1
|
Szabó Z, Péter M, Héja L, Kardos J. Dual Role for Astroglial Copper-Assisted Polyamine Metabolism during Intense Network Activity. Biomolecules 2021; 11:604. [PMID: 33921742 PMCID: PMC8073386 DOI: 10.3390/biom11040604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/29/2022] Open
Abstract
Astrocytes serve essential roles in human brain function and diseases. Growing evidence indicates that astrocytes are central players of the feedback modulation of excitatory Glu signalling during epileptiform activity via Glu-GABA exchange. The underlying mechanism results in the increase of tonic inhibition by reverse operation of the astroglial GABA transporter, induced by Glu-Na+ symport. GABA, released from astrocytes, is synthesized from the polyamine (PA) putrescine and this process involves copper amino oxidase. Through this pathway, putrescine can be considered as an important source of inhibitory signaling that counterbalances epileptic discharges. Putrescine, however, is also a precursor for spermine that is known to enhance gap junction channel communication and, consequently, supports long-range Ca2+ signaling and contributes to spreading of excitatory activity through the astrocytic syncytium. Recently, we presented the possibility of neuron-glia redox coupling through copper (Cu+/Cu2+) signaling and oxidative putrescine catabolism. In the current work, we explore whether the Cu+/Cu2+ homeostasis is involved in astrocytic control on neuronal excitability by regulating PA catabolism. We provide supporting experimental data underlying this hypothesis. We show that the blockade of copper transporter (CTR1) by AgNO3 (3.6 µM) prevents GABA transporter-mediated tonic inhibitory currents, indicating causal relationship between copper (Cu+/Cu2+) uptake and the catabolism of putrescine to GABA in astrocytes. In addition, we show that MnCl2 (20 μM), an inhibitor of the divalent metal transporter DMT1, also prevents the astrocytic Glu-GABA exchange. Furthermore, we observed that facilitation of copper uptake by added CuCl2 (2 µM) boosts tonic inhibitory currents. These findings corroborate the hypothesis that modulation of neuron-glia coupling by copper uptake drives putrescine → GABA transformation, which leads to subsequent Glu-GABA exchange and tonic inhibition. Findings may in turn highlight the potential role of copper signaling in fine-tuning the activity of the tripartite synapse.
Collapse
Affiliation(s)
- Zsolt Szabó
- Functional Pharmacology Research Group, Research Centre for Natural Sciences, Institute of Organic Chemistry, H-1117 Budapest, Hungary; (Z.S.); (M.P.); (J.K.)
| | - Márton Péter
- Functional Pharmacology Research Group, Research Centre for Natural Sciences, Institute of Organic Chemistry, H-1117 Budapest, Hungary; (Z.S.); (M.P.); (J.K.)
- Hevesy György Ph.D. School of Chemistry, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
| | - László Héja
- Functional Pharmacology Research Group, Research Centre for Natural Sciences, Institute of Organic Chemistry, H-1117 Budapest, Hungary; (Z.S.); (M.P.); (J.K.)
| | - Julianna Kardos
- Functional Pharmacology Research Group, Research Centre for Natural Sciences, Institute of Organic Chemistry, H-1117 Budapest, Hungary; (Z.S.); (M.P.); (J.K.)
| |
Collapse
|
2
|
Neurobiology, Functions, and Relevance of Excitatory Amino Acid Transporters (EAATs) to Treatment of Refractory Epilepsy. CNS Drugs 2020; 34:1089-1103. [PMID: 32926322 DOI: 10.1007/s40263-020-00764-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epilepsy is one of the most prevalent and devastating neurological disorders characterized by episodes of unusual sensations, loss of awareness, and reoccurring seizures. The frequency and intensity of epileptic fits can vary to a great degree, with almost a third of all cases resistant to available therapies. At present, there is a major unmet need for effective and specific therapeutic intervention. Impairments of the exquisite balance between excitatory and inhibitory synaptic processes in the brain are considered key in the onset and pathophysiology of the disease. As the primary excitatory neurotransmitter in the central nervous system, glutamate has been implicated in the process, with the glutamatergic system holding center stage in the pathobiology as well as in developing disease-modifying therapies. Emerging data pinpoint impairments of glutamate clearance as one of the key causative factors in drug-resistant disease forms. Reinstatement of glutamate homeostasis using pharmacological and genetic modulation of glutamate clearance is therefore considered to be of major translational relevance. In this article, we review the neurobiological and clinical evidence suggesting complex aberrations in the activity and functions of excitatory amino acid transporters (EAATs) in epilepsy, with knock-on effects on glutamate homeostasis as a leading cause for the development of refractory forms. We consider the emerging data on pharmacological and genetic manipulations of EAATs, with reference to seizures and glutamate dyshomeostasis, and review their fundamental and translational relevance. We discuss the most recent advances in the EAATs research in human and animal models, along with numerous questions that remain open for debate and critical appraisal. Contrary to the widely held view on EAATs as a promising therapeutic target for management of refractory epilepsy as well as other neurological and psychiatric conditions related to glutamatergic hyperactivity and glutamate-induced cytotoxicity, we stress that the true relevance of EAAT2 as a target for medical intervention remains to be fully appreciated and verified. Despite decades of research, the emerging properties and functional characteristics of glutamate transporters and their relationship with neurophysiological and behavioral correlates of epilepsy challenge the current perception of this disease and fit unambiguously in neither EAATs functional deficit nor in reversal models. We stress the pressing need for new approaches and models for research and restoration of the physiological activity of glutamate transporters and synaptic transmission to achieve much needed therapeutic effects. The complex mechanism of EAATs regulation by multiple factors, including changes in the electrochemical environment and ionic gradients related to epileptic hyperactivity, impose major therapeutic challenges. As a final note, we consider the evolving views and present a cautious perspective on the key areas of future progress in the field towards better management and treatment of refractory disease forms.
