1
|
Chen YN, Kostka JK. Beyond anosmia: olfactory dysfunction as a common denominator in neurodegenerative and neurodevelopmental disorders. Front Neurosci 2024; 18:1502779. [PMID: 39539496 PMCID: PMC11557544 DOI: 10.3389/fnins.2024.1502779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Olfactory dysfunction has emerged as a hallmark feature shared among several neurological conditions, including both neurodevelopmental and neurodegenerative disorders. While diseases of both categories have been extensively studied for decades, their association with olfaction has only recently gained attention. Olfactory deficits often manifest already during prodromal stages of these diseases, yet it remains unclear whether common pathophysiological changes along olfactory pathways cause such impairments. Here we probe into the intricate relationship between olfactory dysfunction and neurodegenerative and neurodevelopmental disorders, shedding light on their commonalities and underlying mechanisms. We begin by providing a brief overview of the olfactory circuit and its connections to higher-associated brain areas. Additionally, we discuss olfactory deficits in these disorders, focusing on potential common mechanisms that may contribute to olfactory dysfunction across both types of disorders. We further debate whether olfactory deficits contribute to the disease propagation or are simply an epiphenomenon. We conclude by emphasizing the significance of olfactory function as a potential pre-clinical diagnostic tool to identify individuals with neurological disorders that offers the opportunity for preventive intervention before other symptoms manifest.
Collapse
Affiliation(s)
- Yu-Nan Chen
- Institute of Developmental Neuroscience, Center of Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna Katharina Kostka
- Institute of Developmental Neuroscience, Center of Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Ornoy A, Echefu B, Becker M. Animal Models of Autistic-like Behavior in Rodents: A Scoping Review and Call for a Comprehensive Scoring System. Int J Mol Sci 2024; 25:10469. [PMID: 39408797 PMCID: PMC11477392 DOI: 10.3390/ijms251910469] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Appropriate animal models of human diseases are a cornerstone in the advancement of science and medicine. To create animal models of neuropsychiatric and neurobehavioral diseases such as autism spectrum disorder (ASD) necessitates the development of sufficient neurobehavioral measuring tools to translate human behavior to expected measurable behavioral features in animals. If possible, the severity of the symptoms should also be assessed. Indeed, at least in rodents, adequate neurobehavioral and neurological tests have been developed. Since ASD is characterized by a number of specific behavioral trends with significant severity, animal models of autistic-like behavior have to demonstrate the specific characteristic features, namely impaired social interactions, communication deficits, and restricted, repetitive behavioral patterns, with association to several additional impairments such as somatosensory, motor, and memory impairments. Thus, an appropriate model must show behavioral impairment of a minimal number of neurobehavioral characteristics using an adequate number of behavioral tests. The proper animal models enable the study of ASD-like-behavior from the etiologic, pathogenetic, and therapeutic aspects. From the etiologic aspects, models have been developed by the use of immunogenic substances like polyinosinic-polycytidylic acid (PolyIC), lipopolysaccharide (LPS), and propionic acid, or other well-documented immunogens or pathogens, like Mycobacterium tuberculosis. Another approach is the use of chemicals like valproic acid, polychlorinated biphenyls (PCBs), organophosphate pesticides like chlorpyrifos (CPF), and others. These substances were administered either prenatally, generally after the period of major organogenesis, or, especially in rodents, during early postnatal life. In addition, using modern genetic manipulation methods, genetic models have been created of almost all human genetic diseases that are manifested by autistic-like behavior (i.e., fragile X, Rett syndrome, SHANK gene mutation, neuroligin genes, and others). Ideally, we should not only evaluate the different behavioral modes affected by the ASD-like behavior, but also assess the severity of the behavioral deviations by an appropriate scoring system, as applied to humans. We therefore propose a scoring system for improved assessment of ASD-like behavior in animal models.
Collapse
Affiliation(s)
- Asher Ornoy
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.)
