1
|
Kokhan VS, Ageldinov RA, Anokhin PK, Shamakina IY. Combined Ionizing Radiation Exposure Improves Behavioral Symptoms and Modulates Brain Innate Immune System Activity in the Tau P301S Mice Line. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:400-412. [PMID: 40367082 DOI: 10.1134/s0006297924604453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/03/2025] [Accepted: 03/11/2025] [Indexed: 05/16/2025]
Abstract
Tauopathy is a group of neurodegenerative diseases associated with abnormal phosphorylation and aggregation of microtubule-associated tau protein. There are currently no disease-modifying therapies for the treatment of tauopathies, however, substantial evidence has shown that there is a major role of neuroinflammation in the disease progression. According to the literature, ionizing radiation (IR) may serve as an effective tool for managing neuroinflammation. In this study, we investigated effects of the combined IR (γ-rays and carbon-12 nuclei) on locomotor abilities and microglial activation markers in the brain of Tau P301S mice, a transgenic model for tauopathy. Irradiation resulted in the improvement of behavioral symptoms in mice: increased endurance and locomotor activity in the early symptomatic and terminal stages of the disease, respectively. At the same time, irradiation led to increase in the levels of both pro-inflammatory and anti-inflammatory cytokines in the cerebellum and, to a lesser extent, in the hippocampus of the irradiated animals. The obtained data indicate a significant modulatory effect of IR on the innate immune system, highlighting high potential of radiotherapy as a new strategy for neurodegenerative disease treatment.
Collapse
Affiliation(s)
- Viktor S Kokhan
- "V. P. Serbsky National Medical Research Center of Psychiatry and Narcology", Ministry of Health of the Russian Federation, Moscow, 119002, Russia
| | - Ruslan A Ageldinov
- Scientific Center for Biomedical Technologies, Federal Medical and Biological Agency of Russia, Svetlye Gory, Moscow Region, 143442, Russia
| | - Petr K Anokhin
- "V. P. Serbsky National Medical Research Center of Psychiatry and Narcology", Ministry of Health of the Russian Federation, Moscow, 119002, Russia
| | - Inna Yu Shamakina
- "V. P. Serbsky National Medical Research Center of Psychiatry and Narcology", Ministry of Health of the Russian Federation, Moscow, 119002, Russia.
| |
Collapse
|
2
|
Kostic M, Zivkovic N, Cvetanovic A, Basic J, Stojanovic I. Dissecting the immune response of CD4 + T cells in Alzheimer's disease. Rev Neurosci 2025; 36:139-168. [PMID: 39238424 DOI: 10.1515/revneuro-2024-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024]
Abstract
The formation of amyloid-β (Aβ) plaques is a neuropathological hallmark of Alzheimer's disease (AD), however, these pathological aggregates can also be found in the brains of cognitively unimpaired elderly population. In that context, individual variations in the Aβ-specific immune response could be key factors that determine the level of Aβ-induced neuroinflammation and thus the propensity to develop AD. CD4+ T cells are the cornerstone of the immune response that coordinate the effector functions of both adaptive and innate immunity. However, despite intensive research efforts, the precise role of these cells during AD pathogenesis is still not fully elucidated. Both pathogenic and beneficial effects have been observed in various animal models of AD, as well as in humans with AD. Although this functional duality of CD4+ T cells in AD can be simply attributed to the vast phenotype heterogeneity of this cell lineage, disease stage-specific effect have also been proposed. Therefore, in this review, we summarized the current understanding of the role of CD4+ T cells in the pathophysiology of AD, from the aspect of their antigen specificity, activation, and phenotype characteristics. Such knowledge is of practical importance as it paves the way for immunomodulation as a therapeutic option for AD treatment, given that currently available therapies have not yielded satisfactory results.