Collapse
|
3
|
Laadraoui J, Bezza K, El Gabbas Z, Marhoume F, Wakrim EM, Ferehan H, Aboufatima R, Sokar Z, Kissani N, Chait A. Intracerebroventricular administration of cigarette smoke condensate induced generalized seizures reduced by muscarinic receptor antagonist in rats. Epilepsy Behav 2018; 79:154-161. [PMID: 29289903 DOI: 10.1016/j.yebeh.2017.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 11/17/2022]
Abstract
Tobacco smoking is considered the greatest risk factor for early death caused by noncommunicable diseases. Currently, there are more than one billion tobacco smokers in the world predisposed to many diseases including heart attack, stroke, cancer, and premature birth or birth defects related to the consumption of cigarettes. However, studies on the association between tobacco smoking and seizures or epilepsy are insufficient and not well documented. In the present study, the authors examined the convulsive effects of the intracerebroventricular administration of cigarette smoke condensate (CSC, 2μl/Rat) in rats and compared it with the intensity of seizures in the kainic acid (KA)-induced seizure model of epilepsy. The role of the cholinergic system was also investigated by testing the effect of the muscarinic acetylcholine receptors (mAChRs) antagonist atropine (2ml/kg) on CSC-induced seizures. The results indicate that a central injection of CSC produces an epileptic behavior similar to that induced by KA, the similarities include the following parameters: time latency of seizures, latency and duration of tonic-clonic seizures, duration of seizures, survival, and tonic-clonic rate. However, a pretreatment with atropine reduced seizures and all their parameters.
Collapse
Affiliation(s)
- Jawad Laadraoui
- Laboratory of Pharmacology, Neurobiology and Behavior, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco.
| | - Kenza Bezza
- Laboratory of Pharmacology, Neurobiology and Behavior, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - Zineb El Gabbas
- Laboratory of Pharmacology, Neurobiology and Behavior, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - Fatimazahra Marhoume
- Laboratory of Pharmacology, Neurobiology and Behavior, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - El Mehdi Wakrim
- Laboratory of Pharmacology, Neurobiology and Behavior, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - Hind Ferehan
- Laboratory of Pharmacology, Neurobiology and Behavior, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - Rachida Aboufatima
- Laboratory of Genie Biology, Sultan Moulay Slimane University, Faculty of Sciences and Techniques, Béni Mellal, Morocco
| | - Zahra Sokar
- Laboratory of Pharmacology, Neurobiology and Behavior, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - Najib Kissani
- Laboratory of Clinical & Experimental Neuroscience, Medical School Faculty, Cadi Ayyad University, Marrakech, Morocco; Neurology Department, Mohamed VI University Hospital, Marrakech, Morocco
| | - Abderrahman Chait
- Laboratory of Pharmacology, Neurobiology and Behavior, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco.
| |
Collapse
|
4
|
Glial GABA Transporters as Modulators of Inhibitory Signalling in Epilepsy and Stroke. ADVANCES IN NEUROBIOLOGY 2017; 16:137-167. [PMID: 28828609 DOI: 10.1007/978-3-319-55769-4_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Imbalances in GABA-mediated tonic inhibition are involved in several pathophysiological conditions. A classical way of controlling tonic inhibition is through pharmacological intervention with extrasynaptic GABAA receptors that sense ambient GABA and mediate a persistent GABAergic conductance. An increase in tonic inhibition may, however, also be obtained indirectly by inhibiting glial GABA transporters (GATs). These are sodium-coupled membrane transport proteins that normally act to terminate GABA neurotransmitter action by taking up GABA into surrounding astrocytes. The aim of the review is to provide an overview of glial GATs in regulating tonic inhibition, especially in epilepsy and stroke. This entails a comprehensive summary of changes known to occur in GAT expression levels and signalling following epileptic and ischemic insults. Further, we discuss the accumulating pharmacological evidence for targeting GATs in these diseases.
