1
|
Okyar A, Ozturk Civelek D, Akyel YK, Surme S, Pala Kara Z, Kavakli IH. The role of the circadian timing system on drug metabolism and detoxification: an update. Expert Opin Drug Metab Toxicol 2024; 20:503-517. [PMID: 38753451 DOI: 10.1080/17425255.2024.2356167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION The 24-hour variations in drug absorption, distribution, metabolism, and elimination, collectively known as pharmacokinetics, are fundamentally influenced by rhythmic physiological processes regulated by the molecular clock. Recent advances have elucidated the intricacies of the circadian timing system and the molecular interplay between biological clocks, enzymes and transporters in preclinical level. AREA COVERED Circadian rhythm of the drug metabolizing enzymes and carrier efflux functions possess a major role for drug metabolism and detoxification. The efflux and metabolism function of intestines and liver seems important. The investigations revealed that the ABC and SLC transporter families, along with cytochrome p-450 systems in the intestine, liver, and kidney, play a dominant role in the circadian detoxification of drugs. Additionally, the circadian control of efflux by the blood-brain barrier is also discussed. EXPERT OPINION The influence of the circadian timing system on drug pharmacokinetics significantly impacts the efficacy, adverse effects, and toxicity profiles of various drugs. Moreover, the emergence of sex-related circadian changes in the metabolism and detoxification processes has underscored the importance of considering gender-specific differences in drug tolerability and pharmacology. A better understanding of coupling between central clock and circadian metabolism/transport contributes to the development of more rational drug utilization and the implementation of chronotherapy applications.
Collapse
Affiliation(s)
- Alper Okyar
- Department of Pharmacology, Istanbul University Faculty of Pharmacy, Istanbul, Turkiye
| | - Dilek Ozturk Civelek
- Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkiye
| | - Yasemin Kubra Akyel
- Department of Medical Pharmacology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Saliha Surme
- Molecular Biology and Genetics, Koc University, Istanbul, Türkiye
- Chemical and Biological Engineering, Koc University, Istanbul, Türkiye
| | - Zeliha Pala Kara
- Department of Pharmacology, Istanbul University Faculty of Pharmacy, Istanbul, Turkiye
| | - I Halil Kavakli
- Molecular Biology and Genetics, Koc University, Istanbul, Türkiye
- Chemical and Biological Engineering, Koc University, Istanbul, Türkiye
| |
Collapse
|
2
|
Abstract
The blood-brain barrier (BBB) is a critical interface separating the central nervous system from the peripheral circulation, ensuring brain homeostasis and function. Recent research has unveiled a profound connection between the BBB and circadian rhythms, the endogenous oscillations synchronizing biological processes with the 24-hour light-dark cycle. This review explores the significance of circadian rhythms in the context of BBB functions, with an emphasis on substrate passage through the BBB. Our discussion includes efflux transporters and the molecular timing mechanisms that regulate their activities. A significant focus of this review is the potential implications of chronotherapy, leveraging our knowledge of circadian rhythms for improving drug delivery to the brain. Understanding the temporal changes in BBB can lead to optimized timing of drug administration, to enhance therapeutic efficacy for neurological disorders while reducing side effects. By elucidating the interplay between circadian rhythms and drug transport across the BBB, this review offers insights into innovative therapeutic interventions.
Collapse
Affiliation(s)
- Mari Kim
- Cell Biology Department, Emory University, Atlanta, GA, USA
| | | | | |
Collapse
|
3
|
Wang L, Li P, Zhang X, Gu Z, Pan X, Wu Y, Li H. The role of basic leucine zipper transcription factor E4BP4 in cancer: a review and update. Mol Biol Rep 2024; 51:91. [PMID: 38193973 DOI: 10.1007/s11033-023-09079-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/25/2023] [Indexed: 01/10/2024]
Abstract
Mutations in the genes of tumor cells and the disorder of immune microenvironment are the main factors of tumor development. The sensitivity of tumor cells to chemotherapy drugs affect the treatment of tumor. Nuclear transcription factor E4BP4 is dysregulated in a variety of malignant tumors. It can suppress the transcription of NFKBIA, RASSF8, SOSTDC1, FOXO-induced genes (TRAIL, FAS, GADD45a and GADD45b) and Hepcidin, up-regulate RCAN1-1 and PRNP, activate mTOR and p38 in cancer cells. Also, E4BP4 can regulate tumor immune microenvironment. TGFb1/Smad3/E4BP4/ IFNγ axis in NK cells plays an important role in antitumor immunotherapy. Over expression of E4BP4 inhibited the development of Th17 cells by directly binding to the RORγt promoter. Moreover, recent studies have shown that E4BP4 inhibited the expression of multidrug resistance genes. In this review, we summarize the molecular mechanism of E4BP4 in cancer cellular process, the effects of E4BP4 in cancer immunotherapy and antitumor drug resistance, to provide theoretical basis for tumor treatment strategies targeting E4BP4.
