1
|
Nasehi M, Hasanvand S, Khakpai F, Zarrindast MR. The effect of CA1 dopaminergic system on amnesia induced by harmane in mice. Acta Neurol Belg 2019; 119:369-377. [PMID: 29767374 DOI: 10.1007/s13760-018-0926-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/16/2018] [Indexed: 12/28/2022]
Abstract
In the present study, the effects of bilateral injections of dopaminergic drugs into the hippocampal CA1 regions (intra-CA1) on harmane-induced amnesia were examined in mice. We used a single-trial step-down inhibitory avoidance task for the assessment of memory acquisition in adult male mice. Our data indicated that pre-training intra-peritoneal (i.p.) administration of harmane (12 mg/kg) impaired memory acquisition. Moreover, intra-CA1 administration of dopamine D1 receptor agonist, SKF38393 (0.25 µg/mouse), dopamine D1 receptor antagonist, SCH23390 (0.25 µg/mouse), dopamine D2 receptor agonist, quinpirole (0.125 and 0.25 µg/mouse) and dopamine D2 receptor antagonist, sulpiride (0.2 and 0.4 µg/mouse) decreased the learning of a single-trial inhibitory avoidance task. Furthermore, pre-training intra-CA1 injection of sub-threshold doses of SKF38393 (0.0625 µg/mouse) or sulpiride (0.1 µg/mouse) increased pre-training harmane (4 and 8 mg/kg, i.p.)-induced amnesia. On the other hand, pre-training intra-CA1 injection of a sub-threshold dose of SCH23390 (0.0625 µg/mouse) reversed amnesia induced by an effective dose of harmane (12 mg/kg; i.p.). In addition, Pre-training intra-CA1 injection of quinpirole (0.0625 µg/mouse) had no effect on memory impairment induced by harmane. These findings indicate the involvement of CA1 dopaminergic system on harmane-induced impairment of memory acquisition.
Collapse
|
2
|
Matsumoto N, Kitanishi T, Mizuseki K. The subiculum: Unique hippocampal hub and more. Neurosci Res 2019; 143:1-12. [DOI: 10.1016/j.neures.2018.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/10/2018] [Accepted: 08/03/2018] [Indexed: 01/09/2023]
|
3
|
Pandey A, Sikdar SK. Depression biased non-Hebbian spike-timing-dependent synaptic plasticity in the rat subiculum. J Physiol 2014; 592:3537-57. [PMID: 24907304 DOI: 10.1113/jphysiol.2014.273367] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The subiculum is a structure that forms a bridge between the hippocampus and the entorhinal cortex (EC), and plays a major role in the memory consolidation process. Here, we demonstrate spike-timing-dependent plasticity (STDP) at the proximal excitatory inputs on the subicular pyramidal neurons of juvenile rat. Causal (positive) pairing of a single EPSP with a single back-propagating action potential (bAP) after a time interval of 10 ms (+10 ms) failed to induce plasticity. However, increasing the number of bAPs in a burst to three, at two different frequencies of 50 Hz (bAP burst) and 150 Hz, induced long-term depression (LTD) after a time interval of +10 ms in both the regular-firing (RF), and the weak burst firing (WBF) neurons. The LTD amplitude decreased with increasing time interval between the EPSP and the bAP burst. Reversing the order of the pairing of the EPSP and the bAP burst induced LTP at a time interval of -10 ms. This finding is in contrast with reports at other synapses, wherein pre- before postsynaptic (causal) pairing induced LTP and vice versa. Our results reaffirm the earlier observations that the relative timing of the pre- and postsynaptic activities can lead to multiple types of plasticity profiles. The induction of timing-dependent LTD (t-LTD) was dependent on postsynaptic calcium change via NMDA receptors in the WBF neurons, while it was independent of postsynaptic calcium change, but required active L-type calcium channels in the RF neurons. Thus the mechanism of synaptic plasticity may vary within a hippocampal subfield depending on the postsynaptic neuron involved. This study also reports a novel mechanism of LTD induction, where L-type calcium channels are involved in a presynaptically induced synaptic plasticity. The findings may have strong implications in the memory consolidation process owing to the central role of the subiculum and LTD in this process.
