1
|
Wang Y, Gu L, Yang HM, Zhang H. Cystic fibrosis transmembrane conductance regulator-associated ligand protects dopaminergic neurons by differentially regulating metabotropic glutamate receptor 5 in the progression of neurotoxin 6-hydroxydopamine-induced Parkinson's disease model. Neurotoxicology 2021; 84:14-29. [PMID: 33571554 DOI: 10.1016/j.neuro.2021.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 12/21/2020] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
Due to limitations in early diagnosis and treatments of Parkinson's disease (PD), it is necessary to explore the neuropathological changes that occur early in PD progression and to design neuroprotective therapies to prevent or delay the ongoing degeneration process. Metabotropic glutamate receptor 5 (mGlu5) has shown both diagnostic and therapeutic potential in preclinical studies on PD. Clinical trials using mGlu5 negative allosteric modulators to treat PD have, however, raised limitations about the neuroprotective role of mGlu5. It is likely that mGlu5 has different regulatory roles in different stages of PD. Here, we investigated a protective role of cystic fibrosis transmembrane conductance regulator-associated ligand (CAL) in the progression of PD by differential regulation of mGlu5 expression and activity to protect against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity. Following treatment with 6-OHDA, mGlu5 and CAL expressions were elevated in the early stage and reduced in the late stage, both in vitro and in vivo. Activation of mGlu5 in the early stage by (RS)-2-chloro-5-hydroxyphenylglycine, or blocking mGlu5 in the late stage by 2-methyl-6-(phenylethynyl) pyridine, increased cell survival and inhibited apoptosis, but these effects were significantly weakened by knockdown of CAL. CAL alleviated 6-OHDA-induced neurotoxicity by regulating mGlu5-mediated signaling pathways, thereby maintaining the physiological function of mGlu5 in different disease stages. In PD rat model, CAL deficiency aggravated 6-OHDA toxicity on dopaminergic neurons and increased motor dysfunction because of lack of regulation of mGlu5 activity. These data reveal a potential mechanism by which CAL specifically regulates the opposite activity of mGlu5 in progression of PD to protect against neurotoxicity, suggesting that CAL is a favorable endogenous target for the treatment of PD.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Li Gu
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Hui Min Yang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Hong Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China.
| |
Collapse
|
2
|
Luo WY, Xing SQ, Zhu P, Zhang CG, Yang HM, Van Halm-Lutterodt N, Gu L, Zhang H. PDZ Scaffold Protein CAL Couples with Metabotropic Glutamate Receptor 5 to Protect Against Cell Apoptosis and Is a Potential Target in the Treatment of Parkinson's Disease. Neurotherapeutics 2019; 16:761-783. [PMID: 31073978 PMCID: PMC6694344 DOI: 10.1007/s13311-019-00730-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Targeting mGluR5 has been an attractive strategy to modulate glutamate excitotoxicity for neuroprotection. Although human clinical trials using mGluR5 negative allosteric modulators (NAMs) have included some disappointments, recent investigations have added several more attractive small molecules to this field, providing a promise that the identification of more additional strategies to modulate mGluR5 activity might be potentially beneficial for the advancement of PD treatment. Here, we determined the role of the interacting partner CAL (cystic fibrosis transmembrane conductance regulator-associated ligand) in mGluR5-mediated protection in vitro and in vivo. In astroglial C6 cells, CAL deficiency blocked (S)-3, 5-dihydroxyphenylglycine (DHPG)-elicited p-AKT and p-ERK1/2, subsequently prevented group I mGluRs-mediated anti-apoptotic protection, which was blocked by receptor antagonist 1-aminoindan-1, 5-dicarboxylic acid (AIDA), and PI3K or MEK inhibitor LY294002 or U0126. In rotenone-treated MN9D cells, both CAL and mGluR5 expressions were decreased in a time- and dose-dependent manner, and the correlation between these 2 proteins was confirmed by lentivirus-delivered CAL overexpression and knockdown. Moreover, CAL coupled with mGluR5 upregulated mGluR5 protein expression by inhibition of ubiquitin-proteasome-dependent degradation to suppress mGluR5-mediated p-JNK and to protect against cell apoptosis. Additionally, CAL also inhibited rotenone-induced glutamate release to modulate mGluR5 activity. Furthermore, in the rotenone-induced rat model of PD, AAV-delivered CAL overexpression attenuated behavioral deficits and dopaminergic neuronal death, while CAL deficiency aggravated rotenone toxicity. On the other hand, the protective effect of the mGluR5 antagonist MPEP was weakened by knocking down CAL. In vivo experiments also confirmed that CAL inhibited ubiquitination-proteasome-dependent degradation to modulate mGluR5 expression and JNK phosphorylation. Our findings show that CAL protects against cell apoptosis via modulating mGluR5 activity, and may be a new molecular target for an effective therapeutic strategy for PD.
