1
|
Polkowski C, Helwig N, Wagner M, Seiler A. MRI-based Quantitative Collateral Assessment in Acute Stroke : A Comparison with Single-phase CTA in Drip-and-ship Patients with Serial Imaging. Clin Neuroradiol 2025; 35:95-103. [PMID: 39316115 PMCID: PMC11832563 DOI: 10.1007/s00062-024-01456-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024]
Abstract
PURPOSE In acute ischemic stroke with large-vessel occlusion (LVO), collateral assessment with single-phase computed tomography angiography (CTA) might underestimate pial collateral supply in a considerable proportion of patients. We aimed to compare time-resolved magnetic resonance imaging (MRI)-based quantitative collateral mapping to conventional collateral imaging with CTA. METHODS This retrospective single-center study covering a period of 6 years (2012-2018) included drip-and-ship LVO patients who underwent MR imaging after initial imaging evaluation with CT. For MRI-based collateral assessment, T2*-weighted time series from perfusion-weighted imaging (PWI) were processed to compute a quantitative collateral vessel index (CVIPWI) based on the magnitude of signal variance across the entire acquisition time. CTA-based collateral scores (Tan and Maas) and CVIPWI were investigated in terms of inter-modality associations between collateral measures, as well as their relationships with stroke severity, infarct volume and early functional outcome. RESULTS The final analysis included n = 56 patients (n = 31 female, mean age 69.9 ± 14.21 years). No significant relationship was found between MR-based quantitative collateral supply (CVIPWI) and CT-based collateral scores (r = -0.00057, p = 0.502 and r = -0.124, p = 0.797). In contrast to CVIPWI, CTA-based collateral scores showed no significant relationship with clinical stroke severity and infarct volume. While MR-based CVIPWI was independently associated with favorable early functional outcome in multivariate analysis (OR 1.075, 95% CI 1.001-1.153, p = 0.046), CTA-based collateral scores were not significantly associated with outcome. CONCLUSIONS Since collateral scores based on single-phase CTA do not accurately reflect infarct progression and might underestimate pial collateralization in a relevant proportion of patients, they are not associated with early functional outcome in LVO patients. In contrast, CVIPWI represents a robust imaging parameter of collateral supply and is independently associated with functional outcome.
Collapse
Affiliation(s)
- Christoph Polkowski
- Institute of Neuroradiology, Goethe University Frankfurt, Frankfurt, Germany
| | - Niklas Helwig
- Department of Neurology, Goethe University Frankfurt, Frankfurt, Germany
| | - Marlies Wagner
- Institute of Neuroradiology, Goethe University Frankfurt, Frankfurt, Germany
| | - Alexander Seiler
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.
- Department of Neurology and Neurovascular Center, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany.
| |
Collapse
|
2
|
Gong C, Liu J, Huang Z, Jiang S, Huang L, Wang Z, Chen Y, Yuan J, Wang Y, Xiong Z, Chen Y, Gong S, Chen S, Xu T. Impact of cerebral collateral recycle status on clinical outcomes in elderly patients with endovascular stroke treatment. J Neuroradiol 2025; 52:101236. [PMID: 39645026 DOI: 10.1016/j.neurad.2024.101236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/01/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Elderly patients are at high risk of acute ischemic stroke caused by large vessel occlusion (AIS-LVO) and usually suffer disability and fatality from stroke even after receiving endovascular treatment (EVT). Previous studies lacked the knowledge of comprehensive cerebral collateral for elderly patients. Hence, we explore the role of cerebral collateral recycle (CCR) status in clinical outcomes in a real-world setting among elderly AIS-LVO patients undergoing EVT. METHODS This was a multicenter retrospective cohort study. Computed tomographic angiography (CTA) at admission was applied to evaluate cerebral venous outflow profiles by the Cortical Vein Opacification Score (COVES) and pial arterial collaterals by the Tan scale. According to the status of cerebral collaterals, enrolled patients were divided into the poor, moderate, and favorable CCR groups. The primary outcome was functional independence (90-day modified Rankin Scale score 0-2). RESULTS Among 860 AIS-LVO patients receiving EVT, a total of 338 elderly patients were included in the present study after strict screening. Compared with the poor CCR group, the moderate CCR group (31.1 % vs. 10.2 %; adjusted odds ratio[aOR] 3.80; 95 % confidence interval[CI] 1.71-8.44; P = 0.001) and the favorable CCR group (63.3 % vs. 10.2 %; aOR 8.49; 95 % CI 4.02-17.92; P < 0.001) both had a significantly higher rate of functional independence. In subgroup analysis, similar results were found in AIS-LVO patients with older age, large core infarction, or late time window. CONCLUSION The cerebral collateral status in elderly patients with AIS-LVO treated by EVT is a strong predictor of functional outcomes and more robust CCR means better outcomes.
