1
|
Zhang Z, Zheng Z, Chen Y, Niu X, Ouyang T, Wang D. Mechanism of USP18-Mediated NCOA4 m6A Modification Via Maintaining FTO Stability In Regulating Ferritinophagy-Mediated Ferroptosis in Cerebral Ischemia-Reperfusion Injury. Mol Neurobiol 2025; 62:3848-3862. [PMID: 39331352 DOI: 10.1007/s12035-024-04494-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
This study aimed to explore whether USP18 regulates cerebral ischemia-reperfusion (I/R) injury via fat mass and obesity-associated proteins (FTO)-mediated NCOA4. Middle cerebral artery occlusion (MCAO) models were established in mice, and PC-12 cells treated with oxygen-glucose deprivation and reperfusion (OGD/R) were used as in vitro models. The USP18 lentiviral vector was transfected into cells in vitro and MCAO mice to observe its effect on ferroptosis. The relationship between USP18 and FTO was assessed using Co-IP and western blot. The effect of FTO on NCOA4 m6A modification was also elucidated. Overexpression of USP18 in MCAO models decreased cerebral infarct size and attenuated pathological conditions in mouse brain tissues. Moreover, USP18 reduced iron content, MDA, ROS, and LDH release, increased GSH levels and cell viability in both MCAO models and OGD/R cells, and promoted LC3 expression and autophagy flux. In vitro experiments on neurons showed that USP18 maintained FTO stability. The presence of FTO-m6A-YTFDH1-NCOA4 was also verified in neurons. Both in vivo and in vitro experiments showed that FTO and NCOA4 abrogated the protective effects of USP18 against ferritinophagy-mediated ferroptosis. Notably, USP18 maintains FTO stability, contributing to the removal of NCOA4 m6A modification and the suppression of NCOA4 translation, which consequently inhibits ferritinophagy-mediated ferroptosis to attenuate cerebral I/R injury.
Collapse
Affiliation(s)
- Zongyong Zhang
- Department of Neurosurgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Zongqing Zheng
- Department of Neurosurgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Yibiao Chen
- Department of Neurosurgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Xuegang Niu
- Department of Neurosurgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Taohui Ouyang
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Dengliang Wang
- Department of Neurosurgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China.
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China.
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China.
| |
Collapse
|
2
|
Shi C, Wang B, Zhai T, Zhang C, Ma J, Guo Y, Yang Y, Chen C, Gao J, Zhao L. Exploring Ubiquitination in Spinal Cord Injury Therapy: Multifaceted Targets and Promising Strategies. Neurochem Res 2025; 50:82. [PMID: 39833619 DOI: 10.1007/s11064-025-04332-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Spinal cord injury (SCI) is a severely debilitating neurological condition that often results in significant functional impairment and is associated with poor long-term prognosis. Edema, oxidative stress, inflammatory responses, and cell death are the primary factors contributing to secondary injury following spinal cord damage. Ubiquitination is a crucial intracellular mechanism for protein regulation that has garnered significant attention as a therapeutic target in a variety of diseases. Numerous studies have shown that ubiquitination plays a key role in modulating processes such as inflammatory responses, apoptosis, and nerve regeneration following SCI, thereby influencing injury repair. Accordingly, targeting ubiquitination has the potential for mitigating harmful inflammatory responses, inhibiting dysregulated programmed cell death, and protecting the integrity of the blood-spinal cord barrier, thereby providing a novel therapeutic strategy for SCI. In this review, we discuss the role of ubiquitination and its potential as a therapeutic target in SCI, aiming to offer a foundation for developing ubiquitination-targeted therapies for this condition.
Collapse
Affiliation(s)
- Caizhen Shi
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Bingbing Wang
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Tianyu Zhai
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Can Zhang
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Jiarui Ma
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Yanjie Guo
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Yanling Yang
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Chen Chen
- Yulin First People's Hospital, Yulin, Shaanxi, China
| | - Jianzhong Gao
- Yulin First People's Hospital, Yulin, Shaanxi, China.
| | - Lin Zhao
- Medical School of Yan'an University, Yan'an, Shaanxi, China.
