1
|
Aitchison EE, Dimesa AM, Shoari A. Matrix Metalloproteinases in Glioma: Drivers of Invasion and Therapeutic Targets. BIOTECH 2025; 14:28. [PMID: 40265458 PMCID: PMC12015896 DOI: 10.3390/biotech14020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/08/2025] [Accepted: 04/15/2025] [Indexed: 04/24/2025] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent proteolytic enzymes that are crucial for the remodeling of the extracellular matrix, a process that is often co-opted by cancers, including brain tumors, to facilitate growth, invasion, and metastasis. In gliomas, MMPs contribute to a complex interplay involving tumor proliferation, angiogenesis, and immune modulation, thereby influencing tumor progression and patient prognosis. This review provides a comprehensive analysis of the roles of various MMPs in different types of gliomas, from highly malignant gliomas to metastatic lesions. Emphasis is placed on how the dysregulation of MMPs impacts tumor behavior, the association between specific MMPs and the tumor grade, and their potential as biomarkers for diagnosis and prognosis. Additionally, the current therapeutic approaches targeting MMP activity are discussed, exploring both their challenges and future potential. By synthesizing recent findings, this paper aims to clarify the broad significance of MMPs in gliomas and propose avenues for translational research that could enhance treatment strategies and clinical outcomes.
Collapse
Affiliation(s)
- Ella E. Aitchison
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (E.E.A.); (A.M.D.)
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Alexandra M. Dimesa
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (E.E.A.); (A.M.D.)
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Alireza Shoari
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (E.E.A.); (A.M.D.)
| |
Collapse
|
2
|
Ballato M, Germanà E, Ricciardi G, Giordano WG, Tralongo P, Buccarelli M, Castellani G, Ricci-Vitiani L, D’Alessandris QG, Giuffrè G, Pizzimenti C, Fiorentino V, Zuccalà V, Ieni A, Caffo M, Fadda G, Martini M. Understanding Neovascularization in Glioblastoma: Insights from the Current Literature. Int J Mol Sci 2025; 26:2763. [PMID: 40141406 PMCID: PMC11943220 DOI: 10.3390/ijms26062763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Glioblastomas (GBMs), among the most aggressive and resilient brain tumors, characteristically exhibit high angiogenic potential, leading to the formation of a dense yet aberrant vasculature, both morphologically and functionally. With these premises, numerous expectations were initially placed on anti-angiogenic therapies, soon dashed by their limited efficacy in concretely improving patient outcomes. Neovascularization in GBM soon emerged as a complex, dynamic, and heterogeneous process, hard to manage with the classical standard of care. Growing evidence has revealed the existence of numerous non-canonical strategies of angiogenesis, variously exploited by GBM to meet its ever-increasing metabolic demand and differently involved in tumor progression, recurrence, and escape from treatments. In this review, we provide an accurate description of each neovascularization mode encountered in GBM tumors to date, highlighting the molecular players and signaling cascades primarily involved. We also detail the key architectural and functional aspects characteristic of the GBM vascular compartment because of an intricate crosstalk between the different angiogenic networks. Additionally, we explore the repertoire of emerging therapies against GBM that are currently under study, concluding with a question: faced with such a challenging scenario, could combined therapies, tailored to the patient's genetic signatures, represent an effective game changer?
Collapse
Affiliation(s)
- Mariagiovanna Ballato
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Emanuela Germanà
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Gabriele Ricciardi
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
- Istituto Clinico Polispecialistico C.O.T. Cure Ortopediche Traumatologiche s.pa., 98124 Messina, Italy
| | - Walter Giuseppe Giordano
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Pietro Tralongo
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.)
| | - Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.)
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.)
| | | | - Giuseppe Giuffrè
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | | | - Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Valeria Zuccalà
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Maria Caffo
- Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, University of Messina, 98122 Messina, Italy;
| | - Guido Fadda
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Maurizio Martini
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| |
Collapse
|
3
|
Haki M, Shafaei N, Moeini M. In Situ Gelling Silk Fibroin/ECM Hydrogel With Sustained Oxygen Release for Neural Tissue Engineering Applications. J Biomed Mater Res A 2025; 113:e37837. [PMID: 39739320 DOI: 10.1002/jbm.a.37837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/17/2024] [Accepted: 11/05/2024] [Indexed: 01/02/2025]
Abstract
In situ gelling, cell-laden hydrogels hold promise for regenerating tissue lesions with irregular shapes located in complex and hard-to-reach anatomical sites. A notable example is the regeneration of neural tissue lost due to cerebral cavitation. However, hypoxia-induced cell necrosis during the vascularization period imposes a significant challenge to the success of this approach. Oxygen-releasing hydrogels have been developed to address this issue, but they suffer from fast oxygen release over a short period, limiting their efficacy. This study develops an in situ gelling hydrogel system based on silk fibroin (SF) and decellularized brain extracellular matrix (dECM) with sustained oxygen release and tunable gelation time. Calcium peroxide nanoparticles (CPO NPs) served as the oxygen generating material, which were encapsulated within SF microparticles before incorporation into the SF-dECM hydrogel, aiming to regulate the oxygen release rate. The total CPO content of the hydrogels was only 2%-4% w/w. Characterization of hydrogels containing various SF concentrations (2%, 4% or 6% w/v) and microparticle loadings (10%, 15% or 20% w/w) demonstrated that SF concentration in the hydrogel matrix significantly affects the swelling, resorption rate and mechanical properties, while microparticle loading has a milder effect. On the other hand, microparticle loading strongly affected the oxygen release profile. High SF concentration in the hydrogel matrix (6% w/v) led to slow resorption rate and high stiffness, likely unsuitable for intended application. Low SF concentration (2% w/v), on the other hand, led to a high swelling ratio and a less sustained oxygen release. Among 4% w/v SF hydrogels, increased microparticle loading led to a slower resorption rate, increased stiffness and enhanced oxygen release. However, cell viability was reduced at 20% w/w microparticle loading, likely due to decreased cell attachment. The 4% w/v SF hydrogels containing 10% w/w SF-CPO microparticles exhibited relatively low swelling ratio (12.8% ± 2.4%), appropriate resorption rate (70.16% ± 10.75% remaining weight after 28 days) and compressive modulus (36.9 ± 1.7 kPa) and sustained oxygen release for over 2 weeks. This sample also showed the highest viability under hypoxic conditions among tested hydrogel samples (87.6% ± 15.9%). Overall, the developed hydrogels in this study showed promise for potential application in brain tissue engineering.
Collapse
Affiliation(s)
- Mahyar Haki
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Nadia Shafaei
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mohammad Moeini
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
4
|
Romero-Reyes J, Vázquez-Martínez ER, Silva CC, Molina-Hernández A, Díaz NF, Camacho-Arroyo I. Navigating glioblastoma complexity: the interplay of neurotransmitters and chromatin. Mol Biol Rep 2024; 51:912. [PMID: 39153092 PMCID: PMC11330389 DOI: 10.1007/s11033-024-09853-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Glioblastoma is the most aggressive brain cancer with an unfavorable prognosis for patient survival. Glioma stem cells, a subpopulation of cancer cells, drive tumor initiation, self-renewal, and resistance to therapy and, together with the microenvironment, play a crucial role in glioblastoma maintenance and progression. Neurotransmitters such as noradrenaline, dopamine, and serotonin have contrasting effects on glioblastoma development, stimulating or inhibiting its progression depending on the cellular context and through their action on glioma stem cells, perhaps changing the epigenetic landscape. Recent studies have revealed that serotonin and dopamine induce chromatin modifications related to transcriptional plasticity in the mammalian brain and possibly in glioblastoma; however, this topic still needs to be explored because of its potential implications for glioblastoma treatment. Also, it is essential to consider that neurotransmitters' effects depend on the tumor's microenvironment since it can significantly influence the response and behavior of cancer cells. This review examines the possible role of neurotransmitters as regulators of glioblastoma development, focusing on their impact on the chromatin of glioma stem cells.
Collapse
Affiliation(s)
- Jessica Romero-Reyes
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, México
| | - Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, México
| | - Carlos-Camilo Silva
- Chronobiology of Reproduction Research Lab. Biology of Reproduction Research Unit, Carrera de Biología, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Mexico City, México
| | - Anayansi Molina-Hernández
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Mexico City, México
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Mexico City, México.
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, México.
| |
Collapse
|
5
|
Di Vito A, Donato A, Bria J, Conforti F, La Torre D, Malara N, Donato G. Extracellular Matrix Structure and Interaction with Immune Cells in Adult Astrocytic Tumors. Cell Mol Neurobiol 2024; 44:54. [PMID: 38969910 PMCID: PMC11226480 DOI: 10.1007/s10571-024-01488-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024]
Abstract
The extracellular matrix (ECM) is a dynamic set of molecules produced by the cellular component of normal and pathological tissues of the embryo and adult. ECM acts as critical regulator in various biological processes such as differentiation, cell proliferation, angiogenesis, and immune control. The most frequent primary brain tumors are gliomas and by far the majority are adult astrocytic tumors (AATs). The prognosis for patients with these neoplasms is poor and the treatments modestly improves survival. In the literature, there is a fair number of studies concerning the composition of the ECM in AATs, while the number of studies relating the composition of the ECM with the immune regulation is smaller. Circulating ECM proteins have emerged as a promising biomarker that reflect the general immune landscape of tumor microenvironment and may represent a useful tool in assessing disease activity. Given the importance it can have for therapeutic and prognostic purposes, the aim of our study is to summarize the biological properties of ECM components and their effects on the tumor microenvironment and to provide an overview of the interactions between major ECM proteins and immune cells in AATs. As the field of immunotherapy in glioma is quickly expanding, we retain that current data together with future studies on ECM organization and functions in glioma will provide important insights into the tuning of immunotherapeutic approaches.
Collapse
Affiliation(s)
- Anna Di Vito
- Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy.
| | - Annalidia Donato
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Jessica Bria
- Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | | | - Domenico La Torre
- Unit of Neurosurgery, Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Natalia Malara
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Giuseppe Donato
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
6
|
Lam MS, Aw JJ, Tan D, Vijayakumar R, Lim HYG, Yada S, Pang QY, Barker N, Tang C, Ang BT, Sobota RM, Pavesi A. Unveiling the Influence of Tumor Microenvironment and Spatial Heterogeneity on Temozolomide Resistance in Glioblastoma Using an Advanced Human In Vitro Model of the Blood-Brain Barrier and Glioblastoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302280. [PMID: 37649234 DOI: 10.1002/smll.202302280] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/26/2023] [Indexed: 09/01/2023]
Abstract
Glioblastoma (GBM) is the most common primary malignant brain cancer in adults with a dismal prognosis. Temozolomide (TMZ) is the first-in-line chemotherapeutic; however, resistance is frequent and multifactorial. While many molecular and genetic factors have been linked to TMZ resistance, the role of the solid tumor morphology and the tumor microenvironment, particularly the blood-brain barrier (BBB), is unknown. Here, the authors investigate these using a complex in vitro model for GBM and its surrounding BBB. The model recapitulates important clinical features such as a dense tumor core with tumor cells that invade along the perivascular space; and a perfusable BBB with a physiological permeability and morphology that is altered in the presence of a tumor spheroid. It is demonstrated that TMZ sensitivity decreases with increasing cancer cell spatial organization, and that the BBB can contribute to TMZ resistance. Proteomic analysis with next-generation low volume sample workflows of these cultured microtissues revealed potential clinically relevant proteins involved in tumor aggressiveness and TMZ resistance, demonstrating the utility of complex in vitro models for interrogating the tumor microenvironment and therapy validation.