Collapse
Affiliation(s)
- Anurag Pandey
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560 012, India
| | - Sujit Kumar Sikdar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
4
|
Suggesting a possible role of CA1 histaminergic system in harmane-induced amnesia. Neurosci Lett 2013; 556:5-9. [DOI: 10.1016/j.neulet.2013.09.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/21/2013] [Accepted: 09/27/2013] [Indexed: 11/21/2022]
|
5
|
Patterned high-frequency stimulation induces a form of long-term depression dependent on GABAA and mACh receptors in the hippocampus. Neuroscience 2013; 250:658-63. [PMID: 23911810 DOI: 10.1016/j.neuroscience.2013.07.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/23/2013] [Accepted: 07/25/2013] [Indexed: 11/22/2022]
Abstract
Certain patterns of neural activity can induce N-methyl-D-aspartic acid receptor (NMDAR)-dependent synaptic plasticity, one of the important foundations of memory. Here, we report that a patterned high-frequency stimulation (PHS) induces rat hippocampal long-term depression (LTD) in an NMDAR-independent manner that requires coactivation of GABA(A)Rs and muscarinic acetylcholine receptors (mAChRs), and endocytosis of AMPARs. Thus, we disclose that a patterned high-frequency stimulation triggers GABAAR and mAChR-dependent LTD in the hippocampus.
Collapse
|
6
|
Nashawi H, Bartl T, Bartl P, Novotny L, Oriowo M, Kombian S. TH-9 (a theophylline derivative) induces long-lasting enhancement in excitatory synaptic transmission in the rat hippocampus that is occluded by frequency-dependent plasticity in vitro. Neuroscience 2012; 220:70-84. [DOI: 10.1016/j.neuroscience.2012.06.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 06/10/2012] [Accepted: 06/11/2012] [Indexed: 11/24/2022]
|
7
|
Khakpai F, Nasehi M, Haeri-Rohani A, Eidi A, Zarrindast MR. Scopolamine induced memory impairment; possible involvement of NMDA receptor mechanisms of dorsal hippocampus and/or septum. Behav Brain Res 2012; 231:1-10. [PMID: 22421366 DOI: 10.1016/j.bbr.2012.02.049] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/23/2012] [Accepted: 02/27/2012] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIM The anatomical connections of septum and hippocampus and the influence of cholinergic and glutamatergic projections in these sites have been reported. In the present study, the effect of pre-training intra-dorsal hippocampal (CA1) and intra-medial septal (MS) administration of scopolamine, a nonselective muscarinic acetylcholine antagonist, and NMDA receptor agents and their interactions, on acquisition of memory have been investigated. METHODS The animals were bilaterally implanted with chronic cannulae in the CA1 regions and in the medial septum. Animals were trained in a step-through type inhibitory avoidance task, and tested 24h after training to measure step-through latency as memory retrieval. RESULTS Intra-CA1 or intra-MS injections of scopolamine (0.5, 1 and 2 μg/rat) and D-AP7 (a competitive NMDA receptor antagonist; 0.025, 0.05 and 0.1 μg/rat) reduced, while NMDA (0.125 and 0.25 μg/rat) increased memory. Intra-MS injection of a subthreshold dose of NMDA reduced scopolamine induced amnesia in the MS. However, similar injection of NMDA into CA1 did not alter scopolamine response when injected into CA1. Moreover, intra-MS or -CA1 injection of a subthreshold dose of NMDA did not alter scopolamine response in the CA1 or MS respectively. On the other hand, co-administration subthreshold doses of D-AP7 and scopolamine into CA1 and/or MS induced amnesia. CONCLUSIONS The cholinergic system between septum and CA1 are modulating memory acquisition processes induced by glutamatergic system in the CA1 or septum and co-activation of these systems in these sites can influence learning and memory.