Collapse
Affiliation(s)
- Wen Yuan Luo
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Su Qian Xing
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Ping Zhu
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Chen Guang Zhang
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, 100069, China
| | - Hui Min Yang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Nicholas Van Halm-Lutterodt
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100069, China
- Department of Orthopaedics and Neurosurgery, Keck Medical Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Li Gu
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China.
| | - Hong Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
3
|
Functions of Rhotekin, an Effector of Rho GTPase, and Its Binding Partners in Mammals. Int J Mol Sci 2018; 19:ijms19072121. [PMID: 30037057 PMCID: PMC6073136 DOI: 10.3390/ijms19072121] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/26/2022] Open
Abstract
Rhotekin is an effector protein for small GTPase Rho. This protein consists of a Rho binding domain (RBD), a pleckstrin homology (PH) domain, two proline-rich regions and a C-terminal PDZ (PSD-95, Discs-large, and ZO-1)-binding motif. We, and other groups, have identified various binding partners for Rhotekin and carried out biochemical and cell biological characterization. However, the physiological functions of Rhotekin, per se, are as of yet largely unknown. In this review, we summarize known features of Rhotekin and its binding partners in neuronal tissues and cancer cells.
Collapse
|
4
|
Thumkeo D, Watanabe S, Narumiya S. Physiological roles of Rho and Rho effectors in mammals. Eur J Cell Biol 2013; 92:303-15. [PMID: 24183240 DOI: 10.1016/j.ejcb.2013.09.002] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/25/2013] [Accepted: 09/25/2013] [Indexed: 02/06/2023] Open
Abstract
Rho GTPase is a master regulator controlling cytoskeleton in multiple contexts such as cell migration, adhesion and cytokinesis. Of several Rho GTPases in mammals, the best characterized is the Rho subfamily including ubiquitously expressed RhoA and its homologs RhoB and RhoC. Upon binding GTP, Rho exerts its functions through downstream Rho effectors, such as ROCK, mDia, Citron, PKN, Rhophilin and Rhotekin. Until recently, our knowledge about functions of Rho and Rho effectors came mostly from in vitro studies utilizing cultured cells, and their physiological roles in vivo were largely unknown. However, gene-targeting studies of Rho and its effectors have now unraveled their tissue- and cell-specific roles and provide deeper insight into the physiological function of Rho signaling in vivo. In this article, we briefly describe previous studies of the function of Rho and its effectors in vitro and then review and discuss recent studies on knockout mice of Rho and its effectors.