- Hadassah Academic College, Jerusalem 9101001, Israel
- Hadassah Medical School, Hebrew University, Jerusalem 9112102, Israel
| | - Boniface Echefu
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.)
| | - Maria Becker
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.)
| |
Collapse
|
3
|
Gillespie B, Dunn A, Sundram S, Hill RA. Investigating 7,8-Dihydroxyflavone to combat maternal immune activation effects on offspring gene expression and behaviour. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111078. [PMID: 38950841 DOI: 10.1016/j.pnpbp.2024.111078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Infection during pregnancy is a substantial risk factor for the unborn child to develop autism or schizophrenia later in life, and is thought to be driven by maternal immune activation (MIA). MIA can be modelled by exposing pregnant mice to Polyinosinic: polycytidylic acid (Poly-I:C), a viral mimetic that induces an immune response and recapitulates in the offspring many neurochemical features of ASD and schizophrenia, including altered BDNF-TrkB signalling and disruptions to excitatory/inhibitory balance. Therefore, we hypothesised that a BDNF mimetic, 7,8-Dihydroxyflavone (7,8-DHF), administered prophylactically to the dam may prevent the neurobehavioural sequelae of disruptions induced by MIA. Dams were treated with 7,8-DHF in the drinking water (0.08 mg/ML) from gestational day (GD) 9-20 and were exposed to Poly-I:C at GD17 (20 mg/kg, i.p.). Foetal brains were collected 6 h post Poly-I:C exposure for RT-qPCR analysis of BDNF, cytokine, GABAergic and glutamatergic gene targets. A second adult cohort were tested in a battery of behavioural tests relevant to schizophrenia and the prefrontal cortex and ventral hippocampus dissected for RT-qPCR analysis. Foetal brains exposed to Poly-I:C showed increased IL-6, but reduced expression of Ntrk2 and multiple GABAergic and glutamatergic markers. Anxiety-like behaviour was observed in adult offspring prenatally exposed to poly-I:C, which was accompanied by altered expression of Gria2 in the prefrontal cortex and Gria4 in the ventral hippocampus. While 7-8 DHF normalised the expression of some glutamatergic (Grm5) and GABAergic (Gabra1) genes in Poly-I:C exposed offspring, it also led to substantial alterations in offspring not exposed to Poly-I:C. Furthermore, mice exposed to 7,8-DHF prenatally showed increased pre-pulse inhibition and reduced working memory in adulthood. These data advance understanding of how 7,8-DHF and MIA prenatal exposure impacts genes critical to excitatory/inhibitory pathways and related behaviour.
Collapse
Affiliation(s)
- Brendan Gillespie
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia
| | - Ariel Dunn
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia
| | - Suresh Sundram
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia
| | - Rachel A Hill
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia.
| |
Collapse
|
4
|
Yadollahi-Farsani Y, Vanani VR, Lorigooini Z, Farahzad A, Amini-Khoei H. Anethole via increase in the gene expression of PI3K/AKT/mTOR mitigates the autistic-like behaviors induced by maternal separation stress in mice. IBRO Neurosci Rep 2024; 16:1-7. [PMID: 38145174 PMCID: PMC10733685 DOI: 10.1016/j.ibneur.2023.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/25/2023] [Indexed: 12/26/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodegenerative disease with increasing incidence in the world. The maternal separation (MS) stress at early life with its own neuroendocrine and neurostructural changes can provide the basis for development of ASD. Previously it has been reported neuroprotective characteristics for anethole. The PI3K/AKT/mTOR signaling pathway has pivotal role in the function of central nervous system (CNS). This study aimed to evaluate the possible effects of anethole on the autistic-like behaviors in the maternally separated (MS) mice focusing on the potential role of the PI3K/AKT/mTOR pathway. Forty male Naval Medical Research Institute (NMRI) mice were assigned to five groups (n = 8) comprising a control group (treated with normal saline) and four groups subjected to MS and treated with normal saline and or anethole at doses of 31.25, 62.5 and 125 mg/kg, respectively. All gents were administrated via intraperitoneal (i.p.) route for 14 constant days. Behavioral tests were conducted, including the three-chamber test, shuttle box and resident-intruder test. The gene expression of the PI3K, AKT and mTOR assessed in the hippocampus by qRT-PCR. Findings indicated that MS is associated with autistic-like behaviors. Anethole increased the sociability and social preference indexes in the three-chamber test, increased duration of secondary latency in the shuttle box test and decreased aggressive behaviors in the resident-intruder test. Also, anethole increased the gene expression of PI3K, AKT and mTOR in the hippocampus of MS mice. We concluded that anethole through increase in the gene expression of PI3K/ AKT/mTOR mitigated autistic-like behaviors induced by MS in mice.