Collapse
Affiliation(s)
- Maxine Sy Lam
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Joey Jy Aw
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Damien Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Ragavi Vijayakumar
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Hui Yi Grace Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Swathi Yada
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Qing You Pang
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Nick Barker
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Carol Tang
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, 308433, Singapore
- Duke-National University of Singapore Medical School, Singapore, 169857, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Beng Ti Ang
- Duke-National University of Singapore Medical School, Singapore, 169857, Singapore
- Department of Neurosurgery, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Radoslaw M Sobota
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Andrea Pavesi
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| |
Collapse
|
7
|
Liang C, Zhang B, Li R, Guo S, Fan X. Network pharmacology -based study on the mechanism of traditional Chinese medicine in the treatment of glioblastoma multiforme. BMC Complement Med Ther 2023; 23:342. [PMID: 37759283 PMCID: PMC10523639 DOI: 10.1186/s12906-023-04174-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is one of the most common primary malignant brain tumors. Yi Qi Qu Yu Jie Du Fang (YYQQJDF) is a traditional Chinese medicine (TCM) prescription for GBM. The present study aimed to use a network pharmacology method to analyze the underlying mechanism of YQQYJDF in treating GBM. METHODS GBM sample data, active ingredients and potential targets of YQQYJDF were obtained from databases. R language was used to screen differentially expressed genes (DEGs) between GBM tissues and normal tissues, and to perform enrichment analysis and weighted gene coexpression network analysis (WGCNA). The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database was used to perform a protein‒protein interaction (PPI) analysis. A Venn diagram was used to obtain the core target genes of YQQYJDF for GBM treatment. Molecular docking was used to verify the binding between the active ingredient molecules and the proteins corresponding to the core target genes. Cell proliferation assays and invasion assays were used to verify the effect of active ingredients on the proliferation and invasion of glioma cells. RESULTS A total of 73 potential targets of YQQYJDF in the treatment of GBM were obtained. Enrichment analyses showed that the biological processes and molecular functions involved in these target genes were related to the activation of the G protein-coupled receptor (GPCR) signaling pathway and the regulation of hypoxia. The neuroactive ligand‒receptor pathway, the cellular senescence pathway, the calcium signaling pathway, the cell cycle pathway and the p53 signaling pathway might play important roles. Combining the results of WGCNA and PPI analysis, five core target genes and their corresponding four core active ingredients were screened. Molecular docking indicated that the core active ingredient molecules and the proteins corresponding to the core target genes had strong binding affinities. Cell proliferation and invasion assays showed that the core active ingredients of YQQYJDF significantly inhibited the proliferation and invasion of glioma cells (P < 0.01). CONCLUSIONS The present study predicted the possible active ingredients and targets of YQQYJDF in treating GBM, and analyzed its possible mechanism. These results may provide a basis and ideas for further research.
Collapse
Affiliation(s)
- Chen Liang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79108, Freiburg, Germany.
| | - Binbin Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ruichun Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Shiwen Guo
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoxuan Fan
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712000, China.
| |
Collapse
|
8
|
Zhang C, Zhao J, Mi W, Zhang Y, Zhong X, Tan G, Li F, Li X, Xu Y, Zhang Y. Comprehensive analysis of microglia gene and subpathway signatures for glioma prognosis and drug screening: linking microglia to glioma. Lab Invest 2022; 20:277. [PMID: 35729639 PMCID: PMC9210642 DOI: 10.1186/s12967-022-03475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/08/2022] [Indexed: 11/10/2022]
Abstract
Glioma is the most common malignant tumors in the brain. Previous studies have revealed that, as the innate immune cells in nervous system, microglia cells were involved in glioma pathology. And, the resident microglia displayed its specific biological roles which distinguished with peripheral macrophages. In this study, an integrated analysis was performed based on public resource database to explore specific biological of microglia within glioma. Through comprehensive analysis, the biological characterization underlying two conditions, glioma microglia compared to glioma macrophage (MicT/MacT) as well as glioma microglia compared to normal microglia (MicT/MicN), were revealed. Notably, nine core MicT/MicN genes displayed closely associations with glioma recurrence and prognosis, such as P2RY2, which was analyzed in more than 2800 glioma samples from 25 studies. Furthermore, we applied a random walk based strategy to identify microglia specific subpathways and developed SubP28 signature for glioma prognostic analysis. Multiple validation data sets confirmed the predictive performance of SubP28 and involvement in molecular subtypes. The associations between SuP28 score and microglia M1/M2 polarization were also explored for both GBM and LGG types. Finally, a comprehensive drug-subpathway network was established for screening candidate medicable molecules (drugs) and identifying therapeutic subpathway targets. In conclusions, the comprehensive analysis of microglia related gene and functional signatures in glioma pathobiologic events by large-scale data sets displayed a framework to dissect inner connection between microglia and glioma, and identify robust signature for glioma clinical implications.
Collapse
Affiliation(s)
- Chunlong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Jiaxin Zhao
- Center of Cerebrovascular Disease, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Zhuhai, 519000, China
| | - Wanqi Mi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yuxi Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xiaoling Zhong
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Guiyuan Tan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Feng Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Yanjun Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
9
|
Akçay S, Güven E, Afzal M, Kazmi I. Non-negative matrix factorization and differential expression analyses identify hub genes linked to progression and prognosis of glioblastoma multiforme. Gene 2022; 824:146395. [PMID: 35283227 DOI: 10.1016/j.gene.2022.146395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/10/2022] [Accepted: 03/04/2022] [Indexed: 12/25/2022]
Abstract
One of the most prevailing primary brain tumors in adult human male is glioblastoma multiforme (GBM), which is categorized by rapid cellular growth. Even though the combination therapy comprises surgery, chemotherapy, and adjuvant therapies, the survival rate, on average, is 14.6 months. Glioma stem cells (GSCs) have key roles in tumorigenesis, progression, and defiance against chemotherapy and radiotherapy. In our study, firstly, the gene expression dataset GSE124145 was retrieved; the non-negative matrix factorization (NMF) method was applied on GBM dataset, and differentially expressed genes analysis (DEGs) was performed. After which, overlapping genes between metagenes and DEGs were detected to examine the Gene Ontology (GO) categories in the biological process (BP) in the stemness of GBM. The common hub genes were used to construct protein-protein interaction (PPI) network and further GO, while Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway was utilized to pinpoint the real hub genes. The analysis of hub genes particular for the same GO categories demonstrated that specific hub genes triggered distinct features of the same biological processes. After utilizing GSE124145 and The Cancer Genome Atlas (TCGA) dataset for survival analysis, we screened five real hub genes: GUCA1A, RFC2, GNG11, MMP19, and NRG1, which are strongly associated with the progression and prognosis of GBM. The DEGs analysis revealed that all real hub genes were overexpressed in GBM and TCGA datasets, which further validates our results. The constructed study of PPI, GO, and KEGG pathway on common hub genes was performed. Finally, the KEGG pathways performed on the top 15 candidate hub genes (including six real hub genes) of the PPI network in the GBM gene expression dataset study found mitogen-activated protein kinase (Mapk) signaling pathway to be the most significant pathway. The rest of the hub genes reviewed throughout the analysis might be favorable targets for diagnosing and treating GBM and lower-grade gliomas.
Collapse
Affiliation(s)
- Sevinç Akçay
- Department of Molecular Biology of Genetics, Kırşehir Ahi Evran University, Kırşehir, Turkey
| | - Emine Güven
- Department of Biomedical Engineering, Düzce University, Düzce, Turkey
| | - Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, AlJouf 72341, Saudi Arabia.
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Gershanov S, Toledano H, Pernicone N, Fichman S, Michowiz S, Pinhasov A, Goldenberg-Cohen N, Listovsky T, Salmon-Divon M. Differences in RNA and microRNA Expression Between PTCH1- and SUFU-mutated Medulloblastoma. Cancer Genomics Proteomics 2021; 18:335-347. [PMID: 33893086 DOI: 10.21873/cgp.20264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND/AIM Germline mutations in PTCH1 or SUFU in the sonic hedgehog (SHH) pathway cause Gorlin's syndrome with increased risk of developing SHH-subgroup medulloblastoma. Gorlin's syndrome precludes the use of radiotherapy (a standard component of treatment) due to the development of multiple basal cell carcinomas. Also, current SHH inhibitors are ineffective against SUFU-mutated medulloblastoma, as they inhibit upstream genes. In this study, we aimed to detect differences in the expression of genes and microRNAs between SUFU- and PTCH1-mutated SHH medulloblastomas which may hint at new treatment directions. PATIENTS AND METHODS We sequenced RNA and microRNA from tumors of two patients with germline Gorlin's syndrome - one having PTCH1 mutation and one with SUFU mutation - followed by bioinformatics analysis to detect changes in genes and miRNAs expression in these two tumors. Expression changes were validated using qRT-PCR. Ingenuity pathway analysis was performed in search for targetable pathways. RESULTS Compared to the PTCH1 tumor, the SUFU tumor demonstrated lower expression of miR-301a-3p and miR-181c-5p, matrix metallopeptidase 11 (MMP11) and OTX2, higher expression of miR-7-5p and corresponding lower expression of its targeted gene, connexin 30 (GJB6). We propose mechanisms to explain the phenotypic differences between the two types of tumors, and understand why PTCH1 and SUFU tumors tend to relapse locally (rather than metastatically as in other medulloblastoma subgroups). CONCLUSION Our results help towards finding new treatable molecular targets for these types of medulloblastomas.
Collapse
Affiliation(s)
- Sivan Gershanov
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Helen Toledano
- Department of Pediatric Oncology, Schneider Children's Medical Center of Israel, Petah-Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Nomi Pernicone
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Suzana Fichman
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Department of Pathology, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Shalom Michowiz
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Department of Pediatric Neurosurgery, Schneider Children's Medical Center of Israel, Petah-Tikva, Israel
| | - Albert Pinhasov
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Nitza Goldenberg-Cohen
- Department of Ophthalmology, Bnai Zion Medical Center, Haifa, Israel.,The Krieger Eye Research Laboratory, Felsenstein Medical Research Center, Medical Center, Petah-Tikva, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Tamar Listovsky
- Department of Molecular Biology, Ariel University, Ariel, Israel; .,Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Mali Salmon-Divon
- Department of Molecular Biology, Ariel University, Ariel, Israel; .,Adelson School of Medicine, Ariel University, Ariel, Israel
| |
Collapse
|
11
|
Rybin MJ, Ivan ME, Ayad NG, Zeier Z. Organoid Models of Glioblastoma and Their Role in Drug Discovery. Front Cell Neurosci 2021; 15:605255. [PMID: 33613198 PMCID: PMC7892608 DOI: 10.3389/fncel.2021.605255] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/07/2021] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma (GBM) is a devastating adult brain cancer with high rates of recurrence and treatment resistance. Cellular heterogeneity and extensive invasion of surrounding brain tissues are characteristic features of GBM that contribute to its intractability. Current GBM model systems do not recapitulate some of the complex features of GBM and have not produced sufficiently-effective treatments. This has cast doubt on the effectiveness of current GBM models and drug discovery paradigms. In search of alternative pre-clinical GBM models, various 3D organoid-based GBM model systems have been developed using human cells. The scalability of these systems and potential to more accurately model characteristic features of GBM, provide promising new avenues for pre-clinical GBM research and drug discovery efforts. Here, we review the current suite of organoid-GBM models, their individual strengths and weaknesses, and discuss their future applications with an emphasis on compound screening.
Collapse
Affiliation(s)
- Matthew J. Rybin
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Michael E. Ivan
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nagi G. Ayad
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Zane Zeier
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
12
|
Bongaarts A, de Jong JM, Broekaart DWM, van Scheppingen J, Anink JJ, Mijnsbergen C, Jansen FE, Spliet WGM, den Dunnen WFA, Gruber VE, Scholl T, Hainfellner JA, Feucht M, Borkowska J, Kotulska K, Jozwiak S, Grajkowska W, Buccoliero AM, Caporalini C, Giordano F, Genitori L, Scicluna BP, Schouten-van Meeteren AYN, van Vliet EA, Mühlebner A, Mills JD, Aronica E. Dysregulation of the MMP/TIMP Proteolytic System in Subependymal Giant Cell Astrocytomas in Patients With Tuberous Sclerosis Complex: Modulation of MMP by MicroRNA-320d In Vitro. J Neuropathol Exp Neurol 2020; 79:777-790. [PMID: 32472129 PMCID: PMC7304985 DOI: 10.1093/jnen/nlaa040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/11/2020] [Accepted: 04/26/2020] [Indexed: 12/15/2022] Open
Abstract
Tuberous sclerosis complex (TSC), a rare genetic disorder caused by a mutation in the TSC1 or TSC2 gene, is characterized by the growth of hamartomas in several organs. This includes the growth of low-grade brain tumors, known as subependymal giant cell astrocytomas (SEGA). Previous studies have shown differential expression of genes related to the extracellular matrix in SEGA. Matrix metalloproteinases (MMPs), and their tissue inhibitors (TIMPs) are responsible for remodeling the extracellular matrix and are associated with tumorigenesis. This study aimed to investigate the MMP/TIMP proteolytic system in SEGA and the regulation of MMPs by microRNAs, which are important post-transcriptional regulators of gene expression. We investigated the expression of MMPs and TIMPs using previously produced RNA-Sequencing data, real-time quantitative PCR and immunohistochemistry in TSC-SEGA samples and controls. We found altered expression of several MMPs and TIMPs in SEGA compared to controls. We identified the lowly expressed miR-320d in SEGA as a potential regulator of MMPs, which can decrease MMP2 expression in human fetal astrocyte cultures. This study provides evidence of a dysregulated MMP/TIMP proteolytic system in SEGA of which MMP2 could be rescued by microRNA-320d. Therefore, further elucidating microRNA-mediated MMP regulation may provide insights into SEGA pathogenesis and identify novel therapeutic targets.