Collapse
Affiliation(s)
- Milos Kostic
- Department of Immunology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Nikola Zivkovic
- Department of Pathology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Ana Cvetanovic
- Department of Oncology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Jelena Basic
- Department of Biochemistry, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Ivana Stojanovic
- Department of Biochemistry, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| |
Collapse
|
3
|
Cai H, Zhao T, Pang Y, Fu X, Ren Z, Quan S, Jia L. Systemic inflammatory markers in ageing, Alzheimer's disease and other dementias. Brain 2025; 148:480-492. [PMID: 39008616 DOI: 10.1093/brain/awae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/28/2024] [Accepted: 06/23/2024] [Indexed: 07/17/2024] Open
Abstract
Systemic inflammation with alterations in inflammatory markers is involved in ageing and Alzheimer's disease. However, few studies have investigated the longitudinal trajectories of systemic inflammatory markers during ageing and Alzheimer's disease, and specific markers contributing to Alzheimer's disease remain undetermined. In this study, a longitudinal cohort (cohort 1: n = 290; controls, 136; preclinical Alzheimer's disease, 154) and a cross-sectional cohort (cohort 2: n = 351; controls, 62; Alzheimer's disease, 63; vascular dementia, 58; Parkinson's disease dementia, 56; behavioural variant frontotemporal dementia, 57; dementia with Lewy bodies, 55) were included. Plasma levels of inflammatory markers were measured every 2 years during a 10-year follow-up in the longitudinal cohort and once in the cross-sectional cohort. The study demonstrated that the inflammatory markers significantly altered during both ageing and the development of Alzheimer's disease. However, only complement C3, interleukin-1β and interleukin-6 exhibited significant changes in participants with preclinical Alzheimer's disease, and their longitudinal changes were significantly associated with the development of Alzheimer's disease compared to controls over the 10-year follow-up. In the cross-sectional cohort, complement C3 demonstrated specificity to Alzheimer's disease, while interleukin-1β and interleukin-6 were also altered in other dementias. The study provides a new perspective on the involvement of inflammatory markers in the ageing process and the development of Alzheimer's disease, implying that regulating inflammation may have a pivotal role in promoting successful ageing and in the prevention and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Huimin Cai
- Innovation Centre for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Centre for Geriatric Diseases, Beijing 100053, China
| | - Tan Zhao
- Innovation Centre for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Centre for Geriatric Diseases, Beijing 100053, China
| | - Yana Pang
- Innovation Centre for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Centre for Geriatric Diseases, Beijing 100053, China
| | - Xiaofeng Fu
- Innovation Centre for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Centre for Geriatric Diseases, Beijing 100053, China
| | - Ziye Ren
- Innovation Centre for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Centre for Geriatric Diseases, Beijing 100053, China
| | - Shuiyue Quan
- Innovation Centre for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Centre for Geriatric Diseases, Beijing 100053, China
| | - Longfei Jia
- Innovation Centre for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Centre for Geriatric Diseases, Beijing 100053, China
| |
Collapse
|
4
|
Thomas A, Guo J, Reyes-Dumeyer D, Sanchez D, Scarmeas N, Manly JJ, Brickman AM, Lantigua RA, Mayeux R, Gu Y. Inflammatory biomarkers profiles and cognition among older adults. Sci Rep 2025; 15:2265. [PMID: 39824904 PMCID: PMC11748720 DOI: 10.1038/s41598-025-86309-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025] Open
Abstract
Inflammation plays a major role in cognitive aging. Most studies on peripheral inflammation and cognitive aging focused on selected major inflammatory biomarkers. However, inflammatory markers are regulated and influenced by each other, and it is therefore important to consider a more comprehensive panel of markers to better capture diverse immune pathways and characterize the overall inflammatory profile of individuals. We explored 23 circulating inflammatory biomarkers using data from 1,743 participants without dementia (≥ 65 years-old) from the community-based, multiethnic Washington Heights Inwood Columbia Aging Project. Using principal component analysis (PCA), we developed six inflammatory profiles (PC-1 to PC-6) based on these 23 biomarkers and tested the association of resulting inflammatory profile with cognitive decline, over up to 12 years of follow-up. PC-1 described a pro-inflammatory profile characterized by high positive loadings for pro-inflammatory biomarkers. A higher PC-1 score was associated with lower baseline cognitive performances. No association of this profile with cognitive decline was observed in longitudinal analysis. However, PC-5 characterized by high PDGF-AA and RANTES was associated with a faster cognitive decline. Among older adults, a circulating pro-inflammatory immune profile is associated with lower baseline cognitive performance, and some specific pro-inflammatory cytokines might be associated with faster cognitive decline.
Collapse
Affiliation(s)
- Aline Thomas
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Jing Guo
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Dolly Reyes-Dumeyer
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Danurys Sanchez
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Nikolaos Scarmeas
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, NY, 10032, USA
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Jennifer J Manly
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, NY, 10032, USA
| | - Adam M Brickman
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, NY, 10032, USA
| | - Rafael A Lantigua
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, NY, 10032, USA
| | - Richard Mayeux
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, NY, 10032, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Yian Gu
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, NY, 10032, USA.
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA.
- Departments of Neurology and Epidemiology, Taub Institute, and Sergievsky Center, Columbia University Irving Medical Center, 622 W 168Th St., New York, NY, 10032, USA.
| |
Collapse
|
5
|
Nehra G, Maloney BJ, Smith RR, Chumboatong W, Abner EL, Nelson PT, Bauer B, Hartz AMS. Plasma S100β is a predictor for pathology and cognitive decline in Alzheimer's disease. Fluids Barriers CNS 2025; 22:4. [PMID: 39789614 PMCID: PMC11720585 DOI: 10.1186/s12987-024-00615-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Blood-brain barrier dysfunction is one characteristic of Alzheimer's disease (AD) and is recognized as both a cause and consequence of the pathological cascade leading to cognitive decline. The goal of this study was to assess markers for barrier dysfunction in postmortem tissue samples from research participants who were either cognitively normal individuals (CNI) or diagnosed with AD at the time of autopsy and determine to what extent these markers are associated with AD neuropathologic changes (ADNC) and cognitive impairment. METHODS We used postmortem brain tissue and plasma samples from 19 participants: 9 CNI and 10 AD dementia patients who had come to autopsy from the University of Kentucky AD Research Center (UK-ADRC) community-based cohort; all cases with dementia had confirmed severe ADNC. Plasma samples were obtained within 2 years of autopsy. Aβ40, Aβ42, and tau levels in brain tissue samples were quantified by ELISA. Cortical brain sections were cleared using the X-CLARITY™ system and immunostained for neurovascular unit-related proteins. Brain slices were then imaged using confocal microscopy and analyzed for microvascular diameters and immunoreactivity coverage using Fiji/ImageJ. Isolated human brain microvessels were assayed for tight-junction protein expression using the JESS™ automated Western blot system. S100 calcium-binding protein B (S100β), matrix metalloproteinase (MMP)-2, MMP-9, and neuron-specific enolase (NSE) levels in plasma were quantified by ELISA. All outcomes were assessed for linear associations with global cognitive function (MMSE, CDR) and cerebral atrophy scores by Pearson, polyserial, or polychoric correlation, as appropriate, along with generalized linear modeling or generalized linear mixed-level modeling. RESULTS As expected, we detected elevated Aβ and tau pathology in brain tissue sections from AD patients compared to CNI. However, we found no differences in microvascular diameters in cleared AD and CNI brain tissue sections. We also observed no differences in claudin-5 protein levels in capillaries isolated from AD and CNI tissue samples. Plasma biomarker analysis showed that AD patients had 12.4-fold higher S100β plasma levels, twofold lower NSE plasma levels, 2.4-fold higher MMP-9 plasma levels, and 1.2-fold lower MMP-2 plasma levels than CNI. Data analysis revealed that elevated S100β plasma levels were predictive of AD pathology and cognitive impairment. CONCLUSION Our data suggest that among different markers relevant to barrier dysfunction, plasma S100β is the most promising diagnostic biomarker for ADNC. Further investigation is necessary to assess how plasma S100β levels relate to these changes and whether they may predict clinical outcomes, particularly in the prodromal and early stages of AD.