Collapse
Affiliation(s)
- Liang Wang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, School of Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Peifen Li
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, School of Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xueying Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, School of Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Zhenwu Gu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, School of Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xinyu Pan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, School of Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yihao Wu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, School of Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Huanan Li
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, School of Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
4
|
Furtado A, Mineiro R, Duarte AC, Gonçalves I, Santos CR, Quintela T. The Daily Expression of ABCC4 at the BCSFB Affects the Transport of Its Substrate Methotrexate. Int J Mol Sci 2022; 23:ijms23052443. [PMID: 35269592 PMCID: PMC8909972 DOI: 10.3390/ijms23052443] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
The choroid plexuses (CPs), located in the brain ventricles, form an interface between the blood and the cerebrospinal fluid named the blood-cerebrospinal barrier, which, by the presence of tight junctions, detoxification enzymes, and membrane transporters, limits the traffic of molecules into the central nervous system. It has already been shown that sex hormones regulate several CP functions, including the oscillations of its clock genes. However, it is less explored how the circadian rhythm regulates CP functions. This study aimed to evaluate the impact of sex hormones and circadian rhythms on the function of CP membrane transporters. The 24 h transcription profiles of the membrane transporters rAbca1, rAbcb1, rAbcc1, rAbcc4, rAbcg2, rAbcg4, and rOat3 were characterized in the CPs of intact male, intact female, sham-operated female, and gonadectomized rats. We found that rAbcc1 is expressed in a circadian way in the CPs of intact male rats, rAbcg2 in the CPs of intact female rats, and both rAbcc4 and rOat3 mRNA levels were expressed in a circadian way in the CPs of intact male and female rats. Next, using an in vitro model of the human blood–cerebrospinal fluid barrier, we also found that methotrexate (MTX) is transported in a circadian way across this barrier. The circadian pattern of Abcc4 found in the human CP epithelial papilloma cells might be partially responsible for MTX circadian transport across the basal membrane of CP epithelial cells.
Collapse
Affiliation(s)
- André Furtado
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.F.); (R.M.); (A.C.D.); (I.G.); (C.R.S.)
| | - Rafael Mineiro
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.F.); (R.M.); (A.C.D.); (I.G.); (C.R.S.)
| | - Ana Catarina Duarte
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.F.); (R.M.); (A.C.D.); (I.G.); (C.R.S.)
| | - Isabel Gonçalves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.F.); (R.M.); (A.C.D.); (I.G.); (C.R.S.)
| | - Cecília R. Santos
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.F.); (R.M.); (A.C.D.); (I.G.); (C.R.S.)
| | - Telma Quintela
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.F.); (R.M.); (A.C.D.); (I.G.); (C.R.S.)
- UDI-IPG—Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
- Correspondence:
| |
Collapse
|
5
|
Pácha J, Balounová K, Soták M. Circadian regulation of transporter expression and implications for drug disposition. Expert Opin Drug Metab Toxicol 2020; 17:425-439. [PMID: 33353445 DOI: 10.1080/17425255.2021.1868438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Solute Carrier (SLC) and ATP-binding cassette (ABC) transporters expressed in the intestine, liver, and kidney determine the absorption, distribution, and excretion of drugs. In addition, most molecular and cellular processes show circadian rhythmicity controlled by circadian clocks that leads to diurnal variations in the pharmacokinetics and pharmacodynamics of many drugs and affects their therapeutic efficacy and toxicity.Area covered: This review provides an overview of the current knowledge on the circadian rhythmicity of drug transporters and the molecular mechanisms of their circadian control. Evidence for coupling drug transporters to circadian oscillators and the plausible candidates conveying circadian clock signals to target drug transporters, particularly transcription factors operating as the output of clock genes, is discussed.Expert opinion: The circadian machinery has been demonstrated to interact with the uptake and efflux of various drug transporters. The evidence supports the concept that diurnal changes that affect drug transporters may influence the pharmacokinetics of the drugs. However, more systematic studies are required to better define the timing of pharmacologically important drug transporter regulation and determine tissue- and sex-dependent differences. Finally, the transfer of knowledge based on the results and conclusions obtained primarily from animal models will require careful validation before it is applied to humans.