Collapse
Affiliation(s)
- Anika Bongaarts
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jody M de Jong
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Diede W M Broekaart
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jackelien van Scheppingen
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jasper J Anink
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Caroline Mijnsbergen
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Floor E Jansen
- Department of Pediatric Neurology, University Medical Center Utrecht Brain Center, Utrecht, The Netherlands
| | - Wim G M Spliet
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands (WGMS); Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (WFAdD)
| | | | - Victoria E Gruber
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Theresa Scholl
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | | | - Martha Feucht
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Julita Borkowska
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw, Poland
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw, Poland
| | - Sergiusz Jozwiak
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw, Poland.,Department of Child Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Wieslawa Grajkowska
- Department of Pathology, Children's Memorial Health Institute, Warsaw, Poland
| | | | | | - Flavio Giordano
- Department of Neurosurgery, Anna Meyer Children's Hospital, Florence, Italy
| | - Lorenzo Genitori
- Department of Neurosurgery, Anna Meyer Children's Hospital, Florence, Italy
| | - Brendon P Scicluna
- Department of Clinical Epidemiology, Biostatistics & Bioinformatics, Center for Experimental & Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam
| | - Antoinette Y N Schouten-van Meeteren
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Pediatric Oncology, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands
| | - Erwin A van Vliet
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Angelika Mühlebner
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - James D Mills
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| |
Collapse
|
13
|
Wolin IAV, Heinrich IA, Nascimento APM, Welter PG, Sosa LDV, De Paul AL, Zanotto-Filho A, Nedel CB, Lima LD, Osterne VJS, Pinto-Junior VR, Nascimento KS, Cavada BS, Leal RB. ConBr lectin modulates MAPKs and Akt pathways and triggers autophagic glioma cell death by a mechanism dependent upon caspase-8 activation. Biochimie 2020; 180:186-204. [PMID: 33171216 DOI: 10.1016/j.biochi.2020.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 01/03/2023]
Abstract
Glioblastoma multiforme is the most aggressive type of glioma, with limited treatment and poor prognosis. Despite some advances over the last decade, validation of novel and selective antiglioma agents remains a challenge in clinical pharmacology. Prior studies have shown that leguminous lectins may exert various biological effects, including antitumor properties. Accordingly, this study aimed to evaluate the mechanisms underlying the antiglioma activity of ConBr, a lectin extracted from the Canavalia brasiliensis seeds. ConBr at lower concentrations inhibited C6 glioma cell migration while higher levels promoted cell death dependent upon carbohydrate recognition domain (CRD) structure. ConBr increased p38MAPK and JNK and decreased ERK1/2 and Akt phosphorylation. Moreover, ConBr inhibited mTORC1 phosphorylation associated with accumulation of autophagic markers, such as acidic vacuoles and LC3 cleavage. Inhibition of early steps of autophagy with 3-methyl-adenine (3-MA) partially protected whereas the later autophagy inhibitor Chloroquine (CQ) had no protective effect upon ConBr cytotoxicity. ConBr also augmented caspase-3 activation without affecting mitochondrial function. Noteworthy, the caspase-8 inhibitor IETF-fmk attenuated ConBr induced autophagy and C6 glioma cell death. Finally, ConBr did not show cytotoxicity against primary astrocytes, suggesting a selective antiglioma activity. In summary, our results indicate that ConBr requires functional CRD lectin domain to exert antiglioma activity, and its cytotoxicity is associated with MAPKs and Akt pathways modulation and autophagy- and caspase-8- dependent cell death.
Collapse
Affiliation(s)
- Ingrid A V Wolin
- Departamento de Bioquímica e Programa de Pós-graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Isabella A Heinrich
- Departamento de Bioquímica e Programa de Pós-graduação Em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Ana Paula M Nascimento
- Departamento de Bioquímica e Programa de Pós-graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Priscilla G Welter
- Departamento de Bioquímica e Programa de Pós-graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Liliana Del V Sosa
- Centro de Microscopía Electrónica, Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Ciudad Universitaria, 5000, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de La Salud (INICSA), Córdoba, Argentina
| | - Ana Lucia De Paul
- Centro de Microscopía Electrónica, Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Ciudad Universitaria, 5000, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de La Salud (INICSA), Córdoba, Argentina
| | - Alfeu Zanotto-Filho
- Departamento de Farmacologia e Programa de Pós-graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Cláudia Beatriz Nedel
- Departamento de Biologia Celular, Embriologia e Genética, Laboratório de Biologia Celular de Gliomas, Programa de Pós-graduação Em Biologia Celular e Do Desenvolvimento, Universidade Federal de Santa Catarina, Campus Universitário, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Lara Dias Lima
- Departamento de Bioquímica e Biologia Molecular, BioMolLab, Universidade Federal Do Ceará, CEP, 60020-181, Fortaleza, Ceará, Brazil
| | - Vinicius Jose Silva Osterne
- Departamento de Bioquímica e Biologia Molecular, BioMolLab, Universidade Federal Do Ceará, CEP, 60020-181, Fortaleza, Ceará, Brazil
| | | | - Kyria S Nascimento
- Departamento de Bioquímica e Biologia Molecular, BioMolLab, Universidade Federal Do Ceará, CEP, 60020-181, Fortaleza, Ceará, Brazil
| | - Benildo S Cavada
- Departamento de Bioquímica e Biologia Molecular, BioMolLab, Universidade Federal Do Ceará, CEP, 60020-181, Fortaleza, Ceará, Brazil
| | - Rodrigo B Leal
- Departamento de Bioquímica e Programa de Pós-graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, 88040-900, Florianópolis, Santa Catarina, Brazil; Departamento de Bioquímica e Programa de Pós-graduação Em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, 88040-900, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
14
|
Quesnel A, Karagiannis GS, Filippou PS. Extracellular proteolysis in glioblastoma progression and therapeutics. Biochim Biophys Acta Rev Cancer 2020; 1874:188428. [PMID: 32956761 DOI: 10.1016/j.bbcan.2020.188428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022]
Abstract
Gliomas encompass highly invasive primary central nervous system (CNS) tumours of glial cell origin with an often-poor clinical prognosis. Of all gliomas, glioblastoma is the most aggressive form of primary brain cancer. Current treatments in glioblastoma are insufficient due to the invasive nature of brain tumour cells, which typically results in local tumour recurrence following treatment. The latter represents the most important cause of mortality in glioblastoma and underscores the necessity for an in-depth understanding of the underlying mechanisms. Interestingly, increased synthesis and secretion of several proteolytic enzymes within the tumour microenvironment, such as matrix metalloproteinases, lysosomal proteases, cathepsins and kallikreins for extracellular-matrix component degradation may play a major role in the aforementioned glioblastoma invasion mechanisms. These proteolytic networks are key players in establishing and maintaining a tumour microenvironment that promotes tumour cell survival, proliferation, and migration. Indeed, the targeted inhibition of these proteolytic enzymes has been a promisingly useful therapeutic strategy for glioblastoma management in both preclinical and clinical development. We hereby summarize current advances on the biology of the glioblastoma tumour microenvironment, with a particular emphasis on the role of proteolytic enzyme families in glioblastoma invasion and progression, as well as on their subsequent prognostic value as biomarkers and their therapeutic targeting in the era of precision medicine.
Collapse
Affiliation(s)
- Agathe Quesnel
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom; National Horizons Centre, Teesside University, 38 John Dixon Ln, Darlington, DL1 1HG, United Kingdom
| | - George S Karagiannis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA; Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, New York, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Panagiota S Filippou
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom; National Horizons Centre, Teesside University, 38 John Dixon Ln, Darlington, DL1 1HG, United Kingdom.
| |
Collapse
|
15
|
Brito LM, Ribeiro-dos-Santos Â, Vidal AF, de Araújo GS. Differential Expression and miRNA-Gene Interactions in Early and Late Mild Cognitive Impairment. BIOLOGY 2020; 9:biology9090251. [PMID: 32872134 PMCID: PMC7565463 DOI: 10.3390/biology9090251] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/21/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
Mild cognitive impairment (MCI) and Alzheimer's Disease (AD) are complex diseases with their molecular architecture not elucidated. APOE, Amyloid Beta Precursor Protein (APP), and Presenilin-1 (PSEN1) are well-known genes associated with both MCI and AD. Recently, epigenetic alterations and dysregulated regulatory elements, such as microRNAs (miRNAs), have been reported associated with neurodegeneration. In this study, differential expression analysis (DEA) was performed for genes and miRNAs based on microarray and RNA-Seq data. Global gene profile of healthy individuals, early and late mild cognitive impairment (EMCI and LMCI, respectively), and AD was obtained from ADNI Cohort. miRNA global profile of healthy individuals and AD patients was extracted from public RNA-Seq data. DEA performed with limma package on ADNI Cohort data highlighted eight differential expressed (DE) genes (AGER, LINC00483, MMP19, CATSPER1, ARFGAP1, GPER1, PHLPP2, TRPM2) (false discovery rate (FDR) p-value < 0.05) between EMCI and LMCI patients. Previous molecular studies showed associations between these genes with dementia and neurological-related pathways. Five dysregulated miRNAs were identified by DEA performed with RNA-Seq data and edgeR (FDR p-value < 0.002). All reported miRNAs in AD interact with the aforementioned genes. Our integrative transcriptomic analysis was able to identify a set of miRNA-gene interactions that may be involved in cognitive and neurodegeneration processes.
Collapse
Affiliation(s)
- Leonardo Miranda Brito
- Laboratório de Genética Humana e Médica, Instituto de Ciêncas Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (L.M.B.); (Â.R.-d.-S.); (A.F.V.)
- Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Ciêncas Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Ândrea Ribeiro-dos-Santos
- Laboratório de Genética Humana e Médica, Instituto de Ciêncas Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (L.M.B.); (Â.R.-d.-S.); (A.F.V.)
- Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Ciêncas Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Amanda Ferreira Vidal
- Laboratório de Genética Humana e Médica, Instituto de Ciêncas Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (L.M.B.); (Â.R.-d.-S.); (A.F.V.)
- Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Ciêncas Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Gilderlanio Santana de Araújo
- Laboratório de Genética Humana e Médica, Instituto de Ciêncas Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (L.M.B.); (Â.R.-d.-S.); (A.F.V.)
- Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Ciêncas Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
- Correspondence:
| |
Collapse
|
16
|
Expression pattern of EEF1A2 in brain tumors: Histological analysis and functional role as a promoter of EMT. Life Sci 2020; 246:117399. [PMID: 32032648 DOI: 10.1016/j.lfs.2020.117399] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/24/2020] [Accepted: 02/01/2020] [Indexed: 12/18/2022]
Abstract
AIMS Glioblastomas are highly aggressive brain tumors with a very poor survival rate. EEF1A2, the proto-oncogenic isoform of the EEF1A translation factor family, has been found to be overexpressed and promoting tumorigenesis in multiple cancers. Interestingly, recent studies reported reduced expression of this protein in brain tumors, drawing our attention to find the functional role and mechanism of this protein in brain tumor progression. MAIN METHODS Using representative cell line as models, the role of EEF1A2 in cell proliferation, migration and invasion were assessed using MTS assay, scratch wound-healing assay, transwell migration and invasion assay, respectively. Activation of key signaling pathways was assessed using western blots and real-time PCR. Finally, using immunohistochemistry we checked the protein levels of EEF1A2 in CNS tumors. KEY FINDINGS EEF1A2 was found to increase the proliferative, migratory and invasive properties of cell lines of both glial and neuronal origin. PI3K activation directly correlated with EEF1A2 levels. Protein levels of key EMT markers viz. Twist, Snail, and Slug were increased upon ectopic EEF1A2 expression. Furthermore, EEF1A2 was found to affect the expression levels of key inflammatory cytokines, growth factors and matrix metalloproteases. IHC analysis showed that EEF1A2 is upregulated in tumor tissues compared to normal tissue. SIGNIFICANCE EEF1A2 acts as an oncogene in both neuronal and glial cells and triggers an EMT program via PI3K pathway. However, it shows enhanced expression in neuronal cells of the brain than the glial cells, which could explain the previously reported anomaly.