Collapse
Affiliation(s)
- Chen Gong
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Jin Liu
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China; Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, PR China
| | - Ziyang Huang
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China; People's Hospital of Shapingba District Chongqing City, Chongqing, PR China
| | - Shuyu Jiang
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Liping Huang
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Zhiyuan Wang
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yankun Chen
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Jinxian Yuan
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - You Wang
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Zhiyu Xiong
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yangmei Chen
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Siyin Gong
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| | - Shengli Chen
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, PR China.
| | - Tao Xu
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
3
|
Ding J, Zhang H, Zhao H, Wang W, Jiao P, Jia J, Zhang K, Zhu P, Zheng Z. Brain computed tomography perfusion alterations in patients with Takayasu arteritis with steno-occlusive carotid arteries: a retrospective study. Clin Rheumatol 2025; 44:357-365. [PMID: 39556144 DOI: 10.1007/s10067-024-07229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/15/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024]
Abstract
INTRODUCTION/OBJECTIVE Data on computed tomography perfusion (CTP) in Takayasu arteritis (TAK) patients are limited. Herein, we used CTP combined with computed tomography angiography (CTA) to investigate the brain hemodynamic status in TAK patients with stenosis/occlusive carotid arteries. METHODS We retrospectively analyzed 49 TAK patients with carotid artery stenosis or occlusion who had ischemic manifestations and completed a one-stop aortic CTA and brain CTP at Xijing Hospital between 2021 and 2023. Hemodynamic parameters, including cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and time to maximum (Tmax), were compared between groups using independent samples t-test or the Mann-Whitney U test. Relationships among CTP parameters and disease activity were evaluated by correlation analyses. RESULTS Among 49 patients (43 females; age 38.7 ± 11.1 years), 15 had common carotid artery occlusion (four bilateral, six right, and five left). Compared with the non-occlusion group, the occlusion group had longer MTT and Tmax (p < 0.05) but showed no differences in CBV and CBF values. Patients with different degrees of lesions on two sides of the carotid artery (n = 31) had lower mean CBF on the severely affected side than on the contralateral side (p = 0.022). In contrast, mean MTT (p = 0.036) and Tmax (p = 0.024) were longer. Patients with more severe ischemic symptoms had longer Tmax than patients with mild symptoms (p < 0.05). Tmax was moderately correlated with disease activity indices (p < 0.05). CONCLUSIONS Alterations in cerebral hemodynamic perfusion were observed in TAK patients. The implications of these findings in evaluating brain ischemia and dysfunction require further investigation. Key Points • Alterations in cerebral hemodynamic perfusion were observed in TAK patients. • Compared with patients without common carotid artery occlusion, patients with occlusion had longer MTT and Tmax values. • In patients with different degrees of lesions on the two sides of the carotid artery, the severely affected side had a lower CBF and prolonged MTT and Tmax than the contralateral side. • Patients with moderate-to-severe ischemic manifestations had a longer Tmax than patients with mild symptoms, and MTT and Tmax correlated with disease activity indices.
Collapse
Affiliation(s)
- Jin Ding
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Hongmei Zhang
- Department of Radiology, Pucheng County Hospital, Weinan, 715500, Shaanxi, China
| | - Hongliang Zhao
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Wenjuan Wang
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Penghua Jiao
- Henan Medical School of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Junfeng Jia
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Kui Zhang
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Ping Zhu
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi, China.
| | - Zhaohui Zheng
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
4
|
Liu H, Wu D, Chen ZB, Xiao Q, Cheng JW, Xie XY, Qu DX, Tao J, Wang WZ, Peng YF, Li GY, Weng YF. Preliminary findings on diagnostic performance of computed tomography perfusion images for intracranial arterial stenosis: a retrospective study. BMC Neurol 2024; 24:59. [PMID: 38336624 PMCID: PMC10854082 DOI: 10.1186/s12883-024-03554-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
OBJECTIVES Computed tomographic perfusion (CTP) can play an auxiliary role in the selection of patients with acute ischemic stroke for endovascular treatment. However, data on CTP in non-stroke patients with intracranial arterial stenosis are scarce. We aimed to investigate images in patients with asymptomatic intracranial arterial stenosis to determine the detection accuracy and interpretation time of large/medium-artery stenosis or occlusion when combining computed tomographic angiography (CTA) and CTP images. METHODS We retrospectively reviewed 39 patients with asymptomatic intracranial arterial stenosis from our hospital database from January 2021 to August 2023 who underwent head CTP, head CTA, and digital subtraction angiography (DSA). Head CTA images were generated from the CTP data, and the diagnostic performance for each artery was assessed. Two readers independently interpreted the CTA images before and after CTP, and the results were analyzed. RESULTS After adding CTP maps, the accuracy (area under the curve) of diagnosing internal carotid artery (R1: 0.847 vs. 0.907, R2: 0.776 vs. 0.887), middle cerebral artery (R1: 0.934 vs. 0.933, R2: 0.927 vs. 0.981), anterior cerebral artery (R1: 0.625 vs. 0.750, R2: 0.609 vs. 0.750), vertebral artery (R1: 0.743 vs. 0.764, R2: 0.748 vs. 0.846), and posterior cerebral artery (R1: 0.390 vs. 0.575, R2: 0.390 vs. 0.585) occlusions increased for both readers (p < 0.05). Mean interpretation time (R1: 72.4 ± 6.1 s vs. 67.7 ± 6.4 s, R2: 77.7 ± 3.8 s vs. 72.6 ± 4.7 s) decreased when using a combination of both images both readers (p < 0.001). CONCLUSIONS The addition of CTP images improved the accuracy of interpreting CTA images and reduced the interpretation time in asymptomatic intracranial arterial stenosis. These findings support the use of CTP imaging in patients with asymptomatic intracranial arterial stenosis.