Collapse
Affiliation(s)
- Geetika Nehra
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA
| | - Bryan J Maloney
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA
| | - Rebecca R Smith
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA
| | - Wijitra Chumboatong
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA
| | - Erin L Abner
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, USA
- Department of Epidemiology and Environmental Health, College of Public Health, University of Kentucky, Lexington, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA
- Department of Pathology, College of Medicine, University of Kentucky, Lexington, USA
| | - Björn Bauer
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA.
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, USA.
| |
Collapse
|
6
|
Gonzalo R, Minguet C, Ortiz AM, Bravo MI, López OL, Boada M, Ruiz A, Costa M. Plasma exchange with albumin replacement for Alzheimer's disease treatment induced changes in serum and cerebrospinal fluid inflammatory mediator levels. Ann Clin Transl Neurol 2024; 11:3280-3291. [PMID: 39476248 DOI: 10.1002/acn3.52235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 12/18/2024] Open
Abstract
OBJECTIVE There is extensive literature indicating that inflammatory pathways are affected in Alzheimer's disease (AD). We examined whether plasma exchange with albumin replacement (PE-Alb) can impact the inflammatory status of AD patients and alter the relationship between inflammatory mediators and cognitive measures. METHODS Serum and cerebrospinal fluid (CSF) samples from 142 AD patients participating in the AMBAR trial (14-month schedule of PE-Alb treatment vs. placebo [sham PE-Alb]) were analyzed for changes from baseline for 19 inflammatory mediators (6 inflammatory cytokines, 9 chemokines, and 4 vascular injury indicators) at representative time points across the AMBAR study (lasting effects) as well as in pre- versus post-PE-Alb procedure (acute effects). Association between mediator changes and clinical outcomes reported in the AMBAR study (cognitive, functional, behavioral function, and global change tests) was assessed. RESULTS PE-Alb significantly reduced IFN-γ, eotaxin, MIP-1α and ICAM-1 levels in serum, and eotaxin-3 and MIP-1β levels in CSF, at various time points during treatment (p < 0.05; false discovery rate-corrected). Vascular injury indicators were the mediators mostly affected by post- versus pre-PE-Alb level reduction. Increased serum MIP-1α levels were associated with worsening in ADAS-Cog, CDR-sb, and ADCS-CGIC scores in the placebo group, but not in the PE-Alb-treated group. INTERPRETATION Peripheral intervention could affect AD by reducing inflammatory mediators in both peripheral and central compartments. Changes in MIP-1α due to PE-Alb were associated with changes in clinical outcomes.