Collapse
Affiliation(s)
- Yasaman Yadollahi-Farsani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Vahid Reisi Vanani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Anahita Farahzad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
5
|
Luo Y, Wang Z. The Impact of Microglia on Neurodevelopment and Brain Function in Autism. Biomedicines 2024; 12:210. [PMID: 38255315 PMCID: PMC10813633 DOI: 10.3390/biomedicines12010210] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Microglia, as one of the main types of glial cells in the central nervous system (CNS), are widely distributed throughout the brain and spinal cord. The normal number and function of microglia are very important for maintaining homeostasis in the CNS. In recent years, scientists have paid widespread attention to the role of microglia in the CNS. Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder, and patients with ASD have severe deficits in behavior, social skills, and communication. Most previous studies on ASD have focused on neuronal pathological changes, such as increased cell proliferation, accelerated neuronal differentiation, impaired synaptic development, and reduced neuronal spontaneous and synchronous activity. Currently, more and more research has found that microglia, as immune cells, can promote neurogenesis and synaptic pruning to maintain CNS homeostasis. They can usually reduce unnecessary synaptic connections early in life. Some researchers have proposed that many pathological phenotypes of ASD may be caused by microglial abnormalities. Based on this, we summarize recent research on microglia in ASD, focusing on the function of microglia and neurodevelopmental abnormalities. We aim to clarify the essential factors influenced by microglia in ASD and explore the possibility of microglia-related pathways as potential research targets for ASD.
Collapse
Affiliation(s)
- Yuyi Luo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China;
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China;
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| |
Collapse
|
6
|
Butera A, De Simone R, Potenza RL, Sanchez M, Armida M, Campanile D, Di Carlo N, Trenta F, Boirivant M, Ricceri L. Effects of a gut-selective integrin-targeted therapy in male mice exposed to early immune activation, a model for the study of autism spectrum disorder. Brain Behav Immun 2024; 115:89-100. [PMID: 37793488 DOI: 10.1016/j.bbi.2023.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023] Open
Abstract
To clarify the role of gut mucosal immunity in ASD, we evaluated, in the early-life immune activation (EIA) mouse model, the effects of administration of a monoclonal antibody directed against the integrin alpha4 beta7 (α4β7 mAb), blocking the leukocyte homing into the gut mucosa. EIA is a double-hit variant of the maternal immune-activation (MIA) model, including both prenatal (Poly I:C) and postnatal (LPS) immune challenges. In C57BL6/J EIA male adult offspring mice, IL-1β and IL-17A mRNA colonic tissue content increased when compared with controls. Cytofluorimetric analyses of lymphocytes isolated from mesenteric lymph-nodes (MLN) and spleens of EIA mice show increased percentage of total and CD4+α4β7+, unstimulated and stimulated IL-17A+ and stimulated IFN-γ+ lymphocytes in MLN and CD4+α4β7+ unstimulated and stimulated IL-17A+ and stimulated IFN-γ+ lymphocytes in the spleen. Treatment with anti-α4β7 mAb in EIA male mice was associated with colonic tissue IL-1β, and IL-17A mRNA content and percentage of CD4+ IL-17A+ and IFN-γ+ lymphocytes in MLN and spleens comparable to control mice. The anti-α4β7 mAb treatment rescue social novelty deficit showed in the three-chamber test by EIA male mice. Increased levels of IL-6 and IL-1β and decreased CD68 and TGF-β mRNAs were also observed in hippocampus and prefrontal cortex of EIA male mice together with a reduction of BDNF mRNA levels in all brain regions examined. Anti-α4β7 mAb treatment restored the expression of BDNF, TGF-β and CD68 in hippocampus and prefrontal cortex. Improvement of the gut inflammatory status, obtained by a pharmacological agent acting exclusively at gut level, ameliorates some ASD behavioral features and the neuroinflammatory status. Data provide the first preclinical indication for a therapeutic strategy against gut-immune activation in ASD subjects with peripheral increase of gut-derived (α4β7+) lymphocytes expressing IL-17A.
