocytes decreased, especially in the upper layers of the cerebral cortex. Messenger RNA expression analysis revealed a unique downregulation of Vegfa mRNA encoding vascular endothelial growth factor (VEGF)-A among VEGF, angiopoietin, endothelin family angiogenic and blood vessel remodeling factors. The expression of three proteoglycan core proteins, glypican-5, neurocan, and serglycin, was also altered after ethanol administration. Thus, binge levels of ethanol affect the expression of VEGF-A and blood vessel-supporting proteoglycans, resulting in changes in the vascular structure of the cerebral cortex. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-022-00164-y.
Collapse
Affiliation(s)
- Hiroshi Hasegawa
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-Machi, Higashinada-Ku, Kobe, 6588558 Japan
| | - Toshiya Tanaka
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-Machi, Higashinada-Ku, Kobe, 6588558 Japan
| | - Mari Kondo
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-Machi, Higashinada-Ku, Kobe, 6588558 Japan
| | - Koji Teramoto
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-Machi, Higashinada-Ku, Kobe, 6588558 Japan
| | - Kei Nakayama
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-Machi, Higashinada-Ku, Kobe, 6588558 Japan
| | - Gi-Wook Hwang
- Laboratory of Environmental and Health Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-Ku, Sendai, Miyagi 9818558 Japan
| |
Collapse
|