Collapse
Affiliation(s)
- Hui Liu
- Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, P.R. China
| | - Dan Wu
- Department of Radiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, P.R. China
| | - Zhi-Bin Chen
- Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, P.R. China
| | - Qian Xiao
- Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, P.R. China
| | - Ji-Wei Cheng
- Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, P.R. China
| | - Xiao-Yan Xie
- Department of Radiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, P.R. China
| | - Dong-Xiao Qu
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, P.R. China
| | - Jie Tao
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, P.R. China
| | - Wei-Zhong Wang
- Department of Radiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, P.R. China
| | - Yi-Feng Peng
- Department of Radiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, P.R. China
| | - Guo-Yi Li
- Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, P.R. China
| | - Ying-Feng Weng
- Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, P.R. China.
| |
Collapse
|
5
|
Lakhani DA, Balar AB, Koneru M, Hoseinyazdi M, Hyson N, Cho A, Greene C, Xu R, Luna L, Caplan J, Dmytriw A, Guenego A, Wintermark M, Gonzalez F, Urrutia V, Huang J, Nael K, Rai AT, Albers GW, Heit JJ, Yedavalli V. Pretreatment CT perfusion collateral parameters correlate with penumbra salvage in middle cerebral artery occlusion. J Neuroimaging 2024; 34:44-49. [PMID: 38057941 DOI: 10.1111/jon.13178] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Acute ischemic stroke due to large vessel occlusion (AIS-LVO) is a major cause of functional dependence. Collateral status (CS) is an important determinant of functional outcomes. Pretreatment CT perfusion (CTP) parameters serve as reliable surrogates of CS. Penumbra Salvage Index (PSI) is another parameter predictive of functional outcomes in AIS-LVO. The aim of this study is to assess the relationship of pretreatment CTP parameters with PSI. METHODS In this prospectively collected, retrospectively reviewed multicenter analysis, inclusion criteria were as follows: (1) CT angiography confirmed middle cerebral artery (MCA) M1-segment and proximal M2-segment occlusion from 9/1/2017 to 9/22/2022; (2) diagnostic CTP; and (3) available diagnostic Magnetic resonance Imaging (MRI) diffusion-weighted images. Pearson correlation analysis was performed to assess the association between cerebral blood volume (CBV) index and hypoperfusion intensity ratio (HIR) with PSI. p value ≤.05 was considered statistically significant. RESULTS In total, 131 patients (n = 86, M1 and n = 45, proximal M2 occlusion) met our inclusion criteria. CBV index showed a modest positive correlation with PSI (r = 0.34, p<.001) in patients with proximal MCA occlusion. Similar trends were noted in subgroup analysis of patients with M1 occlusion, and proximal M2 occlusion. Whereas, HIR did not have a strong trend or correlation with PSI. CONCLUSION CBV index correlates with PSI, whereas HIR does not. Future studies are needed to expand our understanding of the adjunct role of CBV index with other similar pretreatment CTP-based markers in clinical evaluation and decision-making in patients with MCA occlusion.