Collapse
Affiliation(s)
- Alessia Butera
- National Center for Drug Research and Evaluation Istituto Superiore di Sanità, Rome, Italy
| | - Roberta De Simone
- National Center for Drug Research and Evaluation Istituto Superiore di Sanità, Rome, Italy
| | - Rosa Luisa Potenza
- National Center for Drug Research and Evaluation Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Sanchez
- Cytometry Unit-Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Monica Armida
- National Center for Drug Research and Evaluation Istituto Superiore di Sanità, Rome, Italy
| | - Doriana Campanile
- National Center for Drug Research and Evaluation Istituto Superiore di Sanità, Rome, Italy
| | - Nazzareno Di Carlo
- National Center for Drug Research and Evaluation Istituto Superiore di Sanità, Rome, Italy
| | - Francesco Trenta
- Center for Behavioral Science and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Monica Boirivant
- National Center for Drug Research and Evaluation Istituto Superiore di Sanità, Rome, Italy.
| | - Laura Ricceri
- Center for Behavioral Science and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
7
|
Willinger Y, Friedland Cohen DR, Turgeman G. Exogenous IL-17A Alleviates Social Behavior Deficits and Increases Neurogenesis in a Murine Model of Autism Spectrum Disorders. Int J Mol Sci 2023; 25:432. [PMID: 38203599 PMCID: PMC10779042 DOI: 10.3390/ijms25010432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Among the proposed mechanisms for autism spectrum disorders (ASD) is immune dysregulation. The proinflammatory cytokine Interleukine-17A (IL-17A) was shown to play a key role in mediating immune-related neurodevelopmental impairment of social behavior. Nevertheless, post-developmental administration of IL-17A was found to increase social behavior. In the present study, we explored the effect of post-developmental administration of IL-17A on ASD-like behaviors induced by developmental exposure to valproic acid (VPA) at postnatal day 4. At the age of seven weeks, VPA-exposed mice were intravenously injected twice with recombinant murine IL-17A (8 μg), and a week later, they were assessed for ASD-like behavior. IL-17A administration increased social behavior and alleviated the ASD-like phenotype. Behavioral changes were associated with increased serum levels of IL-17 and Th17-related cytokines. Exogenous IL-17A also increased neuritogenesis in the dendritic tree of doublecortin-expressing newly formed neurons in the dentate gyrus. Interestingly, the effect of IL-17A on neuritogenesis was more noticeable in females than in males, suggesting a sex-dependent effect of IL-17A. In conclusion, our study suggests a complex role for IL-17A in ASD. While contributing to its pathology at the developmental stage, IL-17 may also promote the alleviation of behavioral deficits post-developmentally by promoting neuritogenesis and synaptogenesis in the dentate gyrus.
Collapse
Affiliation(s)
- Yehoshua Willinger
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (Y.W.); (D.R.F.C.)
| | - Daniella R. Friedland Cohen
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (Y.W.); (D.R.F.C.)
| | - Gadi Turgeman
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (Y.W.); (D.R.F.C.)
- The Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| |
Collapse
|
8
|
Man MQ, Yang S, Mauro TM, Zhang G, Zhu T. Link between the skin and autism spectrum disorder. Front Psychiatry 2023; 14:1265472. [PMID: 37920540 PMCID: PMC10619695 DOI: 10.3389/fpsyt.2023.1265472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/28/2023] [Indexed: 11/04/2023] Open
Abstract
Autism spectrum disorder (ASD) is a common neurological disorder. Although the etiologies of ASD have been widely speculated, evidence also supports the pathogenic role of cutaneous inflammation in autism. The prevalence of ASD is higher in individuals with inflammatory dermatoses than in those without inflammatory diseases. Anti-inflammation therapy alleviates symptoms of ASD. Recent studies suggest a link between epidermal dysfunction and ASD. In the murine model, mice with ASD display epidermal dysfunction, accompanied by increased expression levels of proinflammatory cytokines in both the skin and the brain. Children with ASD, which develops in their early lifetime, also exhibit altered epidermal function. Interestingly, improvement in epidermal function alleviates some symptoms of ASD. This line of evidence suggests a pathogenic role of cutaneous dysfunction in ASD. Either an improvement in epidermal function or effective treatment of inflammatory dermatoses can be an alternative approach to the management of ASD. We summarize here the current evidence of the association between the skin and ASD.