Collapse
Affiliation(s)
- Ricardo Gonzalo
- Grifols Scientific Innovation Office, Avinguda de la Generalitat 152-158, Sant Cugat del Vallès, 08174, Barcelona, Spain
| | - Carla Minguet
- Grifols Scientific Innovation Office, Avinguda de la Generalitat 152-158, Sant Cugat del Vallès, 08174, Barcelona, Spain
| | - Ana María Ortiz
- Grifols Scientific Innovation Office, Avinguda de la Generalitat 152-158, Sant Cugat del Vallès, 08174, Barcelona, Spain
| | - María Isabel Bravo
- Grifols Scientific Innovation Office, Avinguda de la Generalitat 152-158, Sant Cugat del Vallès, 08174, Barcelona, Spain
| | - Oscar L López
- Departments of Neurology and Psychiatry, University of Pittsburgh School of Medicine, 811 Kaufmann Medical Building, 3471 Fifth Avenue, Pittsburgh, 15213, Pennsylvania, USA
| | - Mercè Boada
- ACE Alzheimer Centre Barcelona - Universitat Internacional de Catalunya, Gran Via de Carles III, 85 BIS, Barcelona, 08028, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Calle de Melchor Fernández Almagro 3, Fuencarral-El Pardo, Madrid, 28029, Spain
| | - Agustín Ruiz
- ACE Alzheimer Centre Barcelona - Universitat Internacional de Catalunya, Gran Via de Carles III, 85 BIS, Barcelona, 08028, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Calle de Melchor Fernández Almagro 3, Fuencarral-El Pardo, Madrid, 28029, Spain
| | - Montserrat Costa
- Grifols Scientific Innovation Office, Avinguda de la Generalitat 152-158, Sant Cugat del Vallès, 08174, Barcelona, Spain
| |
Collapse
|
7
|
Belousova E, Salikhova D, Maksimov Y, Nebogatikov V, Sudina A, Goldshtein D, Ustyugov A. Proposed Mechanisms of Cell Therapy for Alzheimer's Disease. Int J Mol Sci 2024; 25:12378. [PMID: 39596443 PMCID: PMC11595163 DOI: 10.3390/ijms252212378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder characterized by mitochondria dysfunction, accumulation of beta-amyloid plaques, and hyperphosphorylated tau tangles in the brain leading to memory loss and cognitive deficits. There is currently no cure for this condition, but the potential of stem cells for the therapy of neurodegenerative pathologies is actively being researched. This review discusses preclinical and clinical studies that have used mouse models and human patients to investigate the use of novel types of stem cell treatment approaches. The findings provide valuable insights into the applications of stem cell-based therapies and include the use of neural, glial, mesenchymal, embryonic, and induced pluripotent stem cells. We cover current studies on stem cell replacement therapy where cells can functionally integrate into neural networks, replace damaged neurons, and strengthen impaired synaptic circuits in the brain. We address the paracrine action of stem cells acting via secreted factors to induce neuroregeneration and modify inflammatory responses. We focus on the neuroprotective functions of exosomes as well as their neurogenic and synaptogenic effects. We look into the shuttling of mitochondria through tunneling nanotubes that enables the transfer of healthy mitochondria by restoring the normal functioning of damaged cells, improving their metabolism, and reducing the level of apoptosis.
Collapse
Affiliation(s)
- Ekaterina Belousova
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
| | - Diana Salikhova
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
- Research Institute of Molecular and Cellular Medicine of the Medical Institute Peoples’ Friendship, University of Russia, Moscow 117198, Russia
| | - Yaroslav Maksimov
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
- Research Institute of Molecular and Cellular Medicine of the Medical Institute Peoples’ Friendship, University of Russia, Moscow 117198, Russia
| | - Vladimir Nebogatikov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Chernogolovka 142432, Russia;
| | - Anastasiya Sudina
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
- Research Institute of Molecular and Cellular Medicine of the Medical Institute Peoples’ Friendship, University of Russia, Moscow 117198, Russia
| | - Dmitry Goldshtein
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
| | - Aleksey Ustyugov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Chernogolovka 142432, Russia;
| |
Collapse
|
8
|
Doke R, Lamkhade GJ, Vinchurkar K, Singh S. Demystifying the Role of Neuroinflammatory Mediators as Biomarkers for Diagnosis, Prognosis, and Treatment of Alzheimer's Disease: A Review. ACS Pharmacol Transl Sci 2024; 7:2987-3003. [PMID: 39416969 PMCID: PMC11475310 DOI: 10.1021/acsptsci.4c00457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
Neuroinflammatory mediators play a pivotal role in the pathogenesis of Alzheimer's Disease (AD), influencing its onset, progression, and severity. The precise mechanisms behind AD are still not fully understood, leading current treatments to focus mainly on managing symptoms rather than preventing or curing the condition. The amyloid and tau hypotheses are the most widely accepted explanations for AD pathology; however, they do not completely account for the neuronal degeneration observed in AD. Growing evidence underscores the crucial role of neuroinflammation in the pathology of AD. The neuroinflammatory hypothesis presents a promising new approach to understanding the mechanisms driving AD. This review examines the importance of neuroinflammatory biomarkers in the diagnosis, prognosis, and treatment of AD. It delves into the mechanisms underlying neuroinflammation in AD, highlighting the involvement of various mediators such as cytokines, chemokines, and ROS. Additionally, this review discusses the potential of neuroinflammatory biomarkers as diagnostic tools, prognostic indicators, and therapeutic targets for AD management. By understanding the intricate interplay between neuroinflammation and AD pathology, this review aims to help in the development of efficient diagnostic and treatment plans to fight this debilitating neurological condition. Furthermore, it elaborates recent advancements in neuroimaging techniques and biofluid analysis for the identification and monitoring of neuroinflammatory biomarkers in AD patients.