Collapse
Affiliation(s)
- Dhairya A Lakhani
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Aneri B Balar
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Manisha Koneru
- Cooper Medical School, Rowan University, Camden, New Jersey, USA
| | - Meisam Hoseinyazdi
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nathan Hyson
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Andrew Cho
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Cynthia Greene
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Risheng Xu
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Licia Luna
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Justin Caplan
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Adam Dmytriw
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Adrien Guenego
- Department of Radiology, Université Libre De Bruxelles Hospital Erasme, Anderlecht, Belgium
| | - Max Wintermark
- Department of Radiology, University of Texas, MD Anderson Center, Houston, Texas, USA
| | - Fernando Gonzalez
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Victor Urrutia
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Judy Huang
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kambiz Nael
- Division of Neuroradiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Ansaar T Rai
- Department of Radiology, West Virginia University, Morgantown, West Virginia, USA
| | - Gregory W Albers
- Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| | - Jeremy J Heit
- Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| | - Vivek Yedavalli
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Lakhani DA, Balar AB, Koneru M, Wen S, Hoseinyazdi M, Greene C, Xu R, Luna L, Caplan J, Dmytriw AA, Guenego A, Wintermark M, Gonzalez F, Urrutia V, Huang J, Nael K, Rai AT, Albers GW, Heit JJ, Yedavalli VS. The Compensation Index Is Better Associated with DSA ASITN Collateral Score Compared to the Cerebral Blood Volume Index and Hypoperfusion Intensity Ratio. J Clin Med 2023; 12:7365. [PMID: 38068416 PMCID: PMC10707013 DOI: 10.3390/jcm12237365] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Pretreatment CT Perfusion (CTP) parameters serve as reliable surrogates of collateral status (CS). In this study, we aim to assess the relationship between the novel compensation index (CI, Tmax > 4 s/Tmax > 6 s) and already established CTP collateral markers, namely cerebral blood volume (CBV) index and Hypoperfusion Intensity Ratio (HIR), with the reference standard American Society of Interventional and Therapeutic Neuroradiology (ASITN) collateral score (CS) on DSA. METHODS In this retrospective study, inclusion criteria were the following: (a) CT angiography confirmed anterior circulation large vessel occlusion from 9 January 2017 to 10 January 2023; (b) diagnostic CT perfusion; and (c) underwent mechanical thrombectomy with documented DSA-CS. Student t-test, Mann-Whitney-U-test and Chi-square test were used to assess differences. Spearman's rank correlation and logistic regression analysis were used to assess associations. p ≤ 0.05 was considered significant. RESULTS In total, 223 patients (mean age: 67.8 ± 15.8, 56% female) met our inclusion criteria. The CI (ρ = 0.37, p < 0.001) and HIR (ρ = -0.29, p < 0.001) significantly correlated with DSA-CS. Whereas the CBV Index (ρ = 0.1, p > 0.05) did not correlate with DSA-CS. On multivariate logistic regression analysis taking into account age, sex, ASPECTS, tPA, premorbid mRS, NIH stroke scale, prior history of TIA, stroke, atrial fibrillation, diabetes mellitus, hyperlipidemia, heart disease and hypertension, only CI was not found to be independently associated with DSA-CS (adjusted OR = 1.387, 95% CI: 1.09-1.77, p < 0.01). CONCLUSION CI demonstrates a stronger correlation with DSA-CS compared to both the HIR and CBV Index where it may show promise as an additional quantitative pretreatment CS biomarker.
Collapse
Affiliation(s)
- Dhairya A. Lakhani
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD 21218, USA (M.H.); (V.S.Y.)
| | - Aneri B. Balar
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD 21218, USA (M.H.); (V.S.Y.)
| | - Manisha Koneru
- Cooper Medical School, Rowan University, Camden, NJ 08028, USA
| | - Sijin Wen
- Department of Biostatistics, West Virginia University, Morgantown, WV 26506, USA
| | - Meisam Hoseinyazdi
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD 21218, USA (M.H.); (V.S.Y.)
| | - Cynthia Greene
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD 21218, USA (M.H.); (V.S.Y.)
| | - Risheng Xu
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD 21218, USA (J.C.); (F.G.)
| | - Licia Luna
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD 21218, USA (M.H.); (V.S.Y.)
| | - Justin Caplan
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD 21218, USA (J.C.); (F.G.)
| | - Adam A. Dmytriw
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Adrien Guenego
- Department of Radiology, Université Libre De Bruxelles Hospital Erasme, 1070 Anderlecht, Belgium
| | - Max Wintermark
- Department of Radiology, University of Texas, MD Anderson Center, Houston, TX 77030, USA
| | - Fernando Gonzalez
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD 21218, USA (J.C.); (F.G.)
| | - Victor Urrutia
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Judy Huang
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD 21218, USA (J.C.); (F.G.)
| | - Kambiz Nael
- Division of Neuroradiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ansaar T. Rai
- Department of Radiology, West Virginia University, Morgantown, WV 26506, USA
| | - Gregory W. Albers
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94063, USA (J.J.H.)
| | - Jeremy J. Heit
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94063, USA (J.J.H.)
| | - Vivek S. Yedavalli
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD 21218, USA (M.H.); (V.S.Y.)