Collapse
Affiliation(s)
- Dean Thumkeo
- Department of Pharmacology, Kyoto University Faculty of Medicine, Sakyo-ku, Kyoto 606-8501, Japan; Innovation Center for Immunoregulation, Technologies and Drugs (AK Project), Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | |
Collapse
|
5
|
Chen A, Gössling EK, Witkowski L, Bhindi A, Bauch C, Roussy G, Sarret P, Kreienkamp HJ, Stroh T. Regional and subcellular distribution of the receptor-targeting protein PIST in the rat central nervous system. J Comp Neurol 2012; 520:889-913. [PMID: 21953547 DOI: 10.1002/cne.22774] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Protein interacting specifically with Tc10, PIST, is a Golgi-associated sorting protein involved in regulating cell-surface targeting of plasma membrane receptors. The present study provides the first comprehensive description of PIST distribution in the mammalian central nervous system and of its subcellular localization by immunocytochemistry. PIST is distributed widely throughout the neuraxis, predominantly associated with neuronal cell bodies and dendrites. In hippocampal neurons, in vitro and in situ, PIST displayed a patchy subcellular distribution in an area surrounding the nucleus and extending into one of the major dendrites. By colocalization with the trans-Golgi marker TGN38, we were able to show that PIST is associated largely but not exclusively with the trans-Golgi network in central neurons. High or moderate to high levels of PIST-like immunoreactivity were found in cortical areas, in particular in layer V of the neocortex. The motor cortex was most strongly labeled. Also, the piriform and insular cortices displayed strong PIST labeling. In the hippocampus, CA2 but not CA1 or CA3 pyramidal cells displayed strong PIST-labeling, extending into their apical dendrites. In the thalamus, ventrolateral and laterodorsal nuclei were most strongly stained, whereas in the hypothalamus the supraoptic nucleus stood out with strong immunoreactivity. Strikingly, in the brainstem all cranial nerve motor nuclei were PIST-positive at varying levels, which is in keeping with the prominent expression of PIST in forebrain motor areas. This selective distribution of PIST suggests that the protein serves distinctive roles in specific neuronal populations, establishing functionally distinct zones, for instance, in the hippocampus.
Collapse
Affiliation(s)
- Annie Chen
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Coupling S100A4 to Rhotekin alters Rho signaling output in breast cancer cells. Oncogene 2012; 32:3754-64. [PMID: 22964635 PMCID: PMC3525797 DOI: 10.1038/onc.2012.383] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/09/2012] [Accepted: 07/13/2012] [Indexed: 02/07/2023]
Abstract
Rho signaling is increasingly recognized to contribute to invasion and metastasis. In this study, we discovered that metastasis-associated protein S100A4 interacts with the Rho-binding domain (RBD) of Rhotekin, thus connecting S100A4 to the Rho pathway. Glutathione S-transferase pull-down and immunoprecipitation assays demonstrated that S100A4 specifically and directly binds to Rhotekin RBD, but not the other Rho effector RBDs. S100A4 binding to Rhotekin is calcium-dependent and uses residues distinct from those bound by active Rho. Interestingly, we found that S100A4 and Rhotekin can form a complex with active RhoA. Using RNA interference, we determined that suppression of both S100A4 and Rhotekin leads to loss of Rho-dependent membrane ruffling in response to epidermal growth factor, an increase in contractile F-actin 'stress' fibers and blocks invasive growth in three-dimensional culture. Accordingly, our data suggest that interaction of S100A4 and Rhotekin permits S100A4 to complex with RhoA and switch Rho function from stress fiber formation to membrane ruffling to confer an invasive phenotype.
Collapse
|
7
|
Cell biological characterization of a multidomain adaptor protein, ArgBP2, in epithelial NMuMG cells, and identification of a novel short isoform. Med Mol Morphol 2012; 45:22-8. [PMID: 22431180 DOI: 10.1007/s00795-010-0537-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 12/27/2010] [Indexed: 10/28/2022]
Abstract
ArgBP2 is a member of the SoHo (sorbin-homology) family of adaptor proteins believed to play roles in cell adhesion, cytoskeletal organization, and signaling. We show here a novel splicing isoform of ArgBP2, i.e., ArgBP2™, composed of only three SH3 (src-homology 3) domains and structurally similar to vinexinß. We then characterized the biochemical and cell biological properties of ArgBP2 to compare these with vinexin. Similar to vinexin, ArgBP2 was enriched at focal adhesions in REF52 fibroblast cells and induced anchorage-dependent extracellular signal-regulated kinase activation in NIH3T3 fibroblast cells. In epithelial NMuMG cells, immunofluorescence analyses revealed localization of ArgBP2 at tight junctions (TJs), whereas vinexin was distributed in cytoplasm as well as cell-cell boundaries. During TJ formation, recruitment of ZO-1 to TJs was followed by ArgBP2. Based on mutation analyses, a second SH3 domain was found to be important for ArgBP2 localization to the cell-cell contact sites. These data suggest some role of ArgBP2 in NMuMG cells at TJs that may be distinct from the function of vinexin.