Collapse
Affiliation(s)
- Fatemeh Khakpai
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | | | | | | |
Collapse
|
8
|
Fidzinski P, Wawra M, Bartsch J, Heinemann U, Behr J. High-frequency stimulation of the temporoammonic pathway induces input-specific long-term potentiation in subicular bursting cells. Brain Res 2011; 1430:1-7. [PMID: 22104348 DOI: 10.1016/j.brainres.2011.10.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/19/2011] [Accepted: 10/24/2011] [Indexed: 11/19/2022]
Abstract
The subiculum (Sub) as a part of the hippocampal formation is thought to play a functional role in learning and memory. In addition to its major input from CA1 pyramidal cells, the subiculum receives input from the entorhinal cortex (EC) via the temporoammonic pathway. Thus far, synaptic plasticity in the subiculum was mainly investigated at CA1-Sub synapses. According to their spiking pattern, pyramidal cells in the subiculum were classified as bursting cells and non-bursting cells. In the present study, we demonstrate that subicular bursting cells show input-specific forms of long-term potentiation (LTP). At CA1-Sub synapses, bursting cells have been shown to express a presynaptic NMDA receptor-dependent LTP that depends on the activation of a cAMP-PKA cascade (Wozny et al., Journal of Physiology 2008). In contrast, at EC-Sub synapses the induction of LTP in bursting cells shows a high induction-threshold and relies on the activation of postsynaptic NMDA receptors, postsynaptic depolarization and postsynaptic Ca(2+) influx. Each form of LTP is input-specific and fails to induce heterosynaptic plasticity. Taken together, our data suggest that distinct, input-specific mechanisms govern high frequency-induced LTP at subicular bursting cells' synapses.
Collapse
Affiliation(s)
- Pawel Fidzinski
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | | | | | |
Collapse
|
9
|
Fidzinski P, Wawra M, Dugladze T, Gloveli T, Heinemann U, Behr J. Low-frequency stimulation of the temporoammonic pathway induces heterosynaptic disinhibition in the subiculum. Hippocampus 2010; 21:733-43. [DOI: 10.1002/hipo.20791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2010] [Indexed: 11/12/2022]
|
10
|
Behr J, Wozny C, Fidzinski P, Schmitz D. Synaptic plasticity in the subiculum. Prog Neurobiol 2009; 89:334-42. [PMID: 19770022 DOI: 10.1016/j.pneurobio.2009.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 09/03/2009] [Accepted: 09/14/2009] [Indexed: 11/25/2022]
Abstract
The subiculum is the principal target of CA1 pyramidal cells. It functions as a mediator of hippocampal-cortical interaction and has been proposed to play an important role in the encoding and retrieval of long-term memory. The cellular mechanisms of memory formation are thought to include long-term potentiation (LTP) and depression (LTD) of synaptic strength. This review summarizes the contemporary knowledge of LTP and LTD at CA1-subiculum synapses. The observation that the underlying mechanisms of LTP and LTD at CA1-subiculum synapses correlate with the discharge properties of subicular pyramidal cell reveals a novel and intriguing mechanism of cell-specific consolidation of hippocampal output.
Collapse
Affiliation(s)
- Joachim Behr
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | | | |
Collapse
|
11
|
Role of Specific Synaptic Plasticity Interfering Peptides in the Expression of Morphine Induced Conditioned Place Preference in Mice. Zool Res 2009. [DOI: 10.3724/sp.j.1141.2009.04389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
12
|
Shor OL, Fidzinski P, Behr J. Muscarinic acetylcholine receptors and voltage-gated calcium channels contribute to bidirectional synaptic plasticity at CA1-subiculum synapses. Neurosci Lett 2008; 449:220-3. [PMID: 19010390 DOI: 10.1016/j.neulet.2008.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 11/05/2008] [Accepted: 11/06/2008] [Indexed: 11/30/2022]
Abstract
Hippocampal output is mediated via the subiculum, which is the principal target of CA1 pyramidal cells, and which sends projections to a variety of cortical and subcortical regions. Pyramidal cells in the subiculum display two different firing modes and are classified as being burst-spiking or regular-spiking. In a previous study, we found that low-frequency stimulation induces an NMDA receptor-dependent long-term depression (LTD) in burst-spiking cells and a metabotropic glutamate receptor-dependent long-term potentiation (LTP) in regular-spiking cells [P. Fidzinski, O. Shor, J. Behr, Target-cell-specific bidirectional synaptic plasticity at hippocampal output synapses, Eur. J. Neurosci., 27 (2008) 1111-1118]. Here, we present evidence that this bidirectional plasticity relies upon the co-activation of muscarinic acetylcholine receptors, as scopolamine blocks synaptic plasticity in both cell types. In addition, we demonstrate that the L-type calcium channel inhibitor nifedipine converts LTD to LTP in burst-spiking cells and LTP to LTD in regular-spiking cells, indicating that the polarity of synaptic plasticity is modulated by voltage-gated calcium channels. Bidirectional synaptic plasticity in subicular cells therefore appears to be governed by a complex signaling system, involving cell-specific recruitment of ligand and voltage-gated ion channels as well as metabotropic receptors. This complex regulation might be necessary for fine-tuning of synaptic efficacy at hippocampal output synapses.