| |
Collapse
|
7
|
Tsui B, Chen IE, Nour M, Kihira S, Tavakkol E, Polson J, Zhang H, Qiao J, Bahr-Hosseini M, Arnold C, Tateshima S, Salamon N, Villablanca JP, Colby GP, Jahan R, Duckwiler G, Saver JL, Liebeskind DS, Nael K. Perfusion Collateral Index versus Hypoperfusion Intensity Ratio in Assessment of Collaterals in Patients with Acute Ischemic Stroke. AJNR Am J Neuroradiol 2023; 44:1249-1255. [PMID: 37827719 PMCID: PMC10631520 DOI: 10.3174/ajnr.a8002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/20/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND AND PURPOSE Perfusion-based collateral indices such as the perfusion collateral index and the hypoperfusion intensity ratio have shown promise in the assessment of collaterals in patients with acute ischemic stroke. We aimed to compare the diagnostic performance of the perfusion collateral index and the hypoperfusion intensity ratio in collateral assessment compared with angiographic collaterals and outcome measures, including final infarct volume, infarct growth, and functional independence. MATERIALS AND METHODS Consecutive patients with acute ischemic stroke with anterior circulation proximal arterial occlusion who underwent endovascular thrombectomy and had pre- and posttreatment MRI were included. Using pretreatment MR perfusion, we calculated the perfusion collateral index and the hypoperfusion intensity ratio for each patient. The angiographic collaterals obtained from DSA were dichotomized to sufficient (American Society of Interventional and Therapeutic Neuroradiology [ASITN] scale 3-4) versus insufficient (ASITN scale 0-2). The association of collateral status determined by the perfusion collateral index and the hypoperfusion intensity ratio was assessed against angiographic collaterals and outcome measures. RESULTS A total of 98 patients met the inclusion criteria. Perfusion collateral index values were significantly higher in patients with sufficient angiographic collaterals (P < .001), while there was no significant (P = .46) difference in hypoperfusion intensity ratio values. Among patients with good (mRS 0-2) versus poor (mRS 3-6) functional outcome, the perfusion collateral index of ≥ 62 was present in 72% versus 31% (P = .003), while the hypoperfusion intensity ratio of ≤0.4 was present in 69% versus 56% (P = .52). The perfusion collateral index and the hypoperfusion intensity ratio were both significantly predictive of final infarct volume, but only the perfusion collateral index was significantly (P = .03) associated with infarct growth. CONCLUSIONS Results show that the perfusion collateral index outperforms the hypoperfusion intensity ratio in the assessment of collateral status, infarct growth, and determination of functional outcomes.
Collapse
Affiliation(s)
- Brian Tsui
- From the Department of Radiological Sciences (B.T., I.E.C., M.N., S.K., E.T., J.Q., C.A., S.T., N.S., J.P.V., R.J., G.D., K.N.), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Iris E Chen
- From the Department of Radiological Sciences (B.T., I.E.C., M.N., S.K., E.T., J.Q., C.A., S.T., N.S., J.P.V., R.J., G.D., K.N.), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - May Nour
- From the Department of Radiological Sciences (B.T., I.E.C., M.N., S.K., E.T., J.Q., C.A., S.T., N.S., J.P.V., R.J., G.D., K.N.), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- Department of Neurology (M.N., M.B.-H., J.L.S., D.S.L.), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Shingo Kihira
- From the Department of Radiological Sciences (B.T., I.E.C., M.N., S.K., E.T., J.Q., C.A., S.T., N.S., J.P.V., R.J., G.D., K.N.), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Elham Tavakkol
- From the Department of Radiological Sciences (B.T., I.E.C., M.N., S.K., E.T., J.Q., C.A., S.T., N.S., J.P.V., R.J., G.D., K.N.), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Jennifer Polson
- Department of Bioengineering (J.P., H.Z., C.A.), University of California, Los Angeles, Los Angeles, California
| | - Haoyue Zhang
- Department of Bioengineering (J.P., H.Z., C.A.), University of California, Los Angeles, Los Angeles, California
| | - Joe Qiao
- From the Department of Radiological Sciences (B.T., I.E.C., M.N., S.K., E.T., J.Q., C.A., S.T., N.S., J.P.V., R.J., G.D., K.N.), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Mersedeh Bahr-Hosseini
- Department of Neurology (M.N., M.B.-H., J.L.S., D.S.L.), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Corey Arnold
- From the Department of Radiological Sciences (B.T., I.E.C., M.N., S.K., E.T., J.Q., C.A., S.T., N.S., J.P.V., R.J., G.D., K.N.), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- Department of Bioengineering (J.P., H.Z., C.A.), University of California, Los Angeles, Los Angeles, California
| | - Satoshi Tateshima