Collapse
Affiliation(s)
- Rohit
R. Doke
- Jaihind
College of Pharmacy, Vadgaon Sahani, Pune, Maharashtra 412401, India
| | | | - Kuldeep Vinchurkar
- Krishna
School of Pharmacy, Kiran and Pallavi Patel
Global University, Vadodara, Gujarat 391243, India
| | - Sudarshan Singh
- Office
of Research Administration, Chiang Mai University, Chaing Mai 50200, Thailand
- Faculty
of Pharmacy, Chiang Mai University, Chaing Mai 50200, Thailand
| |
Collapse
|
9
|
de la Monte SM, Tong M. Dysregulated mTOR networks in experimental sporadic Alzheimer's disease. Front Cell Neurosci 2024; 18:1432359. [PMID: 39386180 PMCID: PMC11461251 DOI: 10.3389/fncel.2024.1432359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024] Open
Abstract
Background Beyond the signature amyloid-beta plaques and neurofibrillary tangles, Alzheimer's disease (AD) has been shown to exhibit dysregulated metabolic signaling through insulin and insulin-like growth factor (IGF) networks that crosstalk with the mechanistic target of rapamycin (mTOR). Its broad impact on brain structure and function suggests that mTOR is likely an important therapeutic target for AD. Objective This study characterizes temporal lobe (TL) mTOR signaling abnormalities in a rat model of sporadic AD neurodegeneration. Methods Long Evans rats were given intracerebroventricular injections of streptozotocin (ic-STZ) or saline (control), and 4 weeks later, they were administered neurobehavioral tests followed by terminal harvesting of the TLs for histopathological study and measurement of AD biomarkers, neuroinflammatory/oxidative stress markers, and total and phosphorylated insulin/IGF-1-Akt-mTOR pathway signaling molecules. Results Rats treated with ic-STZ exhibited significantly impaired performance on Rotarod (RR) and Morris Water Maze (MWM) tests, brain atrophy, TL and hippocampal neuronal and white matter degeneration, and elevated TL pTau, AβPP, Aβ, AChE, 4-HNE, and GAPDH and reduced ubiquitin, IL-2, IL-6, and IFN-γ immunoreactivities. In addition, ic-STZ reduced TL pY1135/1136-IGF-1R, Akt, PTEN, pS380-PTEN, pS2448-mTOR, p70S6K, pT412-p70S6K, p/T-pT412-p70S6K, p/T-Rictor, and p/T-Raptor. Conclusion Experimental ic-STZ-induced sporadic AD-type neurodegeneration with neurobehavioral dysfunctions associated with inhibition of mTOR signaling networks linked to energy metabolism, plasticity, and white matter integrity.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Departments of Medicine, Pathology and Laboratory Medicine, Neurology, and Neurosurgery, Rhode Island Hospital, Women and Infants Hospital, The Alpert Medical School at Brown University, Providence, RI, United States
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital, The Alpert Medical School at Brown University, Providence, RI, United States
| |
Collapse
|
10
|
Gutiérrez Rico E, Joseph P, Noutsos C, Poon K. Hypothalamic and hippocampal transcriptome changes in App NL-G-F mice as a function of metabolic and inflammatory dysfunction. Neuroscience 2024; 554:107-117. [PMID: 39002757 DOI: 10.1016/j.neuroscience.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 05/20/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
The progression of Alzheimer's disease (AD) has a silent phase that predates characteristic cognitive decline and eventually leads to active cognitive deficits. Metabolism, diet, and obesity have been correlated to the development of AD but is poorly understood. The hypothalamus is a brain region that exerts homeostatic control on food intake and metabolism and has been noted to be impacted during the active phase of Alzheimer's disease. This study, in using an amyloid overexpression AppNL-G-F mouse model under normal metabolic conditions, examines blood markers in young and old male AppNL-G-F mice (n = 5) that corresponds to the silent and active phases of AD, and bulk gene expression changes in the hypothalamus and the hippocampus. The results show a large panel of inflammatory mediators, leptin, and other proteins that may be involved in weakening the blood brain barrier, to be increased in the young AppNL-G-F mice but not in the old AppNL-G-F mice. There were also several differentially expressed genes in both the hypothalamus and the hippocampus in the young AppNL-G-F mice prior to amyloid plaque formation and cognitive decline that persisted in the old AppNL-G-F mice, including GABRa2 receptor, Wdfy1, and several pseudogenes with unknown function. These results suggests that a larger panel of inflammatory mediators may be used as blood markers to detect silent AD, and that a change in leptin and gene expression in the hypothalamus exist prior to cognitive effects, suggesting a coupling of metabolism with amyloid plaque induced cognitive decline.
Collapse
Affiliation(s)
- Evelyn Gutiérrez Rico
- Tohoku University, Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan
| | - Patricia Joseph
- SUNY Old Westbury, 223 Store Hill Rd, Old Westbury, NY 11568, USA
| | - Christos Noutsos
- SUNY Old Westbury, 223 Store Hill Rd, Old Westbury, NY 11568, USA
| | - Kinning Poon
- SUNY Old Westbury, 223 Store Hill Rd, Old Westbury, NY 11568, USA.
| |
Collapse
|
11
|
Niccolai E, Pedone M, Martinelli I, Nannini G, Baldi S, Simonini C, Di Gloria L, Zucchi E, Ramazzotti M, Spezia PG, Maggi F, Quaranta G, Masucci L, Bartolucci G, Stingo FC, Mandrioli J, Amedei A. Amyotrophic lateral sclerosis stratification: unveiling patterns with virome, inflammation, and metabolism molecules. J Neurol 2024; 271:4310-4325. [PMID: 38644373 PMCID: PMC11233352 DOI: 10.1007/s00415-024-12348-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/23/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is an untreatable and clinically heterogeneous condition primarily affecting motor neurons. The ongoing quest for reliable biomarkers that mirror the disease status and progression has led to investigations that extend beyond motor neurons' pathology, encompassing broader systemic factors such as metabolism, immunity, and the microbiome. Our study contributes to this effort by examining the potential role of microbiome-related components, including viral elements, such as torque tenovirus (TTV), and various inflammatory factors, in ALS. In our analysis of serum samples from 100 ALS patients and 34 healthy controls (HC), we evaluated 14 cytokines, TTV DNA load, and 18 free fatty acids (FFA). We found that the evaluated variables are effective in differentiating ALS patients from healthy controls. In addition, our research identifies four unique patient clusters, each characterized by distinct biological profiles. Intriguingly, no correlations were found with site of onset, sex, progression rate, phenotype, or C9ORF72 expansion. A remarkable aspect of our findings is the discovery of a gender-specific relationship between levels of 2-ethylhexanoic acid and patient survival. In addition to contributing to the growing body of evidence suggesting altered peripheral immune responses in ALS, our exploratory research underscores metabolic diversity challenging conventional clinical classifications. If our exploratory findings are validated by further research, they could significantly impact disease understanding and patient care customization. Identifying groups based on biological profiles might aid in clustering patients with varying responses to treatments.