Collapse
Affiliation(s)
- Oded Lipa Shor
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | | | | |
Collapse
|
13
|
Antistress effect of TRPV1 channel on synaptic plasticity and spatial memory. Biol Psychiatry 2008; 64:286-92. [PMID: 18405883 DOI: 10.1016/j.biopsych.2008.02.020] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 02/27/2008] [Accepted: 02/28/2008] [Indexed: 11/23/2022]
Abstract
BACKGROUND Stress is believed to exacerbate neuropsychiatric and cognitive disorders. In particular, the hippocampus, which plays critical roles in certain types of memory, including spatial memory, is exquisitely sensitive to stress. Certain types of memory are believed to depend on activity-dependent hippocampal synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD), but stress suppresses LTP and facilitates LTD in the hippocampus and impairs spatial memory. Although the transient receptor potential vanilloid 1 (TRPV1 or VR1) is widely expressed in the hippocampus, it remains unknown whether the TRPV1 channel antagonizes the stress effects on hippocampal function. METHODS Using the TRPV1 agonists capsaicin and resiniferatoxin and selective antagonists capsazepine and SB366791, we examined the effect of TRPV1 activation on LTP and LTD in hippocampal CA1 slices of juvenile rats. Furthermore, we examined whether the effects of acute stress on synaptic plasticity and spatial memory could be prevented by intrahippocampal or intragastric infusion of a TRPV1 agonist. RESULTS The TRPV1 agonists capsaicin and resiniferatoxin facilitated LTP but suppressed LTD. Alterations were mediated by TRPV1 because the TRPV1 selective antagonists capsazepine and SB366791 blocked the actions of capsaicin. Acute stress suppressed LTP and enabled LTD, but the TRPV1 agonist capsaicin effectively prevented this effect. When capsaicin was intrahippocampally or intragastrically infused, the acute stress effect on impairing spatial memory retrieval was completely prevented. CONCLUSIONS The TRPV1 channel is a potential target to facilitate LTP and suppress LTD, in turn protecting hippocampal synaptic plasticity and spatial memory retrieval from the influence of acute stress.
Collapse
|
14
|
McCoy P, Norton TT, McMahon LL. Layer 2/3 synapses in monocular and binocular regions of tree shrew visual cortex express mAChR-dependent long-term depression and long-term potentiation. J Neurophysiol 2008; 100:336-45. [PMID: 18480372 DOI: 10.1152/jn.01134.2007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Acetylcholine is an important modulator of synaptic efficacy and is required for learning and memory tasks involving the visual cortex. In rodent visual cortex, activation of muscarinic acetylcholine receptors (mAChRs) induces a persistent long-term depression (LTD) of transmission at synapses recorded in layer 2/3 of acute slices. Although the rodent studies expand our knowledge of how the cholinergic system modulates synaptic function underlying learning and memory, they are not easily extrapolated to more complex visual systems. Here we used tree shrews for their similarities to primates, including a visual cortex with separate, defined regions of monocular and binocular innervation, to determine whether mAChR activation induces long-term plasticity. We find that the cholinergic agonist carbachol (CCh) not only induces long-term plasticity, but the direction of the plasticity depends on the subregion. In the monocular region, CCh application induces LTD of the postsynaptic potential recorded in layer 2/3 that requires activation of m3 mAChRs and a signaling cascade that includes activation of extracellular signal-regulated kinase (ERK) 1/2. In contrast, layer 2/3 postsynaptic potentials recorded in the binocular region express long-term potentiation (LTP) following CCh application that requires activation of m1 mAChRs and phospholipase C. Our results show that activation of mAChRs induces long-term plasticity at excitatory synapses in tree shrew visual cortex. However, depending on the ocular inputs to that region, variation exists as to the direction of plasticity, as well as to the specific mAChR and signaling mechanisms that are required.