- From the Department of Radiological Sciences (B.T., I.E.C., M.N., S.K., E.T., J.Q., C.A., S.T., N.S., J.P.V., R.J., G.D., K.N.), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Noriko Salamon
- From the Department of Radiological Sciences (B.T., I.E.C., M.N., S.K., E.T., J.Q., C.A., S.T., N.S., J.P.V., R.J., G.D., K.N.), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - J Pablo Villablanca
- From the Department of Radiological Sciences (B.T., I.E.C., M.N., S.K., E.T., J.Q., C.A., S.T., N.S., J.P.V., R.J., G.D., K.N.), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Geoffrey P Colby
- Department of Neurosurgery (G.P.C.), University of California, Los Angeles, Los Angeles, California
| | - Reza Jahan
- From the Department of Radiological Sciences (B.T., I.E.C., M.N., S.K., E.T., J.Q., C.A., S.T., N.S., J.P.V., R.J., G.D., K.N.), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Gary Duckwiler
- From the Department of Radiological Sciences (B.T., I.E.C., M.N., S.K., E.T., J.Q., C.A., S.T., N.S., J.P.V., R.J., G.D., K.N.), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Jeffrey L Saver
- Department of Neurology (M.N., M.B.-H., J.L.S., D.S.L.), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - David S Liebeskind
- Department of Neurology (M.N., M.B.-H., J.L.S., D.S.L.), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Kambiz Nael
- From the Department of Radiological Sciences (B.T., I.E.C., M.N., S.K., E.T., J.Q., C.A., S.T., N.S., J.P.V., R.J., G.D., K.N.), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
8
|
Wu D, Yin L, Zhang Y, Lin Y, Deng W, Zheng C, Liu H, Jiang F, Lan S, Wu Q, Li H, Tang J. Evaluation of microcirculation in asymptomatic cerebral infarction with multi-parameter imaging of spectral CT. Brain Res Bull 2023; 203:110775. [PMID: 37797749 DOI: 10.1016/j.brainresbull.2023.110775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/17/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
OBJECTIVE To investigate the role of spectral CT multiparametric imaging in the evaluation of cerebral microcirculatory perfusion. METHODS The imaging data of 145 patients with asymptomatic cerebral infarction confirmed by MR were retrospectively analyzed, and all cases underwent head CTA and cranial CT perfusion imaging (CTP) on double-layer detector spectral CT. Single energy level images (MonoE45 keV), iodine density maps, and effective atomic number maps were reconstructed based on spectral CTA data, and CT values, iodine density values, and effective atomic number values were measured in the infarcted area, healthy control area, centrum semiovale and posterior limb of the internal capsule, respectively; perfusion values, such as cerebral blood volume (CBV) values, cerebral blood flow (CBF) values, time to peak (TTP) values, and mean passage time, were measured in the above-mentioned areas on CTP images. (TTP) values, and mean time to passage (MTT) values. CT values, iodine density values, effective atomic number values, and perfused CBV, CBF, TTP, and MTT values were compared between the infarcted area and the healthy side, the center of the hemianopia, and the posterior limb of the internal capsule. The role of spectral CT parameters and perfusion parameters in the evaluation of asymptomatic cerebral infarction was analyzed. RESULTS CT values, iodine density values, and effective atomic number values were statistically different between the infarcted area and the healthy side; CT values, iodine density values, and effective atomic number values were not statistically different between the infarcted side and the healthy side of the hemispheric centrum and the posterior limb of the internal capsule; CBV and CBF were statistically different between the infarcted side and the healthy side, and MTT and TTP were not statistically different. There were statistically significant differences in TTP between the infarcted area and the healthy side of the hemiaxial center, and no statistically significant differences in CBV, CBF, and MTT. There were no statistical differences in CBV, CBF, TTP, and MTT in the inner capsule area. ROC curve analysis of spectral CT-related parameters and CT perfusion parameters for the diagnosis of asymptomatic cerebral infarction: area under the curve of MonoE 45Kv 0.71, area under the curve of iodine density values 0.76, area under the curve of effective atomic number values 0.74; area under the curve of CBV value 0.64, area under the curve of CBF value 0.61, area under the curve of MTT value 0.50, The area under the TTP curve was 0.52. The area under the ROC curve of the multivariate logistic regression model based on spectral parameters is 0.76, which is higher than that of the logistic regression model with perfusion parameters (P < 0.05). CONCLUSION Spectral CT can better demonstrate small intracranial ischemic lesions, and iodine density values have a better evaluation of microcirculation in asymptomatic cerebral infarcts.