| |
Collapse
|
3
|
Song M, Yi F, Zeng F, Zheng L, Huang L, Sun X, Huang Q, Deng J, Wang H, Gu W. USP18 Stabilized FTO Protein to Activate Mitophagy in Ischemic Stroke Through Repressing m6A Modification of SIRT6. Mol Neurobiol 2024; 61:6658-6674. [PMID: 38340205 DOI: 10.1007/s12035-024-04001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
Ischemic stroke (IS) is a dangerous cerebrovascular disorder with a significant incidence and death rate. Ubiquitin-specific peptidase 18 (USP18) has been proven to mitigate ischemic brain damage; however, its potential regulatory mechanisms remain unclear. In vivo and in vitro models of IS were established by middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation/reoxygenation (OGD/R). Neurocyte injury was detected by MTT, LDH, ROS level, mitochondrial membrane potential (Δψm), and flow cytometry. Molecular expression was evaluated by qPCR, Western blotting, and immunofluorescence staining. Molecular mechanisms were determined by Co-IP, RIP, and MeRIP. IS injury was determined by neurological behavior score and TTC staining. Mitophagy was observed by TEM. USP18 and fat mass and obesity-associated protein (FTO) expression declined after OGD/R. Dysfunctional mitochondrial and apoptosis in OGD/R-stimulated neurocytes were eliminated by USP18/FTO overexpression via mitophagy activation. USP18-mediated de-ubiquitination was responsible for increasing FTO protein stability. Up-regulation of FTO protein restrained m6A modification of sirtuin6 (SIRT6) in a YTHDF2-dependent manner to enhance SIRT6 expression and subsequent activation of AMPK/PGC-1α/AKT signaling. FTO induced mitophagy to ameliorate nerve cell damage through SIRT6/AMPK/PGC-1α/AKT pathway. Finally, USP18/FTO overexpression relieved IS in rats via triggering SIRT6/AMPK/PGC-1α/AKT axis-mediated mitophagy. USP18 increased FTO protein stability to trigger SIRT6-induced mitophagy, thus mitigating IS. Our data unravel the novel neuroprotective mechanism of USP18 and suggest its potential as a promising treatment target for IS.
Collapse
Affiliation(s)
- Mingyu Song
- Department of Neurology, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Hunan Province, No.87, Xiangya Road, Changsha, 410008, People's Republic of China
| | - Fang Yi
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China
| | - Feiyue Zeng
- Department of Radiology, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China
| | - Lan Zheng
- Department of Neurology, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China
| | - Lei Huang
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Province, Changsha, 410000, People's Republic of China
| | - Xinyu Sun
- Department of Neurology, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China
| | - Qianyi Huang
- Department of Neurology, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China
| | - Jun Deng
- Department of Neurology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Hunan Province, Changsha, 410000, People's Republic of China
| | - Hong Wang
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China
| | - Wenping Gu
- Department of Neurology, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China.
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Hunan Province, No.87, Xiangya Road, Changsha, 410008, People's Republic of China.
| |
Collapse
|
4
|
Lai JH, Wu DW, Huang CY, Hung LF, Wu CH, Ho LJ. USP18 induction regulates immunometabolism to attenuate M1 signal-polarized macrophages and enhance IL-4-polarized macrophages in systemic lupus erythematosus. Clin Immunol 2024; 265:110285. [PMID: 38880201 DOI: 10.1016/j.clim.2024.110285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Effective treatment of systemic lupus erythematosus (SLE) remains an unmet need. Different subsets of macrophages play differential roles in SLE and the modulation of macrophage polarization away from M1 status is beneficial for SLE therapeutics. Given the pathogenic roles of type I interferons (IFN-I) in SLE, this study investigated the effects and mechanisms of a mitochondria localization molecule ubiquitin specific peptidase 18 (USP18) preserving anti-IFN effects and isopeptidase activity on macrophage polarization. After observing USP18 induction in monocytes from SLE patients, we studied mouse bone marrow-derived macrophages and showed that USP18 deficiency increased M1signal (LPS + IFN-γ treatment)-induced macrophage polarization, and the effects involved the induction of glycolysis and mitochondrial respiration and the expression of several glycolysis-associated enzymes and molecules, such as hypoxia-inducible factor-1α. Moreover, the effects on mitochondrial activities, such as mitochondrial DNA release and mitochondrial reactive oxygen species production were observed. In contrast, the overexpression of USP18 inhibited M1signal-mediated and enhanced interleukin-4 (IL-4)-mediated polarization of macrophages and the related cellular events. Moreover, the levels of USP18 mRNA expression showed tendency of correlation with the expression of metabolic enzymes in monocytes from patients with SLE. We thus concluded that by preserving anti-IFN effect and downregulating M1 signaling, promoting USP18 activity may serve as a useful approach for SLE therapeutics.