Collapse
|
17
|
Tomko N, Kluever M, Wu C, Zhu J, Wang Y, Salomon RG. 4-Hydroxy-7-oxo-5-heptenoic acid lactone is a potent inducer of brain cancer cell invasiveness that may contribute to the failure of anti-angiogenic therapies. Free Radic Biol Med 2020; 146:234-256. [PMID: 31715381 DOI: 10.1016/j.freeradbiomed.2019.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022]
Abstract
Previously, we discovered that free radical-induced oxidative fragmentation of the docosahexaenoate ester of 2-lysophosphatidylcholine produces 4-hydroxy-7-oxo-5-heptenoic acid (HOHA) lactone that, in turn, promotes the migration and invasion of endothelial cells. This suggested that HOHA lactone might similarly promote migration and invasion of glioblastoma multiformae (GBM) brain cancer stem cells (CSCs). A bioinformatics analysis of clinical cancer genomic data revealed that matrix metalloproteinase (MMP)1 and three markers of oxidative stress - superoxide dismutase 2, NADPH oxidase 4, and carbonic anhydrase 9 - are upregulated in human mesenchymal GBM cancer tissue, and that MMP1 is positively correlated to all three of these oxidative stress markers. In addition, elevated levels of MMP1 are indicative of GBM invasion, while low levels of MMP1 indicate survival. We also explored the hypothesis that the transition from the proneural to the more aggressive mesenchymal phenotype, e.g., after treatment with an anti-angiogenic therapy, is promoted by the effects of lipid oxidation products on GBM CSCs. We found that low micromolar concentrations of HOHA lactone increase the cell migration velocity of cultured GBM CSCs, and induce the expression of MMP1 and two protein biomarkers of the proneural to mesenchymal transition (PMT): p65 NF-κβ and vimentin. Exposure of cultured GBM CSCs to HOHA lactone causes an increase in phosphorylation of mitogen-activated protein kinases and Akt kinases that are dependent on both protease-activated receptor 1 (PAR1) and MMP1 activity. We conclude that HOHA lactone promotes the PMT in GBM through the activation of PAR1 and MMP1. This contributes to a fatal flaw in antiangiogenic, chemo, and radiation therapies: they promote oxidative stress and the generation of HOHA lactone in the tumor that fosters a change from the proliferative proneural to the migratory mesenchymal GBM CSC phenotype that seeds new tumor growth. Inhibition of PAR1 and HOHA lactone are potential new therapeutic targets for impeding GBM tumor recurrence.
Collapse
Affiliation(s)
- Nicholas Tomko
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Mark Kluever
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Chunying Wu
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Junqing Zhu
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yanming Wang
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Robert G Salomon
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
18
|
McCoy MG, Nyanyo D, Hung CK, Goerger JP, R Zipfel W, Williams RM, Nishimura N, Fischbach C. Endothelial cells promote 3D invasion of GBM by IL-8-dependent induction of cancer stem cell properties. Sci Rep 2019; 9:9069. [PMID: 31227783 PMCID: PMC6588602 DOI: 10.1038/s41598-019-45535-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022] Open
Abstract
Rapid growth and perivascular invasion are hallmarks of glioblastoma (GBM) that have been attributed to the presence of cancer stem-like cells (CSCs) and their association with the perivascular niche. However, the mechanisms by which the perivascular niche regulates GBM invasion and CSCs remain poorly understood due in part to a lack of relevant model systems. To simulate perivascular niche conditions and analyze consequential changes of GBM growth and invasion, patient-derived GBM spheroids were co-cultured with brain endothelial cells (ECs) in microfabricated collagen gels. Integrating these systems with 3D imaging and biochemical assays revealed that ECs increase GBM invasiveness and growth through interleukin-8 (IL-8)-mediated enrichment of CSCs. Blockade of IL-8 inhibited these effects in GBM-EC co-cultures, while IL-8 supplementation increased CSC-mediated growth and invasion in GBM-monocultures. Experiments in mice confirmed that ECs and IL-8 stimulate intracranial tumor growth and invasion in vivo. Collectively, perivascular niche conditions promote GBM growth and invasion by increasing CSC frequency, and IL-8 may be explored clinically to inhibit these interactions.
Collapse
Affiliation(s)
- Michael G McCoy
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, United States
| | - Dennis Nyanyo
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, United States
| | - Carol K Hung
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, United States
| | - Julian Palacios Goerger
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, United States
| | - Warren R Zipfel
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, United States
| | - Rebecca M Williams
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, United States
| | - Nozomi Nishimura
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, United States
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, United States.
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, United States.
| |
Collapse
|
19
|
Binder ZA, Thorne AH, Bakas S, Wileyto EP, Bilello M, Akbari H, Rathore S, Ha SM, Zhang L, Ferguson CJ, Dahiya S, Bi WL, Reardon DA, Idbaih A, Felsberg J, Hentschel B, Weller M, Bagley SJ, Morrissette JJD, Nasrallah MP, Ma J, Zanca C, Scott AM, Orellana L, Davatzikos C, Furnari FB, O'Rourke DM. Epidermal Growth Factor Receptor Extracellular Domain Mutations in Glioblastoma Present Opportunities for Clinical Imaging and Therapeutic Development. Cancer Cell 2018; 34:163-177.e7. [PMID: 29990498 PMCID: PMC6424337 DOI: 10.1016/j.ccell.2018.06.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 02/27/2018] [Accepted: 06/11/2018] [Indexed: 12/19/2022]
Abstract
We explored the clinical and pathological impact of epidermal growth factor receptor (EGFR) extracellular domain missense mutations. Retrospective assessment of 260 de novo glioblastoma patients revealed a significant reduction in overall survival of patients having tumors with EGFR mutations at alanine 289 (EGFRA289D/T/V). Quantitative multi-parametric magnetic resonance imaging analyses indicated increased tumor invasion for EGFRA289D/T/V mutants, corroborated in mice bearing intracranial tumors expressing EGFRA289V and dependent on ERK-mediated expression of matrix metalloproteinase-1. EGFRA289V tumor growth was attenuated with an antibody against a cryptic epitope, based on in silico simulation. The findings of this study indicate a highly invasive phenotype associated with the EGFRA289V mutation in glioblastoma, postulating EGFRA289V as a molecular marker for responsiveness to therapy with EGFR-targeting antibodies.
Collapse
Affiliation(s)
- Zev A Binder
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Spyridon Bakas
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E Paul Wileyto
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michel Bilello
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hamed Akbari
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Saima Rathore
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sung Min Ha
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Logan Zhang
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cole J Ferguson
- Division of Neuropathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Sonika Dahiya
- Division of Neuropathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Wenya Linda Bi
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Woman's Hospital, Harvard Medical Center, Boston, MA 02115, USA
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ahmed Idbaih
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris 75013, France
| | - Joerg Felsberg
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, Moorenstrasse 5, Duesseldorf 40225, Germany
| | - Bettina Hentschel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Medical Faculty, Härtelstrasse 16, Leipzig 04107, Germany
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich 8091, Switzerland
| | - Stephen J Bagley
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer J D Morrissette
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - MacLean P Nasrallah
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jianhui Ma
- Ludwig Institute for Cancer Research, La Jolla, San Diego 92093, USA
| | - Ciro Zanca
- Ludwig Institute for Cancer Research, La Jolla, San Diego 92093, USA
| | - Andrew M Scott
- Olivia Newton-John Cancer Research Institute, La Trobe University, Melbourne, Australia
| | - Laura Orellana
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden; Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frank B Furnari
- Ludwig Institute for Cancer Research, La Jolla, San Diego 92093, USA.
| | - Donald M O'Rourke
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Molecular Determinants of Malignant Brain Cancers: From Intracellular Alterations to Invasion Mediated by Extracellular Vesicles. Int J Mol Sci 2017; 18:ijms18122774. [PMID: 29261132 PMCID: PMC5751372 DOI: 10.3390/ijms18122774] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/29/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022] Open
Abstract
Malignant glioma cells invade the surrounding brain parenchyma, by migrating along the blood vessels, thus promoting cancer growth. The biological bases of these activities are grounded in profound alterations of the metabolism and the structural organization of the cells, which consequently acquire the ability to modify the surrounding microenvironment, by altering the extracellular matrix and affecting the properties of the other cells present in the brain, such as normal glial-, endothelial- and immune-cells. Most of the effects on the surrounding environment are probably exerted through the release of a variety of extracellular vesicles (EVs), which contain many different classes of molecules, from genetic material to defined species of lipids and enzymes. EV-associated molecules can be either released into the extracellular matrix (ECM) and/or transferred to neighboring cells: as a consequence, both deep modifications of the recipient cell phenotype and digestion of ECM components are obtained, thus causing cancer propagation, as well as a general brain dysfunction. In this review, we first analyze the main intracellular and extracellular transformations required for glioma cell invasion into the brain parenchyma; then we discuss how these events may be attributed, at least in part, to EVs that, like the pawns of a dramatic chess game with cancer, open the way to the tumor cells themselves.
Collapse
|
21
|
Sangpairoj K, Vivithanaporn P, Apisawetakan S, Chongthammakun S, Sobhon P, Chaithirayanon K. RUNX1 Regulates Migration, Invasion, and Angiogenesis via p38 MAPK Pathway in Human Glioblastoma. Cell Mol Neurobiol 2017; 37:1243-1255. [PMID: 28012022 PMCID: PMC11482080 DOI: 10.1007/s10571-016-0456-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/16/2016] [Indexed: 12/12/2022]
Abstract
Runt-related transcription factor 1 (RUNX1) is essential for the establishment of fetal and adult hematopoiesis and neuronal development. Aberrant expression of RUNX1 led to proliferation and metastasis of several cancers. The aim of the present study was to investigate the role of RUNX1 in migration, invasion, and angiogenesis of human glioblastoma using IL-1β-treated U-87 MG human glioblastoma cells as a model. IL-1β at 10 ng/ml stimulated translocation of RUNX1 into the nucleus with increased expressions of RUNX1, MMP-1, MMP-2, MMP-9, MMP-19, and VEGFA in U-87 MG cells. In addition, silencing of RUNX1 gene significantly suppressed U-87 MG cell migration and invasion abilities. Moreover, knockdown of RUNX1 mRNA in U-87 MG cells reduced the tube formation of human umbilical vein endothelial cells. Further investigation revealed that IL-1β-induced RUNX1 expression might be mediated via the p38 mitogen-activated protein kinase (MAPK) signaling molecule for the expression of these invasion- and angiogenic-related molecules. Together with an inhibitor of p38 MAPK (SB203580) could decrease RUNX1 mRNA expression. Thus, RUNX1 may be one of the putative molecular targeted therapies against glioma metastasis and angiogenesis through the activation of p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Kant Sangpairoj
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Pornpun Vivithanaporn
- Department of Pharmacology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Somjai Apisawetakan
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Wattana, Bangkok, 10110, Thailand
| | - Sukumal Chongthammakun
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
- Faculty of Allied Health Sciences, Burapha University, Mueang District, Chonburi, 20131, Thailand
| | - Kulathida Chaithirayanon
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
22
|
Wang C, Tong X, Jiang X, Yang F. Effect of matrix metalloproteinase-mediated matrix degradation on glioblastoma cell behavior in 3D PEG-based hydrogels. J Biomed Mater Res A 2016; 105:770-778. [PMID: 27770562 DOI: 10.1002/jbm.a.35947] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/11/2016] [Accepted: 10/20/2016] [Indexed: 12/31/2022]
Abstract
Glioblastoma (GBM) is the most common and aggressive form of primary brain tumor with median survival of 12 months. To improve clinical outcomes, it is critical to develop in vitro models that support GBM proliferation and invasion for deciphering tumor progression and screening drug candidates. A key hallmark of GBM cells is their extreme invasiveness, a process mediated by matrix metalloproteinase (MMP)-mediated degradation of the extracellular matrix. We recently reported the development of a MMP-degradable, poly(ethylene-glycol)-based hydrogel platform for culturing GBM cells. In the present study, we modulated the percentage of MMP-degradable crosslinks in 3D hydrogels to analyze the effects of MMP-degradability on GBM fates. Using an immortalized GBM cell line (U87) as a model cell type, our results showed that MMP-degradability was not required for supporting GBM proliferation. All hydrogel formulations supported robust GBM proliferation, up to 10 fold after 14 days. However, MMP-degradability was essential for facilitating tumor spreading, and 50% MMP-degradable hydrogels were sufficient to enable both robust tumor cell proliferation and spreading in 3D. The findings of this study highlight the importance of modulating MMP-degradability in engineering 3D in vitro brain cancer models and may be applied for engineering in vitro models for other cancer types. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 770-778, 2017.