Collapse
Affiliation(s)
- Daoqing Wu
- Department of Imaging, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| | - Lianhua Yin
- Medical Examination Center, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - You Zhang
- Department of Imaging, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Yuning Lin
- Department of Imaging, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Weiwei Deng
- Clinical and Technical Support, Philips Healthcare
| | - Chunhong Zheng
- Department of Imaging, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Huibin Liu
- Department of Imaging, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Feng Jiang
- Medical Examination Center, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Suting Lan
- Medical Examination Center, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Qiuhua Wu
- Global Health, Johns Hopkins Bloomberg School of Public Health, United States
| | - Huacan Li
- Department of Imaging, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| | - Jinsong Tang
- Department of Imaging, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| |
Collapse
|
9
|
Patel SD, Liebeskind D. Collaterals and Elusive Ischemic Penumbra. Transl Stroke Res 2023; 14:3-12. [PMID: 36580264 DOI: 10.1007/s12975-022-01116-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/09/2022] [Accepted: 12/06/2022] [Indexed: 12/30/2022]
Abstract
As alternative blood supply routes, collateral blood vessels can play a crucial role in determining patient outcomes in acute and chronic intracranial occlusive diseases. Studies have shown that increased collateral circulation can improve functional outcomes and reduce mortality, particularly in those who are not eligible for reperfusion therapy. This article aims to discuss the anatomy and physiology of collateral circulation, describe current imaging tools used to measure collateral circulation, and identify the factors that influence collateral status.
Collapse
Affiliation(s)
- Smit D Patel
- Neurology Department, UCLA Health, Los Angeles, CA, USA.
| | | |
Collapse
|
10
|
Predictive Value of CT Perfusion in Hemorrhagic Transformation after Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. Brain Sci 2023; 13:brainsci13010156. [PMID: 36672136 PMCID: PMC9856940 DOI: 10.3390/brainsci13010156] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/02/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Background: Existing studies indicate that some computed tomography perfusion (CTP) parameters may predict hemorrhagic transformation (HT) after acute ischemic stroke (AIS), but there is an inconsistency in the conclusions alongside a lack of comprehensive comparison. Objective: To comprehensively evaluate the predictive value of CTP parameters in HT after AIS. Data sources: A systematical literature review of existing studies was conducted up to 1st October 2022 in six mainstream databases that included original data on the CTP parameters of HT and non-HT groups or on the diagnostic performance of relative cerebral blood flow (rCBF), relative permeability-surface area product (rPS), or relative cerebral blood volume (rCBV) in patients with AIS that completed CTP within 24 h of onset. Data Synthesis: Eighteen observational studies were included. HT and non-HT groups had statistically significant differences in CBF, CBV, PS, rCBF, rCBV, and rPS (p < 0.05 for all). The hierarchical summary receiver operating characteristic (HSROC) revealed that rCBF (area under the curve (AUC) = 0.9), rPS (AUC = 0.89), and rCBV (AUC = 0.85) had moderate diagnostic performances in predicting HT. The pooled sensitivity and specificity of rCBF were 0.85 (95% CI, 0.75−0.91) and 0.83 (95% CI, 0.63−0.94), respectively. Conclusions: rCBF, rPS, and rCBV had moderate diagnostic performances in predicting HT, and rCBF had the best pooled sensitivity and specificity.
Collapse
|
11
|
Shao Y, Chen X, Wang H, Shang Y, Xu J, Zhang J, Wang P, Geng Y. Large mismatch profile predicts rapidly progressing brain edema in acute anterior circulation large vessel occlusion patients undergoing endovascular thrombectomy. Front Neurol 2023; 13:982911. [PMID: 36686510 PMCID: PMC9846046 DOI: 10.3389/fneur.2022.982911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Background Brain edema is a severe complication in patients with large vessel occlusion (LVO) that can reduce the effectiveness of endovascular therapy (EVT). This study aimed to investigate the association of the perfusion profile at baseline computed tomography (CT) perfusion with rapidly progressing brain edema (RPBE) after EVT in patients with acute anterior LVO. Methods We retrospectively reviewed consecutive data collected from 149 patients with anterior LVO who underwent EVT at our center. Brain edema was measured by the swelling score (0-6 score), and RPBE was defined as the swelling score increased by more than 2 scores within 24 h after EVT. We investigated the effect of RPBE on poor outcomes [National Institute of Health Stroke Scale (NIHSS) score and modified Rankin scale (mRS) score at discharge, the occurrence of hemorrhagic transformation, and mortality rate in the hospital] using the Mann-Whitney U-test and chi-square test. A multivariate logistic regression model was used to assess the relationship between perfusion imaging parameters and RPBE occurrence. Results Overall, 39 patients (26.2%) experienced RPBE after EVT. At discharge, RPBE was associated with higher NIHSS scores (Z = 3.52, 95% CI 2.0-12.0, P < 0.001) and higher mRS scores (Z = 3.67, 95% CI 0.0-1.0, P < 0.001) including the more frequent occurrence of hemorrhagic transformation (χ2 = 22.17, 95% CI 0.29-0.59, P < 0.001) and higher mortality rates in hospital (χ2 = 9.54, 95% CI 0.06-0.36, P = 0.002). Univariate analysis showed that intravenous thrombolysis, baseline ischemic core volume, and baseline mismatch ratio correlated with RPBE (all P < 0.05). After dividing the mismatch ratio into quartiles and performing a chi-square test between quartiles, we found that the occurrence of RPBE in Q4 (mismatch ratio > 11.3) was significantly lower than that in Q1 (mismatch ratio ≤ 3.0) (P < 0.05). The result of multivariate logistic regression analysis showed that compared with baseline mismatch ratio <5.1, baseline mismatch ratio between 5.1 and 11.3 (OR:3.85, 95% CI 1.06-14.29, P = 0.040), and mismatch ratio >11.3 (OR:5.26, 95% CI 1.28-20.00, P = 0.021) were independent protective factors for RPBE. Conclusion In patients with anterior circulation LVO stroke undergoing successful EVT, a large mismatch ratio at baseline is a protective factor for RPBE, which is associated with poor outcomes.