Collapse
Affiliation(s)
- Jenn-Haung Lai
- Department of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Lin-Kou, Tao-Yuan, Taiwan, ROC; Graduate Institute of Clinical Research, National Defense Medical Center, Taipei, Taiwan, ROC.
| | - De-Wei Wu
- Department of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Lin-Kou, Tao-Yuan, Taiwan, ROC
| | - Chuan-Yueh Huang
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, ROC
| | - Li-Feng Hung
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, ROC
| | - Chien-Hsiang Wu
- Department of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Lin-Kou, Tao-Yuan, Taiwan, ROC
| | - Ling-Jun Ho
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, ROC.
| |
Collapse
|
5
|
Qin Q, Liu R, Li Z, Liu M, Wu X, Wang H, Yang S, Sun X, Yi X. Resolving candidate genes of duck ovarian tissue transplantation via RNA-Seq and expression network analyses. Poult Sci 2024; 103:103788. [PMID: 38692177 PMCID: PMC11070914 DOI: 10.1016/j.psj.2024.103788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
This study aims to identify candidate genes related to ovarian development after ovarian tissue transplantation through transcriptome sequencing (RNA-seq) and expression network analyses, as well as to provide a reference for determining the molecular mechanism of improving ovarian development following ovarian tissue transplantation. We collected ovarian tissues from 15 thirty-day-old ducks and split each ovary into 4 equal portions of comparable sizes before orthotopically transplanting them into 2-day-old ducks. Samples were collected on days 0 (untransplanted), 3, 6, and 9. The samples were paraffin sectioned and then subjected to Hematoxylin-Eosin (HE) staining and follicular counting. We extracted RNA from ovarian samples via the Trizol method to construct a transcriptome library, which was then sequenced by the Illumina Novaseq 6000 sequencing platform. The sequencing results were examined for differentially expressed genes (DEG) through gene ontology (GO) function and the Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses, gene set enrichment analysis (GSEA), weighted correlation network analysis (WGCNA), and protein-protein interaction (PPI) networks. Some of the candidate genes were selected for verification using real-time fluorescence quantitative PCR (qRT-PCR). Histological analysis revealed a significant reduction in the number of morphologically normal follicles at 3, 6, and 9 d after ovarian transplantation, along with significantly higher abnormality rates (P < 0.05). The transcriptome analysis results revealed 2,114, 2,224, and 2,257 upregulated DEGs and 2,647, 2,883, and 2,665 downregulated DEGs at 3, 6, and 9 d after ovarian transplantation, respectively. Enrichment analysis revealed the involvement multiple pathways in inflammatory signaling, signal transduction, and cellular processes. Furthermore, WGCNA yielded 13 modules, with 10, 4, and 6 candidate genes mined at 3, 6 and 9 d after ovarian transplantation, respectively. Transcription factor (TF) prediction showed that STAT1 was the most important TF. Finally, the qRT-PCR verification results revealed that 12 candidate genes exhibited an expression trend consistent with sequencing data. In summary, significant differences were observed in the number of follicles in duck ovaries following ovarian transplantation. Candidate genes involved in ovarian vascular remodeling and proliferation were screened using RNA-Seq and WGCNA.
Collapse
Affiliation(s)
- Qingming Qin
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Rongxu Liu
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Zhili Li
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Midi Liu
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Xian Wu
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Huimin Wang
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Shuailiang Yang
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Xuyang Sun
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Xianguo Yi
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China.
| |
Collapse
|
6
|
Wang L, Li M, Lian G, Yang S, Wu Y, Cui J. USP18 Antagonizes Pyroptosis by Facilitating Selective Autophagic Degradation of Gasdermin D. RESEARCH (WASHINGTON, D.C.) 2024; 7:0380. [PMID: 38779488 PMCID: PMC11109516 DOI: 10.34133/research.0380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
As a key executioner of pyroptosis, Gasdermin D (GSDMD) plays a crucial role in host defense and emerges as an essential therapeutic target in the treatment of inflammatory diseases. So far, the understanding of the mechanisms that regulate the protein level of GSDMD to prevent detrimental effects and maintain homeostasis is currently limited. Here, we unveil that ubiquitin-specific peptidase 18 (USP18) works as a negative regulator of pyroptosis by targeting GSDMD for degradation and preventing excessive innate immune responses. Mechanically, USP18 recruits E3 ubiquitin ligase mind bomb homolog 2 (MIB2) to catalyze ubiquitination on GSDMD at lysine (K) 168, which acts as a recognition signal for the selective autophagic degradation of GSDMD. We further confirm the alleviating effect of USP18 on LPS-triggered inflammation in vivo. Collectively, our study demonstrates the role of USP18 in regulating GSDMD-mediated pyroptosis and reveals a previously unknown mechanism by which GSDMD protein level is rigorously controlled by selective autophagy.
Collapse
Affiliation(s)
- Liqiu Wang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol,
School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mengqiu Li
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol,
School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guangyu Lian
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol,
School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuai Yang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol,
School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaoxing Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol,
School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|