Collapse
Affiliation(s)
- Portia McCoy
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | |
Collapse
|
15
|
Fidzinski P, Shor O, Behr J. Target-cell-specific bidirectional synaptic plasticity at hippocampal output synapses. Eur J Neurosci 2008; 27:1111-8. [PMID: 18312585 DOI: 10.1111/j.1460-9568.2008.06089.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is commonly accepted that the hippocampus is critically involved in the explicit memory formation of mammals. The subiculum is the principal target of CA1 pyramidal cells and thus serves as the major relay station for the outgoing hippocampal information. Pyramidal cells in the subiculum can be classified according to their firing properties into burst-spiking and regular-spiking cells. In the present study we demonstrate that burst-spiking and regular-spiking cells show fundamentally different forms of low frequency-induced synaptic plasticity in rats. In burst-spiking cells, low-frequency stimulation (at 0.5-5 Hz) induces frequency-dependent long-term depression (LTD) with a maximum at 1 Hz. This LTD is dependent on the activation of NMDAR and masks an mGluR-dependent long-term potentiation (LTP). In contrast, in regular-spiking cells low-frequency stimulation induces an mGluR-dependent LTP that masks an NMDAR-dependent LTD. Both processes depend on postsynaptic Ca(2+)-signaling as BAPTA prevents the induction of synaptic plasticity in both cell types. Thus, mGluR-dependent LTP and NMDAR-dependent LTD occur simultaneously at CA1-subiculum synapses and the predominant direction of synaptic plasticity relies on the cell type investigated. Our data indicate a novel mechanism for the sliding-threshold model of synaptic plasticity, in which induction of LTP and LTD seems to be driven by the relative activation state of NMDAR and mGluR. Our observation that the direction of synaptic plasticity correlates with the discharge properties of the postsynaptic cell reveals a novel and intriguing mechanism of target specificity that may serve in tuning the significance of neuronal information by trafficking hippocampal output onto either subicular burst-spiking or regular-spiking cells.
Collapse
Affiliation(s)
- Pawel Fidzinski
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany.
| | | | | |
Collapse
|
16
|
McCoy PA, McMahon LL. Muscarinic receptor dependent long-term depression in rat visual cortex is PKC independent but requires ERK1/2 activation and protein synthesis. J Neurophysiol 2007; 98:1862-70. [PMID: 17634336 DOI: 10.1152/jn.00510.2007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Intact cholinergic innervation of visual cortex is critical for normal processing of visual information and for spatial memory acquisition and retention. However, a complete description of the mechanisms by which the cholinergic system modifies synaptic function in visual cortex is lacking. Previously it was shown that activation of the m1 subtype of muscarinic receptor induces an activity-dependent and partially N-methyl-d-aspartate receptor (NMDAR)-dependent long-term depression (LTD) at layer 4-layer 2/3 synapses in rat visual cortex slices in vitro. The cellular mechanisms downstream of the Galphaq coupled m1 receptor required for induction of this LTD (which we term mLTD) are currently unknown. Here, we confirm a role for m1 receptors in mLTD induction and use a series of pharmacological tools to study the signaling molecules downstream of m1 receptor activation in mLTD induction. We found that mLTD is prevented by inhibitors of L-type Ca(2+) channels, the Src kinase family, and the mitogen-activated kinase/extracellular kinase. mLTD is also partially dependent on phospholipase C but is unaffected by blocking protein kinase C. mLTD expression can be long-lasting (>2 h) and its long-term maintenance requires translation. Thus we report the signaling mechanisms underlying induction of an m1 receptor-dependent LTD in visual cortex and the requirement of protein synthesis for long-term expression. This plasticity could be a mechanism by which the cholinergic system modifies glutamatergic synapse function to permit normal visual system processing required for cognition.