Collapse
Affiliation(s)
- Mao-Qiang Man
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- Department of Dermatology, University of California, San Francisco, CA, United States
- Dermatology Service, San Francisco VA Medical Center,San Francisco, CA, United States
| | - Shuyun Yang
- Department of Dermatology, The People’s Hospital of Baoshan, Baoshan, China
| | - Theodora M. Mauro
- Department of Dermatology, University of California, San Francisco, CA, United States
- Dermatology Service, San Francisco VA Medical Center,San Francisco, CA, United States
| | - Guoqiang Zhang
- Department of Dermatology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tingting Zhu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
Wang X, Zhao Z, Guo J, Mei D, Duan Y, Zhang Y, Gou L. GABA B1 receptor knockdown in prefrontal cortex induces behavioral aberrations associated with autism spectrum disorder in mice. Brain Res Bull 2023; 202:110755. [PMID: 37678443 DOI: 10.1016/j.brainresbull.2023.110755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
Autism spectrum disorder (ASD) is a set of heterogeneous neurodevelopmental disorders, characterized by social interaction deficit, stereotyped or repetitive behaviors. Apart from these core symptoms, a great number of individuals with ASD exhibit higher levels of anxiety and memory deficits. Previous studies demonstrate pronounced decrease of γ-aminobutyric acid B1 receptor (GABAB1R) protein level of frontal lobe in both ASD patients and animal models. The aim of the present study was to determine the role of GABAB1R in ASD-related behavioral aberrations. Herein, the protein and mRNA levels of GABAB1R in the prefrontal cortex (PFC) of sodium valproic acid (VPA)-induced mouse ASD model were determined by Western blot and qRT-PCR analysis, respectively. Moreover, the behavioral abnormalities in naive mice with GABAB1R knockdown mediated by recombinant adeno-associated virus (rAAV) were assessed in a comprehensive test battery consisted of social interaction, marble burying, self-grooming, open-field, Y-maze and novel object recognition tests. Furthermore, the action potential changes induced by GABAB1R deficiency were examined in neurons within the PFC of mouse. The results show that the mRNA and protein levels of GABAB1R in the PFC of prenatal VPA-induced mouse ASD model were decreased. Concomitantly, naive mice with GABAB1R knockdown exhibited ASD-like behaviors, such as impaired social interaction and communication, elevated stereotypes, anxiety and memory deficits. Patch-clamp recordings also revealed that GABAB1R knockdown provoked enhanced neuronal excitability by increasing action potential discharge frequencies. Overall, these findings support a notion that GABAB1R deficiency might contribute to ASD-like phenotypes, with the pathogenesis most likely resulting from enhanced neuronal excitability. SUBHEADINGS: GABAB1 Knockdown Induces Behavioral Aberrations with ASD.
Collapse
Affiliation(s)
- Xiaona Wang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Zhengzhou, China.
| | - Zhengqin Zhao
- Department of Nuclear Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jisheng Guo
- School of Basic Medical Sciences, Yantai Campus of Binzhou Medical University, Yantai City, Shandong, China
| | - Daoqi Mei
- Department of Neurology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yongtao Duan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Zhengzhou, China
| | - Yaodong Zhang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Zhengzhou, China.
| | - Lingshan Gou
- Peninsula Cancer Research Center, Binzhou Medical University, Yantai, Shandong, China.