Collapse
|
8
|
Iwai T, Saitoh A, Yamada M, Takahashi K, Hashimoto E, Ukai W, Saito T, Yamada M. Rhotekin modulates differentiation of cultured neural stem cells to neurons. J Neurosci Res 2012; 90:1359-66. [DOI: 10.1002/jnr.23029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 12/19/2011] [Accepted: 12/19/2011] [Indexed: 11/10/2022]
|
9
|
Xu Z, Oshima K, Heller S. PIST regulates the intracellular trafficking and plasma membrane expression of cadherin 23. BMC Cell Biol 2010; 11:80. [PMID: 20958966 PMCID: PMC2967513 DOI: 10.1186/1471-2121-11-80] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 10/19/2010] [Indexed: 02/02/2023] Open
Abstract
Background The atypical cadherin protein cadherin 23 (CDH23) is crucial for proper function of retinal photoreceptors and inner ear hair cells. As we obtain more and more information about the specific roles of cadherin 23 in photoreceptors and hair cells, the regulatory mechanisms responsible for the transport of this protein to the plasma membrane are largely unknown. Results PIST, a Golgi-associated, PDZ domain-containing protein, interacted with cadherin 23 via the PDZ domain of PIST and the C-terminal PDZ domain-binding interface (PBI) of cadherin 23. By binding to cadherin 23, PIST retained cadherin 23 in the trans-Golgi network of cultured cells. The retention was released when either of the two known cadherin 23-binding proteins MAGI-1 and harmonin was co-expressed. Similar to MAGI-1 and harmonin, PIST was detected in mouse inner ear sensory hair cells. Conclusions PIST binds cadherin 23 via its PDZ domain and retains cadherin 23 in trans-Golgi network. MAGI-1 and harmonin can compete with PIST for binding cadherin 23 and release cadherin 23 from PIST's retention. Our finding suggests that PIST, MAGI-1 and harmonin collaborate in intracellular trafficking of cadherin 23 and regulate the plasma membrane expression of cadherin 23.
Collapse
Affiliation(s)
- Zhigang Xu
- Department of Otolaryngology--Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
10
|
Collier FM, Loving A, Baker AJ, McLeod J, Walder K, Kirkland MA. RTKN2 Induces NF-KappaB Dependent Resistance to Intrinsic Apoptosis in HEK Cells and Regulates BCL-2 Genes in Human CD4(+) Lymphocytes. J Cell Death 2009; 2:9-23. [PMID: 26124677 PMCID: PMC4474337 DOI: 10.4137/jcd.s2891] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The gene for Rhotekin 2 (RTKN2) was originally identified in a promyelocytic cell line resistant to oxysterol-induced apoptosis. It is differentially expressed in freshly isolated CD4+ T-cells compared with other hematopoietic cells and is down-regulated following activation of the T-cell receptor. However, very little is known about the function of RTKN2 other than its homology to Rho-GTPase effector, rhotekin, and the possibility that they may have similar roles. Here we show that stable expression of RTKN2 in HEK cells enhanced survival in response to intrinsic apoptotic agents; 25-hydroxy cholesterol and camptothecin, but not the extrinsic agent, TNFα. Inhibitors of NF-KappaB, but not MAPK, reversed the resistance and mitochondrial pro-apoptotic genes, Bax and Bim, were down regulated. In these cells, there was no evidence of RTKN2 binding to the GTPases, RhoA or Rac2. Consistent with the role of RTKN2 in HEK over-expressing cells, suppression of RTKN2 in primary human CD4+ T-cells reduced viability and increased sensitivity to 25-OHC. The expression of the pro-apoptotic genes, Bax and Bim were increased while BCL-2 was decreased. In both cell models RTKN2 played a role in the process of intrinsic apoptosis and this was dependent on either NF-KappaB signaling or expression of downstream BCL-2 genes. As RTKN2 is a highly expressed in CD4+ T-cells it may play a role as a key signaling switch for regulation of genes involved in T-cell survival.