Collapse
Affiliation(s)
- Christine Wang
- Department of Bioengineering, Stanford University, Stanford, California, 94305
| | - Xinming Tong
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, 94305
| | - Xinyi Jiang
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, 94305
| | - Fan Yang
- Department of Bioengineering, Stanford University, Stanford, California, 94305.,Department of Orthopaedic Surgery, Stanford University, Stanford, California, 94305
| |
Collapse
|
23
|
Rooprai HK, Martin AJ, King A, Appadu UD, Jones H, Selway RP, Gullan RW, Pilkington GJ. Comparative gene expression profiling of ADAMs, MMPs, TIMPs, EMMPRIN, EGF-R and VEGFA in low grade meningioma. Int J Oncol 2016; 49:2309-2318. [DOI: 10.3892/ijo.2016.3739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/06/2016] [Indexed: 11/06/2022] Open
|
24
|
Inhibition of pentraxin 3 in glioma cells impairs proliferation and invasion in vitro and in vivo. J Neurooncol 2016; 129:201-9. [DOI: 10.1007/s11060-016-2168-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/01/2016] [Indexed: 12/17/2022]
|
25
|
Comparative Analysis of Matrix Metalloproteinase Family Members Reveals That MMP9 Predicts Survival and Response to Temozolomide in Patients with Primary Glioblastoma. PLoS One 2016; 11:e0151815. [PMID: 27022952 PMCID: PMC4811585 DOI: 10.1371/journal.pone.0151815] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/04/2016] [Indexed: 12/22/2022] Open
Abstract
Background Glioblastoma multiform (GBM) is the most common malignant primary brain tumor in adults. Radiotherapy plus concomitant and adjuvant TMZ chemotherapy is the current standard of care for patients with GBM. Matrix metalloproteinases (MMPs), a family of zinc-dependent endopeptidases, are key modulators of tumor invasion and metastasis due to their ECM degradation capacity. The aim of the present study was to identify the most informative MMP member in terms of prognostic and predictive ability for patients with primary GBM. Method The mRNA expression profiles of all MMP genes were obtained from the Chinese Glioma Genome Atlas (CGGA), the Repository for Molecular Brain Neoplasia Data (REMBRANDT) and the GSE16011 dataset. MGMT methylation status was also examined by pyrosequencing. The correlation of MMP9 expression with tumor progression was explored in glioma specimens of all grades. Kaplan–Meier analysis and Cox proportional hazards regression models were used to investigate the association of MMP9 expression with survival and response to temozolomide. Results MMP9 was the only significant prognostic factor in three datasets for primary glioblastoma patients. Our results indicated that MMP9 expression is correlated with glioma grade (p<0.0001). Additionally, low expression of MMP9 was correlated with better survival outcome (OS: p = 0.0012 and PFS: p = 0.0066), and MMP9 was an independent prognostic factor in primary GBM (OS: p = 0.027 and PFS: p = 0.032). Additionally, the GBM patients with low MMP9 expression benefited from temozolomide (TMZ) chemotherapy regardless of the MGMT methylation status. Conclusions Patients with primary GBMs with low MMP9 expression may have longer survival and may benefit from temozolomide chemotherapy.
Collapse
|
26
|
Pang L, Wang DW, Zhang N, Xu DH, Meng XW. Elevated serum levels of MMP-11 correlate with poor prognosis in colon cancer patients. Cancer Biomark 2016; 16:599-607. [PMID: 27002762 DOI: 10.3233/cbm-160601] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Matrix metalloproteinase 11 (MMP11) has been shown to play a key role in human tumor progression and indicates poor clinical outcome in cancer patients. OBJECTIVE The current study aimed to evaluate the relationship between serum levels of MMP-11 and prognosis in colon cancer patients. METHODS Serum levels of MMP-11 were determined in 92 colon cancer patients and 92 healthy individuals using an enzyme-linked immunosorbent assay (ELISA). Associations between serum MMP-11 levels and clinicopathological characteristics of the patients and their outcomes were investigated. Survival analyses were performed to measure the 5-year overall survival (OS) and disease-free survival (DFS). RESULTS Serum MMP-11 levels were substantially higher in colon cancer patients than in healthy controls. Moreover, serum MMP-11 levels were significantly higher in patients with advanced T status, lymph node metastasis, distant metastasis, and a higher TNM stage. Elevated serum levels of MMP-11 were identified as an independent prognostic factor for 5-year mortality and adverse events associated with colon cancer. Multivariate Cox regression analysis identified the serum MMP-11 level as an independent predictor of OS and DFS. CONCLUSION Our study established that high serum levels of MMP-11 are associated with poor clinical outcome and may serve as a prognostic biomarker in colon cancer patients.
Collapse
Affiliation(s)
- Li Pang
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Da-Wei Wang
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Nan Zhang
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Da-Hai Xu
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiang-Wei Meng
- Department of Gastrointestinal Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
27
|
Qin JJ, Liu ZX, Wang JM, Du J, Xu L, Zeng C, Han W, Li ZD, Xie J, Li GL. Prognostic factors influencing clinical outcomes of malignant glioblastoma multiforme: clinical, immunophenotypic, and fluorescence in situ hybridization findings for 1p19q in 816 chinese cases. Asian Pac J Cancer Prev 2015; 16:971-7. [PMID: 25735391 DOI: 10.7314/apjcp.2015.16.3.971] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Malignant glioblastoma multiforme (GBM) is the most malignant brain tumor and despite recent advances in diagnostics and treatment prognosis remains poor. In this retrospective study, we assessed the clinical and radiological parameters, as well as fluorescence in situ hybridization (FISH) of 1p19q deletion, in a series of cases. A total of 816 patients with GBM who received surgery and radiation between January 2010 and May 2014 were included in this study. Kaplan-Meier survival analysis and Cox regression analysis were used to find the factors independently influencing patient progression free survival (PFS) and overall survival (OS). Age at diagnosis, preoperative Karnofsky Performance Scale (KPS) score, KPS score change at 2 weeks after operation, neurological deficit symptoms, tumor resection extent, maximal tumor diameter, involvement of eloquent cortex or deep structure, involvement of brain lobe, Ki-67 and MMP9 expression level and adjuvant chemotherapy were statistically significant factors (p<0.05) for both PFS and OS in the univariate analysis. Cox proportional hazards modeling revealed that age ≤50 years, preoperative KPS score ≥80, KPS score change after operation ≥0, involvement of single frontal lobe, deep structure involvement, low Ki-67 and MMP9 expression and adjuvant chemotherapy were independent favorable factors (p<0.05) for patient clinical outcomes.
Collapse
Affiliation(s)
- Jun-Jie Qin
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China E-mail : ,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dong F, Eibach M, Bartsch JW, Dolga AM, Schlomann U, Conrad C, Schieber S, Schilling O, Biniossek ML, Culmsee C, Strik H, Koller G, Carl B, Nimsky C. The metalloprotease-disintegrin ADAM8 contributes to temozolomide chemoresistance and enhanced invasiveness of human glioblastoma cells. Neuro Oncol 2015; 17:1474-85. [PMID: 25825051 PMCID: PMC4648299 DOI: 10.1093/neuonc/nov042] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/22/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Despite multimodal treatment, glioblastoma (GBM) therapy with temozolomide (TMZ) remains inefficient due to chemoresistance. Matrix metalloproteinase (MMP) and a disintegrin and metalloprotease (ADAM), increased in GBM, could contribute to chemoresistance and TMZ-induced recurrence of glioblastoma. METHODS TMZ inducibility of metalloproteases was determined in GBM cell lines, primary GBM cells, and tissues from GBM and recurrent GBM. TMZ sensitivity and invasiveness of GBM cells were assessed in the presence of the metalloprotease inhibitors batimastat (BB-94) and marimastat (BB-2516). Metalloprotease-dependent effects of TMZ on mitochondria and pAkt/phosphatidylinositol-3 kinase (PI3K) and phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) pathways were analyzed by fluorescence activated cell sorting, morphometry, and immunoblotting. Invasiveness of GBM cells was determined by Matrigel invasion assays. Potential metalloprotease substrates were identified by proteomics and tested for invasion using blocking antibodies. RESULTS TMZ induces expression of MMP-1, -9, -14, and ADAM8 in GBM cells and in recurrent GBM tissues. BB-94, but not BB-2516 (ADAM8-sparing) increased TMZ sensitivity of TMZ-resistant and -nonresistant GBM cells with different O(6)-methylguanine-DNA methyltransferase states, suggesting that ADAM8 mediates chemoresistance, which was confirmed by ADAM8 knockdown, ADAM8 overexpression, or pharmacological inhibition of ADAM8. Levels of pAkt and pERK1/2 were increased in GBM cells and correlated with ADAM8 expression, cell survival, and invasiveness. Soluble hepatocyte growth factor (HGF) R/c-met and CD44 were identified as metalloprotease substrates in TMZ-treated GBM cells. Blocking of HGF R/c-met prevented TMZ-induced invasiveness. CONCLUSIONS ADAM8 causes TMZ resistance in GBM cells by enhancing pAkt/PI3K, pERK1/2, and cleavage of CD44 and HGF R/c-met. Specific ADAM8 inhibition can optimize TMZ chemotherapy of GBM in order to prevent formation of recurrent GBM in patients.
Collapse
Affiliation(s)
| | | | | | - Amalia M. Dolga
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany (F.D., M.E., J.W.B., U.S., C.Co., S.S., B.C., C.N.); Department of Neurosurgery, Tongji Hospital, Wuhan, China (F.D.); Philipps-University Marburg, Institute for Pharmacology and Clinical Pharmacy, Marburg, Germany (A.M.D., C.Cu.); Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany (O.S., M.L.B.); BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (O.S.); Department of Neurology, Philipps-University Marburg, Marburg, Germany (H.S.); Biomaterials, Biomimetics and Biophotonics Research Group, King's College London Dental Institute, London, United Kingdom (G.K.)
| | - Uwe Schlomann
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany (F.D., M.E., J.W.B., U.S., C.Co., S.S., B.C., C.N.); Department of Neurosurgery, Tongji Hospital, Wuhan, China (F.D.); Philipps-University Marburg, Institute for Pharmacology and Clinical Pharmacy, Marburg, Germany (A.M.D., C.Cu.); Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany (O.S., M.L.B.); BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (O.S.); Department of Neurology, Philipps-University Marburg, Marburg, Germany (H.S.); Biomaterials, Biomimetics and Biophotonics Research Group, King's College London Dental Institute, London, United Kingdom (G.K.)
| | - Catharina Conrad
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany (F.D., M.E., J.W.B., U.S., C.Co., S.S., B.C., C.N.); Department of Neurosurgery, Tongji Hospital, Wuhan, China (F.D.); Philipps-University Marburg, Institute for Pharmacology and Clinical Pharmacy, Marburg, Germany (A.M.D., C.Cu.); Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany (O.S., M.L.B.); BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (O.S.); Department of Neurology, Philipps-University Marburg, Marburg, Germany (H.S.); Biomaterials, Biomimetics and Biophotonics Research Group, King's College London Dental Institute, London, United Kingdom (G.K.)
| | - Susanne Schieber
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany (F.D., M.E., J.W.B., U.S., C.Co., S.S., B.C., C.N.); Department of Neurosurgery, Tongji Hospital, Wuhan, China (F.D.); Philipps-University Marburg, Institute for Pharmacology and Clinical Pharmacy, Marburg, Germany (A.M.D., C.Cu.); Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany (O.S., M.L.B.); BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (O.S.); Department of Neurology, Philipps-University Marburg, Marburg, Germany (H.S.); Biomaterials, Biomimetics and Biophotonics Research Group, King's College London Dental Institute, London, United Kingdom (G.K.)
| | - Oliver Schilling
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany (F.D., M.E., J.W.B., U.S., C.Co., S.S., B.C., C.N.); Department of Neurosurgery, Tongji Hospital, Wuhan, China (F.D.); Philipps-University Marburg, Institute for Pharmacology and Clinical Pharmacy, Marburg, Germany (A.M.D., C.Cu.); Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany (O.S., M.L.B.); BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (O.S.); Department of Neurology, Philipps-University Marburg, Marburg, Germany (H.S.); Biomaterials, Biomimetics and Biophotonics Research Group, King's College London Dental Institute, London, United Kingdom (G.K.)