| |
Collapse
|
10
|
Woods R, Lorusso J, Fletcher J, ElTaher H, McEwan F, Harris I, Kowash H, D'Souza SW, Harte M, Hager R, Glazier JD. Maternal immune activation and role of placenta in the prenatal programming of neurodevelopmental disorders. Neuronal Signal 2023; 7:NS20220064. [PMID: 37332846 PMCID: PMC10273029 DOI: 10.1042/ns20220064] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Maternal infection during pregnancy, leading to maternal immune activation (mIA) and cytokine release, increases the offspring risk of developing a variety of neurodevelopmental disorders (NDDs), including schizophrenia. Animal models have provided evidence to support these mechanistic links, with placental inflammatory responses and dysregulation of placental function implicated. This leads to changes in fetal brain cytokine balance and altered epigenetic regulation of key neurodevelopmental pathways. The prenatal timing of such mIA-evoked changes, and the accompanying fetal developmental responses to an altered in utero environment, will determine the scope of the impacts on neurodevelopmental processes. Such dysregulation can impart enduring neuropathological changes, which manifest subsequently in the postnatal period as altered neurodevelopmental behaviours in the offspring. Hence, elucidation of the functional changes that occur at the molecular level in the placenta is vital in improving our understanding of the mechanisms that underlie the pathogenesis of NDDs. This has notable relevance to the recent COVID-19 pandemic, where inflammatory responses in the placenta to SARS-CoV-2 infection during pregnancy and NDDs in early childhood have been reported. This review presents an integrated overview of these collective topics and describes the possible contribution of prenatal programming through placental effects as an underlying mechanism that links to NDD risk, underpinned by altered epigenetic regulation of neurodevelopmental pathways.
Collapse
Affiliation(s)
- Rebecca M. Woods
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jarred M. Lorusso
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jennifer Fletcher
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Heidi ElTaher
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
- Department of Physiology, Faculty of Medicine, Alexandria University, Egypt
| | - Francesca McEwan
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Isabella Harris
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Hager M. Kowash
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9WL, U.K
| | - Stephen W. D'Souza
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9WL, U.K
| | - Michael Harte
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Reinmar Hager
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jocelyn D. Glazier
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| |
Collapse
|
11
|
Lintas C, Cassano I, Azzarà A, Stigliano MG, Gregorj C, Sacco R, Stoccoro A, Coppedè F, Gurrieri F. Maternal Epigenetic Dysregulation as a Possible Risk Factor for Neurodevelopmental Disorders. Genes (Basel) 2023; 14:genes14030585. [PMID: 36980856 PMCID: PMC10048308 DOI: 10.3390/genes14030585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Neurodevelopmental Disorders (NDs) are a heterogeneous group of disorders and are considered multifactorial diseases with both genetic and environmental components. Epigenetic dysregulation driven by adverse environmental factors has recently been documented in neurodevelopmental disorders as the possible etiological agent for their onset. However, most studies have focused on the epigenomes of the probands rather than on a possible epigenetic dysregulation arising in their mothers and influencing neurodevelopment during pregnancy. The aim of this research was to analyze the methylation profile of four well-known genes involved in neurodevelopment (BDNF, RELN, MTHFR and HTR1A) in the mothers of forty-five age-matched AS (Asperger Syndrome), ADHD (Attention Deficit Hyperactivity Disorder) and typically developing children. We found a significant increase of methylation at the promoter of the RELN and HTR1A genes in AS mothers compared to ADHD and healthy control mothers. For the MTHFR gene, promoter methylation was significantly higher in AS mothers compared to healthy control mothers only. The observed dysregulation in AS mothers could potentially contribute to the affected condition in their children deserving further investigation.
Collapse
Affiliation(s)
- Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Correspondence: ; Tel.: +39-06-225419174
| | - Ilaria Cassano
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Alessia Azzarà
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Maria Grazia Stigliano
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Chiara Gregorj
- Operative Research Unit of Hematology, Stem Cell Transplantation, Transfusion Medicine and Cellular Therapy, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Roberto Sacco
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Andrea Stoccoro
- Medical Genetics Laboratory, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Fabio Coppedè
- Medical Genetics Laboratory, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Fiorella Gurrieri
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| |
Collapse
|