Collapse
Affiliation(s)
- Fiona M Collier
- Barwon Biomedical Research, Geelong Hospital, Barwon Health, Ryrie St, Geelong, Victoria, 3227, Australia. ; Metabolic Research Unit, School of Medicine and Institute for Technology Research and Innovation, Deakin University, Waurn Ponds, Victoria, 3217, Australia
| | - Andrea Loving
- Barwon Biomedical Research, Geelong Hospital, Barwon Health, Ryrie St, Geelong, Victoria, 3227, Australia
| | - Adele J Baker
- Department of Malignant Haematology and Stem Cell Transplantation, The Alfred Hospital, Melbourne, Victoria, 3181, Australia
| | - Janet McLeod
- School of Medicine, Deakin University, Waurn Ponds, Victoria, 3217, Australia
| | - Ken Walder
- Metabolic Research Unit, School of Medicine and Institute for Technology Research and Innovation, Deakin University, Waurn Ponds, Victoria, 3217, Australia
| | - Mark A Kirkland
- Barwon Biomedical Research, Geelong Hospital, Barwon Health, Ryrie St, Geelong, Victoria, 3227, Australia
| |
Collapse
|
11
|
Interaction of a multi-domain adaptor protein, vinexin, with a Rho-effector, Rhotekin. Med Mol Morphol 2009; 42:9-15. [PMID: 19294487 DOI: 10.1007/s00795-008-0433-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 12/24/2008] [Indexed: 12/15/2022]
Abstract
Among various effector proteins for the Rho small GTPase, the function(s) of Rhotekin is almost unknown. We have identified a multi-domain adaptor protein, vinexin, as a binding partner for Rhotekin, using yeast two-hybrid screening of a human heart library. Rhotekin was found to associate with vinexin in vitro, in COS7 cells, and in brain tissues. The C-terminal Pro-rich motif of Rhotekin exhibited binding to the third SH3 domain of vinexin. The binding was little affected by Rho but was inhibited by activated Cdc42 in COS7 cells. Immunofluorescence analyses revealed partial colocalization of vinexin-alpha with Rhotekin at focal adhesions in REF52 fibroblast cells. These results suggest that Rhotekin forms a complex with vinexin and may play a role at focal adhesions.
Collapse
|
12
|
Tsigelny I, Kouznetsova V, Sweeney DE, Wu W, Bush KT, Nigam SK. Analysis of metagene portraits reveals distinct transitions during kidney organogenesis. Sci Signal 2008; 1:ra16. [PMID: 19066399 PMCID: PMC3016920 DOI: 10.1126/scisignal.1163630] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Organogenesis is a multistage process, but it has been difficult, by conventional analysis, to separate stages and identify points of transition in developmentally complex organs or define genetic pathways that regulate pattern formation. We performed a detailed time-series examination of global gene expression during kidney development and then represented the resulting data as self-organizing maps (SOMs), which reduced more than 30,000 genes to 650 metagenes. Further clustering of these maps identified potential stages of development and suggested points of stability and transition during kidney organogenesis that are not obvious from either standard morphological analyses or conventional microarray clustering algorithms. We also performed entropy calculations of SOMs generated for each day of development and found correlations with morphometric parameters and expression of candidate genes that may help in orchestrating the transitions between stages of kidney development, as well as macro- and micropatterning of the organ.
Collapse
Affiliation(s)
- Igor Tsigelny
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093–0505, USA
- San Diego Supercomputer Center, School of Medicine, University of California, San Diego, La Jolla, CA 92093–0505, USA
| | - Valentina Kouznetsova
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093–0693, USA
| | - Derina E. Sweeney
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093–0693, USA
| | - Wei Wu
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093–0693, USA
| | - Kevin T. Bush
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093–0693, USA
| | - Sanjay K. Nigam
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093–0693, USA
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093–0693, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093–0693, USA
- John and Rebecca Moores UCSD Cancer Center, School of Medicine, University of California, San Diego, La Jolla, CA 92093–0693, USA
| |
Collapse
|