| | - Martin L. Biniossek
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany (F.D., M.E., J.W.B., U.S., C.Co., S.S., B.C., C.N.); Department of Neurosurgery, Tongji Hospital, Wuhan, China (F.D.); Philipps-University Marburg, Institute for Pharmacology and Clinical Pharmacy, Marburg, Germany (A.M.D., C.Cu.); Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany (O.S., M.L.B.); BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (O.S.); Department of Neurology, Philipps-University Marburg, Marburg, Germany (H.S.); Biomaterials, Biomimetics and Biophotonics Research Group, King's College London Dental Institute, London, United Kingdom (G.K.)
| | - Carsten Culmsee
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany (F.D., M.E., J.W.B., U.S., C.Co., S.S., B.C., C.N.); Department of Neurosurgery, Tongji Hospital, Wuhan, China (F.D.); Philipps-University Marburg, Institute for Pharmacology and Clinical Pharmacy, Marburg, Germany (A.M.D., C.Cu.); Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany (O.S., M.L.B.); BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (O.S.); Department of Neurology, Philipps-University Marburg, Marburg, Germany (H.S.); Biomaterials, Biomimetics and Biophotonics Research Group, King's College London Dental Institute, London, United Kingdom (G.K.)
| | - Herwig Strik
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany (F.D., M.E., J.W.B., U.S., C.Co., S.S., B.C., C.N.); Department of Neurosurgery, Tongji Hospital, Wuhan, China (F.D.); Philipps-University Marburg, Institute for Pharmacology and Clinical Pharmacy, Marburg, Germany (A.M.D., C.Cu.); Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany (O.S., M.L.B.); BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (O.S.); Department of Neurology, Philipps-University Marburg, Marburg, Germany (H.S.); Biomaterials, Biomimetics and Biophotonics Research Group, King's College London Dental Institute, London, United Kingdom (G.K.)
| | - Garrit Koller
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany (F.D., M.E., J.W.B., U.S., C.Co., S.S., B.C., C.N.); Department of Neurosurgery, Tongji Hospital, Wuhan, China (F.D.); Philipps-University Marburg, Institute for Pharmacology and Clinical Pharmacy, Marburg, Germany (A.M.D., C.Cu.); Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany (O.S., M.L.B.); BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (O.S.); Department of Neurology, Philipps-University Marburg, Marburg, Germany (H.S.); Biomaterials, Biomimetics and Biophotonics Research Group, King's College London Dental Institute, London, United Kingdom (G.K.)
| | - Barbara Carl
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany (F.D., M.E., J.W.B., U.S., C.Co., S.S., B.C., C.N.); Department of Neurosurgery, Tongji Hospital, Wuhan, China (F.D.); Philipps-University Marburg, Institute for Pharmacology and Clinical Pharmacy, Marburg, Germany (A.M.D., C.Cu.); Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany (O.S., M.L.B.); BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (O.S.); Department of Neurology, Philipps-University Marburg, Marburg, Germany (H.S.); Biomaterials, Biomimetics and Biophotonics Research Group, King's College London Dental Institute, London, United Kingdom (G.K.)
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany (F.D., M.E., J.W.B., U.S., C.Co., S.S., B.C., C.N.); Department of Neurosurgery, Tongji Hospital, Wuhan, China (F.D.); Philipps-University Marburg, Institute for Pharmacology and Clinical Pharmacy, Marburg, Germany (A.M.D., C.Cu.); Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany (O.S., M.L.B.); BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (O.S.); Department of Neurology, Philipps-University Marburg, Marburg, Germany (H.S.); Biomaterials, Biomimetics and Biophotonics Research Group, King's College London Dental Institute, London, United Kingdom (G.K.)
| |
Collapse
|
29
|
Lendeckel U, Wolke C, Bernstein HG, Keilhoff G. Effects of nitric oxide synthase deficiency on a disintegrin and metalloproteinase domain-containing protein 12 expression in mouse brain samples. Mol Med Rep 2015; 12:2253-62. [PMID: 25892053 DOI: 10.3892/mmr.2015.3643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 03/03/2015] [Indexed: 11/06/2022] Open
Abstract
A disintegrin and metalloproteinase domain-containing protein 12 (ADAM12) belongs to the ADAM family of transmembrane proteins. Via proteolysis, cell adhesion, cell-cell fusion, cell-matrix interaction and membrane protein shedding, ADAM proteins are involved in normal brain development, and also in cancer genesis and progression, and in inflammation. Therefore, neurobiological research focusing on this protein is increasing. Nitric oxide (NO), which is endogenously produced by NO synthases (NOS), is associated with glial tumors. However, knock-out of NOS produces only limited antitumor effects. The present study analyzed the expression of ADAM12 in the cortex and hippocampus of C57/BL6 wild-type mice, and endothelial NOS-, neuronal NOS-(nNOS) or inducible NOS (iNOS)-deficient (-/-) mice, at different stages of development. Expression of ADAM12 was quantified using immunoblot analysis of cortical and hippocampal tissue samples from fetal, neonatal (5 days postnatal), adult (12 weeks old) or >1 year old mice. Using reverse transcription-quantitative polymerase chain reaction, ADAM12 expression was analyzed in cultured N9, OLN93, C6 and PC12 cells, representing the four main cell types in the brain, following NOS inhibition. ADAM12 expression was low in all mouse genotypes and regions of the brain, and in fetal and neonatal mice, an increase in expression was observed with increasing age. The highest levels of expression were observed in the cortex of adult mice, iNOS(-/-) mice of >1 year and wild-type mice, and in the hippocampus of adult and iNOS(-/-) mice of >1 year. By contrast, ADAM12 expression was lowest in adult nNOS(-/-) mice. Inhibition of NOS using N(ω)-Nitro-L-arginine methyl ester hydrochloride, induced ADAM12 mRNA expression in N9 and PC12 cell lines. Inhibition of NOS using L-N(6)-(1-Iminoethyl)lysine dihydrochloride, induced ADAM12 mRNA expression in N9 and C6 cell lines. No change in ADAM12 expression was observed in OLN93 cells following NOS inhibition. ADAM12 expression in mouse hippocampus and cortex samples demonstrated considerable variation during development, with a marked increase observed in adult and >1 year old mice, compared with that in fetal and neonatal mice.
Collapse
Affiliation(s)
- Uwe Lendeckel
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Ernst‑Moritz‑Arndt University, Greifswald D‑17475, Germany
| | - Carmen Wolke
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Ernst‑Moritz‑Arndt University, Greifswald D‑17475, Germany
| | - Hans-Gert Bernstein
- Clinic of Psychiatry, Psychotherapy and Psychosomatic Medicine, Otto‑von‑Guericke University, Magdeburg D‑39120, Germany
| | - Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Otto‑von‑Guericke University, Magdeburg D‑39120, Germany
| |
Collapse
|
30
|
Wieczorek E, Jablonska E, Wasowicz W, Reszka E. Matrix metalloproteinases and genetic mouse models in cancer research: a mini-review. Tumour Biol 2014; 36:163-75. [PMID: 25352026 PMCID: PMC4315474 DOI: 10.1007/s13277-014-2747-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/15/2014] [Indexed: 01/04/2023] Open
Abstract
Carcinogenesis is a multistep and also a multifactorial process that involves agents like genetic and environmental factors. Matrix metalloproteinases (MMPs) are major proteolytic enzymes which are involved in cancer cell migration, invasion, and metastasis. Genetic variations in genes encoding the MMPs were shown in human studies to influence cancer risk and phenotypic features of a tumor. The complex role of MMPs seems to be important in the mechanism of carcinogenesis, but it is not well recognized. Rodent studies concentrated particularly on the better understanding of the biological functions of the MMPs and their impact on the pathological process, also through the modification of Mmp genes. This review presents current knowledge and the existing evidence on the importance of selected MMPs in genetic mouse models of cancer and human genetic association studies. Further, this work can be useful for scientists studying the role of the genetic impact of MMPs in carcinogenesis.
Collapse
Affiliation(s)
- Edyta Wieczorek
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Ewa Jablonska
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Wojciech Wasowicz
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Edyta Reszka
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, Lodz, Poland
| |
Collapse
|
31
|
Identification of plasma biomarker candidates in glioblastoma using an antibody-array-based proteomic approach. Radiol Oncol 2014; 48:257-66. [PMID: 25177240 PMCID: PMC4110082 DOI: 10.2478/raon-2014-0014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/10/2014] [Indexed: 12/30/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is a brain tumour with a very high patient mortality rate, with a median survival of 47 weeks. This might be improved by the identification of novel diagnostic, prognostic and predictive therapy-response biomarkers, preferentially through the monitoring of the patient blood. The aim of this study was to define the impact of GBM in terms of alterations of the plasma protein levels in these patients. Materials and methods. We used a commercially available antibody array that includes 656 antibodies to analyse blood plasma samples from 17 healthy volunteers in comparison with 17 blood plasma samples from patients with GBM. Results We identified 11 plasma proteins that are statistically most strongly associated with the presence of GBM. These proteins belong to three functional signalling pathways: T-cell signalling and immune responses; cell adhesion and migration; and cell-cycle control and apoptosis. Thus, we can consider this identified set of proteins as potential diagnostic biomarker candidates for GBM. In addition, a set of 16 plasma proteins were significantly associated with the overall survival of these patients with GBM. Guanine nucleotide binding protein alpha (GNAO1) was associated with both GBM presence and survival of patients with GBM. Conclusions Antibody array analysis represents a useful tool for the screening of plasma samples for potential cancer biomarker candidates in small-scale exploratory experiments; however, clinical validation of these candidates requires their further evaluation in a larger study on an independent cohort of patients.
Collapse
|
32
|
Kim YS, Joh TH. Matrix metalloproteinases, new insights into the understanding of neurodegenerative disorders. Biomol Ther (Seoul) 2014; 20:133-43. [PMID: 24116286 PMCID: PMC3792209 DOI: 10.4062/biomolther.2012.20.2.133] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 03/15/2012] [Accepted: 03/15/2012] [Indexed: 12/01/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a subfamily of zinc-dependent proteases that are responsible for degradation and remodeling of extracellular matrix proteins. The activity of MMPs is tightly regulated at several levels including cleavage of prodomain, allosteric activation, compartmentalization and complex formation with tissue inhibitor of metalloproteinases (TIMPs). In the central nervous system (CNS), MMPs play a wide variety of roles ranging from brain development, synaptic plasticity and repair after injury to the pathogenesis of various brain disorders. Following general discussion on the domain structure and the regulation of activity of MMPs, we emphasize their implication in various brain disorder conditions such as Alzheimer’s disease, multiple sclerosis, ischemia/reperfusion and Parkinson’s disease. We further highlight accumulating evidence that MMPs might be the culprit in Parkinson’s disease (PD). Among them, MMP-3 appears to be involved in a range of pathogenesis processes in PD including neuroinflammation, apoptosis and degradation of α-synuclein and DJ-1. MMP inhibitors could represent potential novel therapeutic strategies for treatments of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yoon-Seong Kim
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827
| | | |
Collapse
|
33
|
Wang C, Tong X, Yang F. Bioengineered 3D Brain Tumor Model To Elucidate the Effects of Matrix Stiffness on Glioblastoma Cell Behavior Using PEG-Based Hydrogels. Mol Pharm 2014; 11:2115-25. [DOI: 10.1021/mp5000828] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Christine Wang
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Xinming Tong
- Department
of Orthopaedic Surgery, Stanford University, Stanford, California 94305, United States
| | - Fan Yang
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department
of Orthopaedic Surgery, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
34
|
Kessler AF, Wiesner M, Denner J, Kämmerer U, Vince GH, Linsenmann T, Löhr M, Ernestus RI, Hagemann C. Expression-analysis of the human endogenous retrovirus HERV-K in human astrocytic tumors. BMC Res Notes 2014; 7:159. [PMID: 24642114 PMCID: PMC3995297 DOI: 10.1186/1756-0500-7-159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/14/2014] [Indexed: 11/30/2022] Open
Abstract
Background The human endogenous retrovirus K (HERV-K) has been acquired by the genome of human ancestors million years ago. It is the most complete of the HERVs with transcriptionally active gag, pol and env genes. Splice variants of env, which are rec, 1.5 kb transcript and Np9 have been suggested to be tumorigenic. Transcripts of HERV-K have been detected in a multitude of human cancers. However, no such reports are available concerning glioblastomas (GBM), the most common malignant brain tumor in adults. Patients have a limited prognosis of 14.6 months in median, despite standard treatment. Therefore, we elucidated whether HERV-K transcripts could be detected in these tumors and serve as new molecular target for treatment. Findings We analyzed human GBM cell lines, tissue samples from patients and primary cell cultures of different passages for HERV-K full length mRNA and env, rec and 1.5 kb transcripts. While the GBM cell lines U138, U251, U343 and GaMG displayed weak and U87 strong expression of the full length HERV-K, the splice products could not be detected, despite a weak expression of env mRNA in U87 cells. Very few tissue samples from patients showed weak expression of env mRNA, but none of the rec or 1.5 kb transcripts. Primary cells expressed the 1.5 kb transcript weakly in early passages, but lost HERV-K expression with extended culture time. Conclusions These data suggest that HERV-K splice products do not play a role in human malignant gliomas and therefore, are not suitable as targets for new therapy regimen.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Carsten Hagemann
- Tumorbiology Laboratory, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str, 11, Würzburg D-97080, Germany.