Collapse
Affiliation(s)
- Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Matteo Pedone
- Department of Statistics, Computer Science, Applications "G. Parenti", University of Florence, Florence, Italy
| | - Ilaria Martinelli
- Neurology Unit, Department of Neuroscience, Azienda Ospedaliero Universitaria Di Modena, Modena, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Cecilia Simonini
- Neurology Unit, Department of Neuroscience, Azienda Ospedaliero Universitaria Di Modena, Modena, Italy
| | - Leandro Di Gloria
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Elisabetta Zucchi
- Neurology Unit, Department of Neuroscience, Azienda Ospedaliero Universitaria Di Modena, Modena, Italy
| | - Matteo Ramazzotti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Pietro Giorgio Spezia
- Department of Translational Research, Retrovirus Center - University of Pisa, Pisa, Italy
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani - IRCCS, Rome, Italy
| | - Gianluca Quaranta
- Department of Laboratory and Infectious Sciences, A. Gemelli University Hospital IRCCS, Rome, Italy
| | - Luca Masucci
- Department of Laboratory and Infectious Sciences, A. Gemelli University Hospital IRCCS, Rome, Italy
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Francesco Claudio Stingo
- Department of Statistics, Computer Science, Applications "G. Parenti", University of Florence, Florence, Italy
| | - Jessica Mandrioli
- Neurology Unit, Department of Neuroscience, Azienda Ospedaliero Universitaria Di Modena, Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
12
|
Frago LM, Burgos-Ramos E, Rodríguez-Pérez M, Canelles S, Arilla-Ferreiro E, Argente J, López MG, Barrios V. Reduction in Hippocampal Amyloid-β Peptide (Aβ) Content during Glycine-Proline-Glutamate (Gly-Pro-Glu) Co-Administration Is Associated with Changes in Inflammation and Insulin-like Growth Factor (IGF)-I Signaling. Int J Mol Sci 2024; 25:5716. [PMID: 38891902 PMCID: PMC11172028 DOI: 10.3390/ijms25115716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by the deposition in the brain of senile plaques composed of amyloid-β peptides (Aβs) that increase inflammation. An endogenous peptide derived from the insulin-like growth factor (IGF)-I, glycine-proline-glutamate (GPE), has IGF-I-sensitizing and neuroprotective actions. Here, we examined the effects of GPE on Aβ levels and hippocampal inflammation generated by the intracerebroventricular infusion of Aβ25-35 for 2 weeks (300 pmol/day) in ovariectomized rats and the signaling-related pathways and levels of Aβ-degrading enzymes associated with these GPE-related effects. GPE prevented the Aβ-induced increase in the phosphorylation of p38 mitogen-activated protein kinase and the reduction in activation of signal transducer and activator of transcription 3, insulin receptor substrate-1, and Akt, as well as on interleukin (IL)-2 and IL-13 levels in the hippocampus. The functionality of somatostatin, measured as the percentage of inhibition of adenylate cyclase activity and the levels of insulin-degrading enzyme, was also preserved by GPE co-treatment. These findings indicate that GPE co-administration may protect from Aβ insult by changing hippocampal cytokine content and somatostatin functionality through regulation of leptin- and IGF-I-signaling pathways that could influence the reduction in Aβ levels through modulation of levels and/or activity of Aβ proteases.
Collapse
Affiliation(s)
- Laura M. Frago
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute “La Princesa”, E-28009 Madrid, Spain; (L.M.F.); (S.C.); (J.A.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn, Instituto de Salud Carlos III, E-28009 Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Emma Burgos-Ramos
- Biochemistry Area, Faculty of Environmental Sciences and Biochemistry, Universidad de Castilla-La Mancha, E-45071 Toledo, Spain; (E.B.-R.); (M.R.-P.)
| | - María Rodríguez-Pérez
- Biochemistry Area, Faculty of Environmental Sciences and Biochemistry, Universidad de Castilla-La Mancha, E-45071 Toledo, Spain; (E.B.-R.); (M.R.-P.)