Collapse
Affiliation(s)
- Yanqi Shao
- Department of Neurology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xinyi Chen
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huiyuan Wang
- Department of Neurology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,Department of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Yafei Shang
- Department of Neurology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,Department of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Jie Xu
- Department of Neurology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinshi Zhang
- Department of Nephrology, Urology and Nephrology Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Peng Wang
- Department of Neurology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yu Geng
- Department of Neurology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,*Correspondence: Yu Geng ✉
| |
Collapse
|
12
|
Value of CT Perfusion for Collateral Status Assessment in Patients with Acute Ischemic Stroke. Diagnostics (Basel) 2022; 12:diagnostics12123014. [PMID: 36553021 PMCID: PMC9777468 DOI: 10.3390/diagnostics12123014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/04/2022] Open
Abstract
Good collateral status in acute ischemic stroke patients is an important indicator for good outcomes. Perfusion imaging potentially allows for the simultaneous assessment of local perfusion and collateral status. We combined multiple CTP parameters to evaluate a CTP-based collateral score. We included 85 patients with a baseline CTP and single-phase CTA images from the MR CLEAN Registry. We evaluated patients' CTP parameters, including relative CBVs and tissue volumes with several time-to-maximum ranges, to be candidates for a CTP-based collateral score. The score candidate with the strongest association with CTA-based collateral score and a 90-day mRS was included for further analyses. We assessed the association of the CTP-based collateral score with the functional outcome (mRS 0-2) by analyzing three regression models: baseline prognostic factors (model 1), model 1 including the CTA-based collateral score (model 2), and model 1 including the CTP-based collateral score (model 3). The model performance was evaluated using C-statistic. Among the CTP-based collateral score candidates, relative CBVs with a time-to-maximum of 6-10 s showed a significant association with CTA-based collateral scores (p = 0.02) and mRS (p = 0.05) and was therefore selected for further analysis. Model 3 most accurately predicted favorable outcomes (C-statistic = 0.86, 95% CI: 0.77-0.94) although differences between regression models were not statistically significant. We introduced a CTP-based collateral score, which is significantly associated with functional outcome and may serve as an alternative collateral measure in settings where MR imaging is not feasible.
Collapse
|
13
|
Evolution of Hypodensity on Non-Contrast CT in Correlation with Collaterals in Anterior Circulation Stroke with Successful Endovascular Reperfusion. J Clin Med 2022; 11:jcm11020446. [PMID: 35054140 PMCID: PMC8777970 DOI: 10.3390/jcm11020446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 11/22/2022] Open
Abstract
Introduction: The aim of the study was to assess the impact of collaterals on the evolution of hypodensity on non-contrast CT (NCCT) in anterior circulation stroke with reperfusion by mechanical thrombectomy (MT). Methods: We retrospectively included stroke patients with middle cerebral artery occlusion who were reperfused by MT in early and late time window. Artificial intelligence (AI)-based software was used to calculate of hypodensity volumes at baseline NCCT (V1) and at follow-up NCCT 24 h after MT (V2), along with the difference between the two volumes (V2-V1) and the follow-up (V2)/baseline (V1) volume ratio (V2/V1). The same software was used to classify collateral status by using a 4-point scale where the score of zero indicated no collaterals and the score of three represented contrast filling of all collaterals. The volumetric values were correlated with the collateral scores. Results: Collateral scores had significant negative correlation with V1 (p = 0.035), V2, V2− V1 and V2/V1 (p < 0.001). In cases with collateral score = 3, V2 was significantly smaller or absent compared to V1; in those with collateral score 2, V2 was slightly larger than V1, and in those with scores 1 and 0 V2 was significantly larger than V1. These relationships were observed in both early and late time windows. Conclusions: The collateral status determined the evolution of the baseline hypodensity on NCCT in patients with anterior circulation stroke who had MT reperfusion. Damage can be stable or reversible in patients with good collaterals while in those with poor collaterals tissues that initially appear normal will frequently appear as necrotic after 24 h. With good collaterals, it is stable or can be reversible while with poor collaterals, normal looking tissue frequently appears as necrotic in follow-up exam. Hence, acute hypodensity represents different states of the ischemic brain parenchyma.
Collapse
|