| |
Collapse
|
35
|
Bernier M, Paul RK, Dossou KSS, Wnorowski A, Ramamoorthy A, Paris A, Moaddel R, Cloix JF, Wainer IW. Antitumor activity of (R,R')-4-methoxy-1-naphthylfenoterol in a rat C6 glioma xenograft model in the mouse. Pharmacol Res Perspect 2013; 1:e00010. [PMID: 25505565 PMCID: PMC4186428 DOI: 10.1002/prp2.10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/08/2013] [Indexed: 12/19/2022] Open
Abstract
(R,R’)-4-methoxy-1-naphthylfenoterol (MNF) inhibits cancer cell proliferation in vitro through cell-type specific modulation of β2-adrenergic receptor and/or cannabinoid receptor function. Here, we report an investigation into antitumor activity of MNF in rat C6 glioma cells. The potent antiproliferative action of MNF in these cells (IC50 of ∼1 nmol/L) was refractory to pharmacological inhibition of β2-adrenergic receptor while a synthetic inverse agonist of cannabinoid receptor 1 significantly blocked MNF activity. The antitumor activity of MNF was then assessed in a C6 glioblastoma xenograft model in mice. Three days after subcutaneous implantation of C6 cells into the lower flank of nude mice, these animals were subjected to i.p. injections of saline or MNF (2 mg/kg) for 19 days and tumor volumes were measured over the course of the experiment. Gene expression analysis, quantitative RT-PCR and immunoblot assays were performed on the tumors after treatment. Significant reduction in mean tumor volumes was observed in mice receiving MNF when compared with the saline-treated group. We identified clusters in expression of genes involved in cellular proliferation, as well as molecular markers for glioblastoma that were significantly downregulated in tumors of MNF-treated mice as compared to saline-injected controls. The efficacy of MNF against C6 glioma cell proliferation in vivo and in vitro was accompanied by marked reduction in the expression of cell cycle regulator proteins. This study is the first demonstration of MNF-dependent chemoprevention of a glioblastoma xenograft model and may offer a potential mechanism for its anticancer action in vivo.
Collapse
Affiliation(s)
- Michel Bernier
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health Baltimore, Maryland, 21224
| | - Rajib K Paul
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health Baltimore, Maryland, 21224
| | - Katina S S Dossou
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health Baltimore, Maryland, 21224
| | - Artur Wnorowski
- Laboratory of Medicinal Chemistry and Neuroengineering, Department of Chemistry, Medical University of Lublin 20-093, Lublin, Poland
| | - Anuradha Ramamoorthy
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health Baltimore, Maryland, 21224
| | - Arnaud Paris
- Institut de Chimie Organique et Analytique, ICOA, CNRS UMR7311 BP6759, 45067, Orléans Cedex 2, France
| | - Ruin Moaddel
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health Baltimore, Maryland, 21224
| | - Jean-François Cloix
- Institut de Chimie Organique et Analytique, ICOA, CNRS UMR7311 BP6759, 45067, Orléans Cedex 2, France
| | - Irving W Wainer
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health Baltimore, Maryland, 21224
| |
Collapse
|
36
|
Kou YB, Zhang SY, Zhao BL, Ding R, Liu H, Li S. Knockdown of MMP11 inhibits proliferation and invasion of gastric cancer cells. Int J Immunopathol Pharmacol 2013; 26:361-70. [PMID: 23755751 DOI: 10.1177/039463201302600209] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Matrix metalloproteinase 11 (MMP11 or stromelysin-3) has recently been reported to play a crucial role in the development and progression of multiple malignancies. The aim of this study was to investigate the function of MMP11 expression in human gastric adenocarcinoma (GAC). Using immunohistochemistry assay, we studied the expression level of MMP11 in GAC and adjacent non-cancerous tissues (ANCT). The association between MMP11 expression and tumor size and pathological grade, as well as metastatic potential was analyzed. Through small hairpin RNA (shRNA)-mediated MMP11 knockdown in SGC-7901 GAC cells, we observed the changes of the biological behaviors of GAC cells. Our results indicated that the rate of positive expression of MMP11 was higher in GAC tissues than in ANCT (55.0 vs 30.0 percent, P=0.025). MMP11 expression had no association with the factors of age or gender of the GAC patients, or the size, pathological staging and lymph node metastases of the tumors (each P greater than 0.05). Furthermore, MMP11 knockdown inhibited the proliferative activities and invasive potential of SGC-7901 GAC cells with decreased expression of IGF-1, PCNA and VEGF. Taken together, our findings demonstrated that MMP11 expression was increased in GAC tissues, but did not correlate with the clinicopathologic features. Knockdown of MMP11 expression could inhibit the proliferation and invasion of GAC cells probably through down-regulation of the IGF-1 signaling pathway, suggesting that MMP11 might be a potential therapeutic target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Y-B Kou
- Department of Gastroenterology, Baoshan Branch Hospital, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | | | | | | | | |
Collapse
|
37
|
Hagemann C, Fuchs S, Monoranu CM, Herrmann P, Smith J, Hohmann T, Grabiec U, Kessler AF, Dehghani F, Löhr M, Ernestus RI, Vince GH, Stein U. Impact of MACC1 on human malignant glioma progression and patients' unfavorable prognosis. Neuro Oncol 2013; 15:1696-709. [PMID: 24220141 DOI: 10.1093/neuonc/not136] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Metastasis-associated in colon cancer 1 (MACC1) has been established as an independent prognostic indicator of metastasis formation and metastasis-free survival for patients with colon cancer and other solid tumors. However, no data are available concerning MACC1 expression in human astrocytic tumors. Glioblastoma multiforme (GBM) is the most prevalent primary brain tumor of adulthood, and due to its invasive and rapid growth, patients have unfavorable prognoses. Although these tumors rarely metastasize, their invasive and migratory behavior is similar to those of metastatic cells of tumors of different origin. Thus, we hypothesized that MACC1 may be involved in progression of human gliomas. METHODS We performed real-time measurements of proliferation and migration in MACC1-transfected GBM cell lines (U138, U251) and evaluated tumor formation in organotypic hippocampal slice cultures of mice. Semiquantitative and quantitative real-time reverse transcription PCR analyses were performed for MACC1 and for its transcriptional target c-Met in human astrocytoma of World Health Organization grade II (low-grade astrocytoma) and GBM biopsies. Data were validated by MACC1 immunohistochemistry in independent matched samples of low-grade astrocytoma and GBM. RESULTS MACC1 increases the proliferative, migratory, and tumor-formation abilities of GBM cells. The c-Met inhibitor crizotinib reduced MACC1-induced migration and tumor formation in organotypic hippocampal slice cultures of mice. Analyzing patients' biopsies, MACC1 expression increased concomitantly with increasing World Health Organization grade. Moreover, MACC1 expression levels allowed discrimination of dormant and recurrent low-grade astrocytomas and of primary and secondary GBM. Strong MACC1 expression correlated with reduced patient survival. CONCLUSIONS MACC1 may represent a promising biomarker for prognostication and a new target for treatment of human gliomas.
Collapse
Affiliation(s)
- Carsten Hagemann
- Corresponding Author: Ulrike Stein, PhD, Experimental and Clinical Research Center, Charité University Medicine Berlin and the Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ierusalimsky VN, Balaban PM. Type 1 metalloproteinase is selectively expressed in adult rat brain and can be rapidly up-regulated by kainate. Acta Histochem 2013; 115:816-26. [PMID: 23683405 DOI: 10.1016/j.acthis.2013.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/15/2013] [Accepted: 04/03/2013] [Indexed: 12/11/2022]
Abstract
The expression of metalloproteinase MMP-1 was traced in frontal sections of the rat brain in normal conditions and 4 h after an intraperitoneal injection of kainate. In the olfactory lobe, immunoreactivity was normally detected in the lateral olfactory tract. Kainate treatment led to the appearance of additional immunoreactivity in the neuropilar tracts. In the hippocampal part of brain, immunoreactive neurons were found exclusively after the kainate treatment in several hypothalamic and amygdalar nuclei, and in the restricted cortex areas (clusters of neurons in layers 3-4 of cortex, and a stripe of cells in layer 6). In the area between the hippocampus and cerebellum, MMP-1-like immunoreactivity was normally present in the entorhinal cortex, in the lateral periaqueductal gray, and in the pontine nucleus. After kainate treatment, the immunoreactive neurons were also found in the medial entorhinal cortex and in the dorsal raphe nucleus. In the brain stem, the immunoreactive cells were normally found in six nuclei. After kainate treatment, additional immunoreactivity appeared in the inferior olive neurons and in tracts supplying the cerebellar cortex. Thus, MMP-1 is present in several brain areas in normal conditions at a detectable level, and its expression increases after kainate-induced seizures.
Collapse
|
39
|
Bernhart E, Damm S, Wintersperger A, DeVaney T, Zimmer A, Raynham T, Ireson C, Sattler W. Protein kinase D2 regulates migration and invasion of U87MG glioblastoma cells in vitro. Exp Cell Res 2013; 319:2037-2048. [PMID: 23562655 PMCID: PMC3715702 DOI: 10.1016/j.yexcr.2013.03.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 11/25/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common malignant brain tumor, which, despite combined modality treatment, reoccurs and is invariably fatal for affected patients. Recently, a member of the serine/threonine protein kinase D (PRKD) family, PRKD2, was shown to be a potent mediator of glioblastoma growth. Here we studied the role of PRKD2 in U87MG glioblastoma cell migration and invasion in response to sphingosine-1-phosphate (S1P), an activator of PRKD2 and a GBM mitogen. Time-lapse microscopy demonstrated that random cell migration was significantly diminished in response to PRKD2 silencing. The pharmacological PRKD family inhibitor CRT0066101 decreased chemotactic migration and invasion across uncoated or matrigel-coated Transwell inserts. Silencing of PRKD2 attenuated migration and invasion of U87MG cells even more effectively. In terms of downstream signaling, CRT0066101 prevented PRKD2 autophosphorylation and inhibited p44/42 MAPK and to a smaller extent p54/46 JNK and p38 MAPK activation. PRKD2 silencing impaired activation of p44/42 MAPK and p54/46 JNK, downregulated nuclear c-Jun protein levels and decreased c-JunS73 phosphorylation without affecting the NFκB pathway. Finally, qPCR array analyses revealed that silencing of PRKD2 downregulates mRNA levels of integrin alpha-2 and -4 (ITGA2 and -4), plasminogen activator urokinase (PLAU), plasminogen activator urokinase receptor (PLAUR), and matrix metallopeptidase 1 (MMP1). Findings of the present study identify PRKD2 as a potential target to interfere with glioblastoma cell migration and invasion, two major determinants contributing to recurrence of glioblastoma after multimodality treatment. Sphingosine-1-phosphate induces glioma cell migration and invasion. Part of the effects is mediated by protein kinase D2 (PRKD2) activation. Inactivation of PRKD2 attenuates glioblastoma cell migration and invasion. Both, RNAi and pharmacological inhibition of PRKD2 inhibits MAPK signaling. PRKD2 regulates transcription of gene products implicated in migration and invasion.
Collapse
Affiliation(s)
- Eva Bernhart
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Sabine Damm
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Andrea Wintersperger
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Trevor DeVaney
- Institute of Biophysics, Medical University of Graz, Austria
| | - Andreas Zimmer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens University, Graz, Austria
| | | | | | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria.
| |
Collapse
|
40
|
Abstract
AbstractDiffuse human gliomas constitute a group of most treatment-refractory tumors even if maximum treatment strategies including neurosurgical resection followed by combined radio-/chemotherapy are applied. In contrast to most other neoplasms, diffusely infiltrating gliomas invade the brain along pre-existing structures such as axonal tracts and perivascular spaces. Even in cases of early diagnosis single or small clusters of glioma cells are already encountered far away from the main tumor bulk. Complex interactions between glioma cells and the surrounding extracellular matrix and considerable changes in the cytoskeletal apparatus are prerequisites for the cellular movement of glioma cells through the brain thereby escaping from most current treatments. This review provides an overview about classical and current concepts of glioma cell migration/invasion and promising preclinical treatment approaches.