Collapse
|
5
|
Gholami M, Saboory E, Zare S, Roshan-Milani S, Hajizadeh-Moghaddam A. The effect of dorsal hippocampal administration of nicotinic and muscarinic cholinergic ligands on pentylenetetrazol-induced generalized seizures in rats. Epilepsy Behav 2012; 25:244-9. [PMID: 23037131 DOI: 10.1016/j.yebeh.2012.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 07/06/2012] [Accepted: 07/09/2012] [Indexed: 11/30/2022]
Abstract
In the present study, the effects of intrahippocampal injections of cholinergic ligands on pentylenetetrazol (PTZ)-induced seizures were investigated in rats. The rats were assigned to 1 of the following 9 groups: saline, nicotine (0.5 or 1 μg), atropine (0.25 or 1 μg), oxotremorine-M (0.1 or 1 μg), or mecamylamine (2 or 8 μg). Cholinergic ligands were administered via intrahippocampal infusion 30 min before seizure induction (intraperitoneal injection of 80 mg/kg PTZ). Results show that antagonists caused nonsignificant increases in the latency of tonic-clonic seizures, significant decreases in the duration of tonic-clonic seizures, significant decreases in the latency of death, and increases in mortality rate. Agonists led to increases in the duration of tonic-clonic seizures, decreases in the latency of death, and decreases in mortality rate. These results provide compelling evidence that cholinergic ligands show modulatory effects on a PTZ model of acute seizure in the rat hippocampus.
Collapse
Affiliation(s)
- Morteza Gholami
- Master in Physiology, Department of Biology, Faculty of Science, University of Urmia, Iran.
| | | | | | | | | |
Collapse
|
6
|
Yatsenko L, Pozdnyakova N, Dudarenko M, Himmelreich N. The dynamics of changes in hippocampal GABAergic system in rats exposed to early-life hypoxia-induced seizures. Neurosci Lett 2012; 524:69-73. [PMID: 22841699 DOI: 10.1016/j.neulet.2012.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 07/02/2012] [Accepted: 07/11/2012] [Indexed: 10/28/2022]
Abstract
Hypoxia-evoked seizures (H/S) early in life lead to multiple chronic neurological deficits. Here, we present the results of studying GABA release and uptake in hippocampal axon terminals of rats exposed to H/S at 10-12 days of age. We characterized (i) exocytotic release of GABA; (ii) the initial rate of GABA uptake; (iii) the regulation of GABA release by presynaptic GABA(B) receptors. Rats were used for experiments 2, 4 and 8 weeks after H/S. We found that exocytotic [(3)H]GABA release was higher in rats exposed to H/S, and a maximal difference in the release was observed between the control and experimental rats tested 2 weeks after H/S. In contrast, the initial rate of GABA uptake decreased with age, and this tendency was more pronounced in rats exposed to H/S. Using (±)-baclofen and SKF 97541 as agonists of GABA(B) receptor, we revealed that a significant difference in the auto-inhibition of exocytotic [(3)H]GABA release was detected only between the control and experimental adult rats (8 weeks after hypoxia). The inhibitory effect dropped dramatically in the control adults, but only slightly decreased in adult rats exposed to H/S, thus becoming threefold more potent after hypoxic injury. Together, the results show that H/S affects the dynamics of age-dependent changes in the GABAergic system, and that the enhanced GABA(B) receptor-mediated auto-inhibition can be an important factor in weakening the postsynaptic inhibition and in the development of hyperexcitability in rats exposed to H/S.
Collapse
Affiliation(s)
- L Yatsenko
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Leontovich Str. 9, Kyiv 01601, Ukraine
| | | | | | | |
Collapse
|
7
|
Rowley NM, Madsen KK, Schousboe A, Steve White H. Glutamate and GABA synthesis, release, transport and metabolism as targets for seizure control. Neurochem Int 2012; 61:546-58. [PMID: 22365921 DOI: 10.1016/j.neuint.2012.02.013] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 02/09/2012] [Indexed: 11/17/2022]
Abstract
The synthesis, release, reuptake, and metabolism of the excitatory and inhibitory neurotransmitters glutamate and GABA, respectively, are tightly controlled. Given the role that these two neurotransmitters play in normal and abnormal neurotransmission, it is important to consider the processes whereby they are regulated. This brief review is focused entirely on the metabolic aspects of glutamate and GABA synthesis and neurotransmission. It describes in limited detail the synthesis, release, reuptake, metabolism, cellular compartmentation and pharmacology of the glutamatergic and GABAergic synapse. This review also provides a summary and brief description of the pathologic and phenotypic features of the various genetic animal models that have been developed in an effort to provide a greater understanding of the role that each of the aforementioned metabolic processes plays in controlling excitatory and inhibitory neurotransmission and how their use will hopefully facilitate the development of safer and more efficacious therapies for the treatment of epilepsy and other neurological disorders.
Collapse
Affiliation(s)
- Nicole M Rowley
- Department of Pharmacology and Toxicology, Anticonvulsant Drug Development Program, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, USA
| | | | | | | |
Collapse
|
8
|
Yatsenko LN, Storchak LG, Parkhomenko NT, Himmelreich NH. Transmembrane Transport and Release of GABA in the Brain of Rats Subjected to Postnatal Hypoxia. NEUROPHYSIOLOGY+ 2009. [DOI: 10.1007/s11062-009-9048-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|