Collapse
Affiliation(s)
- Portia A McCoy
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294-0005, USA
| | | |
Collapse
|
17
|
Dong Z, Cao J, Xu L. Opiate withdrawal modifies synaptic plasticity in subicular-nucleus accumbens pathway in vivo. Neuroscience 2006; 144:845-54. [PMID: 17141960 DOI: 10.1016/j.neuroscience.2006.10.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2006] [Revised: 10/10/2006] [Accepted: 10/11/2006] [Indexed: 12/23/2022]
Abstract
Subiculum receives output of hippocampal CA1 neurons and projects glutamatergic synapses onto nucleus accumbens (NAc), the subicular-NAc pathway linking memory and reward system. It is unknown whether morphine withdrawal influences synaptic plasticity in the subicular-NAc pathway. Here, we recorded the field excitatory postsynaptic potential (EPSP) within the shell of NAc by stimulating ventral subiculum in anesthetized adult rats. We found that high frequency stimulation (HFS, 200 Hz) induced long-term potentiation (LTP) but low frequency stimulation (LFS, 1 Hz) failed to induce long-term depression (LTD) in control animals. However, behavioral stress enabled LFS to induce a reliable LTD (sLTD) that was dependent on the glucocorticoid receptors. Both LTP and sLTD were prevented by the N-methyl-d-aspartate receptor antagonist AP-5. After repeated morphine treatment for 12 days, acute withdrawal (12 h) impaired LTP but had no effect on sLTD; prolonged withdrawal (4 days) restored the LTP but impaired the sLTD. Remarkably, basal synaptic efficacy reflected by baseline EPSP amplitude was potentiated in acute withdrawal but was depressed in prolonged withdrawal. Thus, acute and prolonged opiate withdrawal may cause endogenous LTP and LTD in the subicular-NAc pathway that occludes the subsequent induction of synaptic plasticity, demonstrating adaptive changes of the NAc functions during opiate withdrawal.
Collapse
Affiliation(s)
- Z Dong
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, the Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming 650223, Yunnan, PR China
| | | | | |
Collapse
|
18
|
Zhang J, Yang Y, Li H, Cao J, Xu L. Amplitude/frequency of spontaneous mEPSC correlates to the degree of long-term depression in the CA1 region of the hippocampal slice. Brain Res 2005; 1050:110-7. [PMID: 15978556 DOI: 10.1016/j.brainres.2005.05.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 05/11/2005] [Accepted: 05/13/2005] [Indexed: 11/21/2022]
Abstract
Prior synaptic or cellular activity influences degree or threshold for subsequent induction of synaptic plasticity, a process known as metaplasticity. Thus, the continual synaptic activity, spontaneous miniature excitatory synaptic current (mEPSC) may correlate to the induction of long-term depression (LTD). Here, we recorded whole-cell EPSC and mEPSC alternately in the Schaffer-CA1 synapses in brain slice of young rats, and found that this recording configuration affected neither EPSC nor mEPSC. Low frequency stimulation (LFS) induced variable magnitudes of LTD. Remarkably, larger magnitudes of LTD were significantly correlated to smaller amplitude/lower frequency of the basal mEPSC. Furthermore, under the conditions reduced amplitude/frequency of the basal mEPSC by exposure to behavioral stress immediately before slice preparation or low concentration of calcium in bath solution, the magnitudes of LTD were still inversely correlated to mEPSC amplitude/frequency. These new findings suggest that spontaneous mEPSC may reflect functional and/or structural aspects of the synapses, the synaptic history ongoing metaplasticity.
Collapse
Affiliation(s)
- Jichuan Zhang
- Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650223, PR China
| | | | | | | | | |
Collapse
|