| | - Sandra Canelles
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute “La Princesa”, E-28009 Madrid, Spain; (L.M.F.); (S.C.); (J.A.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn, Instituto de Salud Carlos III, E-28009 Madrid, Spain
| | - Eduardo Arilla-Ferreiro
- Department of Biological Systems, Faculty of Medicine, Universidad de Alcalá, E-28871 Alcala de Henares, Spain;
| | - Jesús Argente
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute “La Princesa”, E-28009 Madrid, Spain; (L.M.F.); (S.C.); (J.A.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn, Instituto de Salud Carlos III, E-28009 Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- IMDEA, Food Institute, CEIUAM+CSI, Cantoblanco, E-28049 Madrid, Spain
| | - Manuela G. López
- Instituto Teófilo Hernando for Drug Discovery, Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid, Research Institute “La Princesa”, E-28029 Madrid, Spain;
| | - Vicente Barrios
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute “La Princesa”, E-28009 Madrid, Spain; (L.M.F.); (S.C.); (J.A.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn, Instituto de Salud Carlos III, E-28009 Madrid, Spain
| |
Collapse
|
13
|
Xu L, Li F, Xu J, Li B, Li Y, Jia J. Vascular endothelial growth factor is an effective biomarker for vascular dementia, not for Alzheimer's disease: A meta-analysis. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12612. [PMID: 38912304 PMCID: PMC11193096 DOI: 10.1002/dad2.12612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION Vascular pathology is known to contribute to dementia and vascular endothelial growth factor (VEGF) is a well-established biomarker associated with vascular alterations. Nonetheless, research findings on VEGF in Alzheimer's disease (AD) and vascular dementia (VaD) are inconsistent across various studies. METHODS We conducted a meta-analysis to elucidate relationships between VEGF and AD/VaD. RESULTS Twenty-four studies were included. Pooled data showed that both blood and cerebrospinal fluid (CSF) VEGF levels were higher in VaD patients, whereas no significant difference was found between AD patients and healthy controls. However, the correlation between blood VEGF and AD was found among studies with AD pathology verification. And blood VEGF levels were higher in AD patients than controls in "age difference < 5 years" subgroup and CSF samples for European cohorts. DISCUSSION This study highlights that VEGF is more effective for the diagnosis of VaD and vascular factors are also an important contributor in AD. Highlights Vascular endothelial growth factor (VEGF) levels were higher in the vascular dementia group, but not in the overall Alzheimer's disease (AD) group.Correlation between VEGF and AD was found among studies with clear AD pathological verification.Elevated VEGF in the cerebrospinal fluid might be a diagnostic marker for AD in European populations.
Collapse
Affiliation(s)
- Ling‐Zhi Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric DiseasesCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Geriatric Cognitive DisordersBeijingChina
- Clinical Center for Neurodegenerative Disease and Memory ImpairmentCapital Medical UniversityBeijingChina
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
- Key Laboratory of Neurodegenerative DiseasesMinistry of EducationBeijingChina
| | - Fang‐Yu Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric DiseasesCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Geriatric Cognitive DisordersBeijingChina
- Clinical Center for Neurodegenerative Disease and Memory ImpairmentCapital Medical UniversityBeijingChina
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
- Key Laboratory of Neurodegenerative DiseasesMinistry of EducationBeijingChina
| | - Jin Xu
- Department of Library, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Bing‐Qiu Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric DiseasesCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Geriatric Cognitive DisordersBeijingChina
- Clinical Center for Neurodegenerative Disease and Memory ImpairmentCapital Medical UniversityBeijingChina
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
- Key Laboratory of Neurodegenerative DiseasesMinistry of EducationBeijingChina
| | - Ying Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric DiseasesCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Geriatric Cognitive DisordersBeijingChina
- Clinical Center for Neurodegenerative Disease and Memory ImpairmentCapital Medical UniversityBeijingChina
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
- Key Laboratory of Neurodegenerative DiseasesMinistry of EducationBeijingChina
| | - Jian‐Ping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric DiseasesCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Geriatric Cognitive DisordersBeijingChina
- Clinical Center for Neurodegenerative Disease and Memory ImpairmentCapital Medical UniversityBeijingChina
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
- Key Laboratory of Neurodegenerative DiseasesMinistry of EducationBeijingChina
| |
Collapse
|
14
|
Manukjan N, Majcher D, Leenders P, Caiment F, van Herwijnen M, Smeets HJ, Suidgeest E, van der Weerd L, Vanmierlo T, Jansen JFA, Backes WH, van Oostenbrugge RJ, Staals J, Fulton D, Ahmed Z, Blankesteijn WM, Foulquier S. Hypoxic oligodendrocyte precursor cell-derived VEGFA is associated with blood-brain barrier impairment. Acta Neuropathol Commun 2023; 11:128. [PMID: 37550790 PMCID: PMC10405482 DOI: 10.1186/s40478-023-01627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/23/2023] [Indexed: 08/09/2023] Open
Abstract
Cerebral small vessel disease is characterised by decreased cerebral blood flow and blood-brain barrier impairments which play a key role in the development of white matter lesions. We hypothesised that cerebral hypoperfusion causes local hypoxia, affecting oligodendrocyte precursor cell-endothelial cell signalling leading to blood-brain barrier dysfunction as an early mechanism for the development of white matter lesions. Bilateral carotid artery stenosis was used as a mouse model for cerebral hypoperfusion. Pimonidazole, a hypoxic cell marker, was injected prior to humane sacrifice at day 7. Myelin content, vascular density, blood-brain barrier leakages, and hypoxic cell density were quantified. Primary mouse oligodendrocyte precursor cells were exposed to hypoxia and RNA sequencing was performed. Vegfa gene expression and protein secretion was examined in an oligodendrocyte precursor cell line exposed to hypoxia. Additionally, human blood plasma VEGFA levels were measured and correlated to blood-brain barrier permeability in normal-appearing white matter and white matter lesions of cerebral small vessel disease patients and controls. Cerebral blood flow was reduced in the stenosis mice, with an increase in hypoxic cell number and blood-brain barrier leakages in the cortical areas but no changes in myelin content or vascular density. Vegfa upregulation was identified in hypoxic oligodendrocyte precursor cells, which was mediated via Hif1α and Epas1. In humans, VEGFA plasma levels were increased in patients versus controls. VEGFA plasma levels were associated with increased blood-brain barrier permeability in normal appearing white matter of patients. Cerebral hypoperfusion mediates hypoxia induced VEGFA expression in oligodendrocyte precursor cells through Hif1α/Epas1 signalling. VEGFA could in turn increase BBB permeability. In humans, increased VEGFA plasma levels in cerebral small vessel disease patients were associated with increased blood-brain barrier permeability in the normal appearing white matter. Our results support a role of VEGFA expression in cerebral hypoperfusion as seen in cerebral small vessel disease.