Collapse
|
41
|
A Comparative Study of Primary and Recurrent Human Glioblastoma Multiforme Using the Small Animal Imaging and Molecular Expressive Profiles. Mol Imaging Biol 2012; 15:262-72. [DOI: 10.1007/s11307-012-0591-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
42
|
Wang L, Yuan J, Tu Y, Mao X, He S, Fu G, Zong J, Zhang Y. Co-expression of MMP-14 and MMP-19 predicts poor survival in human glioma. Clin Transl Oncol 2012; 15:139-45. [PMID: 22855183 DOI: 10.1007/s12094-012-0900-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/19/2012] [Indexed: 01/12/2023]
Abstract
AIM Matrix metalloproteinase (MMP)-14 and MMP-19 have been demonstrated to play an important role in the development of human gliomas. However, their prognostic values are not clear. The aim of this study was to investigate whether co-expression of MMP-14 and MMP-19 has prognostic relevance in human gliomas. METHODS Immunohistochemistry and western blot were used to investigate the expression of MMP-14 and MMP-19 proteins in 128 patients with gliomas. RESULTS The expression levels of MMP-14 and MMP-19 proteins in glioma tissues were both significantly higher (both P < 0.001) than those in non-neoplastic brain tissues according to the immunohistochemistry analysis, which was confirmed by the western blot analysis. Additionally, the overexpression of either MMP-14 or MMP-19 was significantly associated with the advanced WHO grade (both P = 0.02), the low Karnofsky performance score (KPS) (P = 0.008 and 0.01, respectively) and the poor overall survival (both P = 0.01). Moreover, the Multivariate Cox proportional-hazards regression analysis revealed that the increased expressions of MMP-14 and MMP-19 were both independent prognostic factors for poor overall survival (both P = 0.02). Furthermore, the co-expression of MMP-14 and MMP-19 was additively and more significantly (P = 0.006) associated with adverse prognosis in patients with gliomas than respective expression of MMP-14 and MMP-19. CONCLUSIONS These findings indicated for the first time that the co-expression of MMP-14 and MMP-19 is significantly correlated with prognosis in glioma patients, suggesting that the co-expression of these proteins may be used as both an early diagnostic and independent prognostic marker.
Collapse
Affiliation(s)
- Liang Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
EphrinA1 is released in three forms from cancer cells by matrix metalloproteases. Mol Cell Biol 2012; 32:3253-64. [PMID: 22688511 DOI: 10.1128/mcb.06791-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
EphrinA1 is a glycosylphosphatidylinositol (GPI)-linked ligand for the EphA2 receptor, which is overexpressed in glioblastoma (GBM), among other cancers. Activation of the receptor by ephrinA1 leads to a suppression of oncogenic properties of GBM cells. We documented that a monomeric functional form of ephrinA1 is released from cancer cells and thus explored the mechanism of ephrinA1 release and the primary protein sequence. We demonstrate here that multiple metalloproteases (MMPs) are able to cleave ephrinA1, most notably MMP-1, -2, -9, and -13. The proteolytic cleavage that releases ephrinA1 occurs at three positions near the C terminus, producing three forms ending in valine-175, histidine-177, or serine-178. Moreover, deletion of amino acids 174 to 181 or 175 to 181 yields ephrinA1 that is still GPI linked but not released by proteolysis, underlining the necessity of amino acids 175 to 181 for release from the membrane. Furthermore, recombinant ephrinA1 ending at residue 175 retains activity toward the EphA2 receptor. These findings suggest a mechanism of release and provide evidence for the existence of several forms of monomeric ephrinA1. Moreover, ephrinA1 should be truncated at a minimum at amino acid 175 in fusions or conjugates with other molecules in order to prevent likely proteolysis within physiological and pathobiological environments.
Collapse
|
44
|
Hagemann C, Anacker J, Ernestus RI, Vince GH. A complete compilation of matrix metalloproteinase expression in human malignant gliomas. World J Clin Oncol 2012; 3:67-79. [PMID: 22582165 PMCID: PMC3349915 DOI: 10.5306/wjco.v3.i5.67] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/12/2011] [Accepted: 04/24/2012] [Indexed: 02/06/2023] Open
Abstract
Glioblastomas are characterized by an aggressive local growth pattern, a marked degree of invasiveness and poor prognosis. Tumor invasiveness is facilitated by the increased activity of proteolytic enzymes which are involved in destruction of the extracellular matrix of the surrounding healthy brain tissue. Elevated levels of matrix metalloproteinases (MMPs) were found in glioblastoma (GBM) cell-lines, as well as in GBM biopsies as compared with low-grade astrocytoma (LGA) and normal brain samples, indicating a role in malignant progression. A careful review of the available literature revealed that both the expression and role of several of the 23 human MMP proteins is controversely discussed and for some there are no data available at all. We therefore screened a panel of 15 LGA and 15 GBM biopsy samples for those MMPs for which there is either no, very limited or even contradictory data available. Hence, this is the first complete compilation of the expression pattern of all 23 human MMPs in astrocytic tumors. This study will support a better understanding of the specific expression patterns and interaction of proteolytic enzymes in malignant human glioma and may provide additional starting points for targeted patient therapy.
Collapse
Affiliation(s)
- Carsten Hagemann
- Carsten Hagemann, Ralf-Ingo Ernestus, Giles H Vince, Department of Neurosurgery, Tumorbiology Laboratory, University of Würzburg, Josef-Schneider-Str. 11, D-97080 Würzburg, Germany
| | | | | | | |
Collapse
|
45
|
Pullen NA, Anand M, Cooper PS, Fillmore HL. Matrix metalloproteinase-1 expression enhances tumorigenicity as well as tumor-related angiogenesis and is inversely associated with TIMP-4 expression in a model of glioblastoma. J Neurooncol 2012; 106:461-71. [PMID: 21858729 DOI: 10.1007/s11060-011-0691-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 08/08/2011] [Indexed: 01/30/2023]
Abstract
Herein we continue the study of matrix metalloproteinase-1 (MMP-1) with respect to glioblastoma multiforme (GBM) cell tumorigenicity and angiogenesis. A model of tumorigenicity with cells stably altered to over-express or knock-down MMP-1 revealed that it significantly increases tumor incidence and size. Organized endothelial growth in human umbilical vein endothelial cell (HUVEC)-GBM co-cultures was significantly increased in the presence of MMP-1. CD31 analysis of model tumors elucidated a substantial recruitment of endothelium in MMP-1 enhanced samples. Antibody arrays indicated an inverse expression of certain anti-angiogenic factors with respect to MMP-1, the most notable of which was a significant increase in tissue inhibitor of metalloproteinases-4 (TIMP-4) in the absence of MMP-1, as validated by immunoblot.
Collapse
Affiliation(s)
- Nicholas A Pullen
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, USA.
| | | | | | | |
Collapse
|
46
|
Li M, Mukasa A, Inda MDM, Zhang J, Chin L, Cavenee W, Furnari F. Guanylate binding protein 1 is a novel effector of EGFR-driven invasion in glioblastoma. ACTA ACUST UNITED AC 2011; 208:2657-73. [PMID: 22162832 PMCID: PMC3244036 DOI: 10.1084/jem.20111102] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Although GBP1 (guanylate binding protein 1) was among the first interferon-inducible proteins identified, its function is still largely unknown. Epidermal growth factor receptor (EGFR) activation by amplification or mutation is one of the most frequent genetic lesions in a variety of human tumors. These include glioblastoma multiforme (GBM), which is characterized by independent but interrelated features of extensive invasion into normal brain parenchyma, rapid growth, necrosis, and angiogenesis. In this study, we show that EGFR activation promoted GBP1 expression in GBM cell lines through a signaling pathway involving Src and p38 mitogen-activated protein kinase. Moreover, we identified YY1 (Yin Yang 1) as the downstream transcriptional regulator regulating EGFR-driven GBP1 expression. GBP1 was required for EGFR-mediated MMP1 (matrix metalloproteinase 1) expression and glioma cell invasion in vitro. Although deregulation of GBP1 expression did not affect glioma cell proliferation, overexpression of GBP1 enhanced glioma cell invasion through MMP1 induction, which required its C-terminal helical domain and was independent of its GTPase activity. Reducing GBP1 levels by RNA interference in invasive GBM cells also markedly inhibited their ability to infiltrate the brain parenchyma of mice. GBP1 expression was high and positively correlated with EGFR expression in human GBM tumors and cell lines, particularly those of the neural subtype. Together, these findings establish GBP1 as a previously unknown link between EGFR activity and MMP1 expression and nominate it as a novel potential therapeutic target for inhibiting GBM invasion.
Collapse
Affiliation(s)
- Ming Li
- Ludwig Institute for Cancer Research, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Human matrix metalloproteinases: an ubiquitarian class of enzymes involved in several pathological processes. Mol Aspects Med 2011; 33:119-208. [PMID: 22100792 DOI: 10.1016/j.mam.2011.10.015] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 10/29/2011] [Indexed: 02/07/2023]
Abstract
Human matrix metalloproteinases (MMPs) belong to the M10 family of the MA clan of endopeptidases. They are ubiquitarian enzymes, structurally characterized by an active site where a Zn(2+) atom, coordinated by three histidines, plays the catalytic role, assisted by a glutamic acid as a general base. Various MMPs display different domain composition, which is very important for macromolecular substrates recognition. Substrate specificity is very different among MMPs, being often associated to their cellular compartmentalization and/or cellular type where they are expressed. An extensive review of the different MMPs structural and functional features is integrated with their pathological role in several types of diseases, spanning from cancer to cardiovascular diseases and to neurodegeneration. It emerges a very complex and crucial role played by these enzymes in many physiological and pathological processes.
Collapse
|
48
|
Tanskanen M, Myllykangas L, Saarialho-Kere U, Paetau A. Matrix metalloproteinase-β19 expressed in cerebral amyloid angiopathy. Amyloid 2011; 18:3-9. [PMID: 21261556 DOI: 10.3109/13506129.2010.541960] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) is a frequent finding in the brains of patients with Alzheimer's disease (AD). CAA may be complicated with CAA-associated intracerebral haemorrhage (CAAH). Previous studies have revealed matrix metalloproteinase (MMP) expression in a mouse model of CAA and in human intracerebral haemorrhage. Here we studied the involvement of MMPs in human CAA and CAAH. MATERIAL AND METHODS To investigate the putative expression of MMPs in human CAA and CAAH (Step 1), immunohistochemistry (IHC) against MMPs-1, -2, -7, -9, -19 and -26 was applied on tissue microarray (TMA) constructed of cerebral samples from 29 individuals with AD, 15 with CAAH and 2 controls. The findings in TMA were confirmed (Step 2) in tissue samples from 64 individuals, 45 presenting with CAA (including 36 with CAAH) and 19 without CAA (including 11 with hypertensive cerebral haemorrhage). RESULTS In Step 1, immunoreactivity against MMPs-19 and -26 was detected in cerebral blood vessels in CAA. The results were confirmed in Step 2, where CAA (p<0.001) and intracerebral haemorrhage (p=0.045) were associated with vascular immunoreactivity against MMP-19. Multivariate analysis showed that the association between vascular MMP-19 and intracerebral haemorrhage was dependent from CAA. MMP-26 associated with CAA (p=0.021) but not with intracerebral haemorrhage. CONCLUSION This is the first human study showing local MMP-19 immunoreactivity in the Aβ-amyloid-laden blood vessels in CAA, suggesting that MMPs may be involved in CAA.
Collapse
Affiliation(s)
- Maarit Tanskanen
- Department of Pathology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.
| | | | | | | |
Collapse
|
49
|
Epidermal growth factor induces matrix metalloproteinase-1 (MMP-1) expression and invasion in glioma cell lines via the MAPK pathway. J Neurooncol 2011; 104:679-87. [DOI: 10.1007/s11060-011-0549-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 02/18/2011] [Indexed: 01/15/2023]
|
50
|
Zhang Y, Zhan H, Xu W, Yuan Z, Lu P, Zhan L, Li Q. Upregulation of matrix metalloproteinase-1 and proteinase-activated receptor-1 promotes the progression of human gliomas. Pathol Res Pract 2011; 207:24-9. [DOI: 10.1016/j.prp.2010.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 10/09/2010] [Accepted: 10/11/2010] [Indexed: 02/03/2023]
|