Collapse
Affiliation(s)
- Narek Manukjan
- Department of Pharmacology and Toxicology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- CARIM - School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Daria Majcher
- Department of Pharmacology and Toxicology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Peter Leenders
- Department of Pharmacology and Toxicology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Florian Caiment
- Department of Toxicogenomics, GROW–School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Marcel van Herwijnen
- Department of Toxicogenomics, GROW–School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Hubert J. Smeets
- Department of Toxicogenomics, GROW–School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- MHeNs—School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Ernst Suidgeest
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, P.O. Box 9500, 2300 RA Leiden, the Netherlands
| | - Louise van der Weerd
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, P.O. Box 9500, 2300 RA Leiden, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, P.O. Box 9500, 2300 RA Leiden, The Netherlands
| | - Tim Vanmierlo
- MHeNs—School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Department of Neuroscience, Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium
- Department of Psychiatry and Neuropsychology, European Graduate School of Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Jacobus F. A. Jansen
- MHeNs—School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Walter H. Backes
- CARIM - School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- MHeNs—School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Robert J. van Oostenbrugge
- CARIM - School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- MHeNs—School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Department of Neurology, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Julie Staals
- CARIM - School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Department of Neurology, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Daniel Fulton
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
- Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - W. Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- CARIM - School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Sébastien Foulquier
- Department of Pharmacology and Toxicology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- CARIM - School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- MHeNs—School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Department of Neurology, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| |
Collapse
|
15
|
Wang T, Yao Y, Han C, Li T, Du W, Xue J, Han Y, Cai Y. MCP-1 levels in astrocyte-derived exosomes are changed in preclinical stage of Alzheimer's disease. Front Neurol 2023; 14:1119298. [PMID: 37021284 PMCID: PMC10067608 DOI: 10.3389/fneur.2023.1119298] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/27/2023] [Indexed: 04/07/2023] Open
Abstract
Background Alzheimer's disease (AD) is the most common form of dementia in older adults. There is accumulating evidence that inflammatory processes play a critical role in AD pathogenesis. In this study, we investigated whether inflammatory factors in plasma and astrocyte-derived exosomes (ADEs) from plasma are differentially expressed in the early stages of AD and their potential role in pathological processes in the AD continuum. Method We included 39 normal controls (NCs), 43 participants with subjective cognitive decline (SCD), and 43 participants with amnestic mild cognitive impairment (aMCI)/AD. IL-6, IL-8, and MCP-1 in plasma and ADEs from plasma were evaluated using a commercial multiplex Luminex-based kit. Results Pairwise comparisons between the groups showed no significant differences in plasma levels of IL-6, IL-8, or MCP-1. However, ADEs in the SCD group showed an increase in MCP-1 levels compared to the NC group. To differentiate the preclinical group, discriminant analysis was performed using sex, age, years of education, and genotype. This revealed a difference between the SCD and NC groups (area under the curve: 0.664). A Spearman correlation analysis of MCP-1 in plasma and ADEs showed no or weak correlation in the SCD (R = 0.150, p = 0.350) and aMCI/AD (R = 0.310, p = 0.041) groups, while a positive correlation in the NC group (R = 0.360, p = 0.026). Conclusion Plasma IL-6, IL-8, and MCP-1 levels were not significantly different. However, the concentration of MCP-1 in ADEs is slightly altered during the preclinical phase of AD, which could be a potential role of the central neuron system (CNS) immune response in the AD continuum. Clinical trial registration www.ClinicalTrials.gov, identifier: NCT03370744.
Collapse
Affiliation(s)
- Ting Wang
- Department of Biobank, Xuanwu Hospital of Capital Medical University, Beijing, China
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yunxia Yao
- Department of Biobank, Xuanwu Hospital of Capital Medical University, Beijing, China
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Chao Han
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Taoran Li
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Jangsu Province Hospital, Nanjing, China
| | - Wenying Du
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Jinhua Xue
- Department of Biobank, Xuanwu Hospital of Capital Medical University, Beijing, China
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ying Han
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing, China
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Xuanwu Hospital of Capital Medical University, Beijing, China
- Ying Han
| | - Yanning Cai
- Department of Biobank, Xuanwu Hospital of Capital Medical University, Beijing, China
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Xuanwu Hospital of Capital Medical University, Beijing, China
- *Correspondence: Yanning Cai
| |
Collapse
|