Collapse
Affiliation(s)
- Jiří Pácha
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Kateřina Balounová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.,Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Matúš Soták
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
6
|
Circadian rhythm in pharmacokinetics and its relevance to chronotherapy. Biochem Pharmacol 2020; 178:114045. [DOI: 10.1016/j.bcp.2020.114045] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/19/2020] [Indexed: 11/24/2022]
|
7
|
Lu D, Zhao M, Chen M, Wu B. Circadian Clock-Controlled Drug Metabolism: Implications for Chronotherapeutics. Drug Metab Dispos 2020; 48:395-406. [PMID: 32114506 DOI: 10.1124/dmd.120.090472] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/18/2020] [Indexed: 12/20/2022] Open
Abstract
Dependence of drug metabolism on dosing time has long been recognized. However, only recently are the underlying mechanisms for circadian drug metabolism being clarified. Diurnal rhythmicity in expression of drug-metabolizing enzymes is believed to be a key factor determining circadian metabolism. Supporting the notion that biological rhythms are generated and maintained by the circadian clock, a number of diurnal enzymes are under the control of the circadian clock. In general, circadian clock genes generate and regulate diurnal rhythmicity in drug-metabolizing enzymes via transcriptional actions on one or two of three cis-elements (i.e., E-box, D-box, and Rev-erb response element or RAR-related orphan receptor response element). Additionally, cycling or clock-controlled nuclear receptors such as hepatocyte nuclear factor 4α and peroxisome proliferator-activated receptor γ are contributors to diurnal enzyme expression. These newly discovered mechanisms for each of the rhythmic enzymes are reviewed in this article. We also discuss how the rhythms of enzymes are translated to circadian pharmacokinetics and drug chronotoxicity, which has direct implications for chronotherapeutics. Our discussion is also extended to two diurnal transporters (P-glycoprotein and multidrug resistance-associated protein 2) that have an important role in drug absorption. Although the experimental evidence is lacking in metabolism-based chronoefficacy, circadian genes (e.g., Rev-erbα) as drug targets are shown to account for diurnal variability in drug efficacy. SIGNIFICANCE STATEMENT: Significant progress has been made in understanding the molecular mechanisms for generation of diurnal rhythmicity in drug-metabolizing enzymes. In this article, we review the newly discovered mechanisms for each of the rhythmic enzymes and discuss how the rhythms of enzymes are translated to circadian pharmacokinetics and drug chronotoxicity, which has direct implications for chronotherapeutics.
Collapse
Affiliation(s)
- Danyi Lu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China (D.L., M.Z., M.C., B.W.) and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China (B.W.)
| | - Mengjing Zhao
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China (D.L., M.Z., M.C., B.W.) and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China (B.W.)
| | - Min Chen
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China (D.L., M.Z., M.C., B.W.) and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China (B.W.)
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China (D.L., M.Z., M.C., B.W.) and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China (B.W.)
| |
Collapse
|
8
|
Ozturk N, Ozturk D, Kavakli IH, Okyar A. Molecular Aspects of Circadian Pharmacology and Relevance for Cancer Chronotherapy. Int J Mol Sci 2017; 18:E2168. [PMID: 29039812 PMCID: PMC5666849 DOI: 10.3390/ijms18102168] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/13/2017] [Accepted: 10/14/2017] [Indexed: 02/01/2023] Open
Abstract
The circadian timing system (CTS) controls various biological functions in mammals including xenobiotic metabolism and detoxification, immune functions, cell cycle events, apoptosis and angiogenesis. Although the importance of the CTS is well known in the pharmacology of drugs, it is less appreciated at the clinical level. Genome-wide studies highlighted that the majority of drug target genes are controlled by CTS. This suggests that chronotherapeutic approaches should be taken for many drugs to enhance their effectiveness. Currently chronotherapeutic approaches are successfully applied in the treatment of different types of cancers. The chronotherapy approach has improved the tolerability and antitumor efficacy of anticancer drugs both in experimental animals and in cancer patients. Thus, chronobiological studies have been of importance in determining the most appropriate time of administration of anticancer agents to minimize their side effects or toxicity and enhance treatment efficacy, so as to optimize the therapeutic ratio. This review focuses on the underlying mechanisms of the circadian pharmacology i.e., chronopharmacokinetics and chronopharmacodynamics of anticancer agents with the molecular aspects, and provides an overview of chronotherapy in cancer and some of the recent advances in the development of chronopharmaceutics.
Collapse
Affiliation(s)
- Narin Ozturk
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, TR-34116 Beyazit-Istanbul, Turkey.
| | - Dilek Ozturk
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, TR-34116 Beyazit-Istanbul, Turkey.
- Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, TR-34093 Fatih-Istanbul, Turkey.
| | - Ibrahim Halil Kavakli
- Departments of Molecular Biology and Genetics and Chemical and Biological Engineering, Koc University, TR-34450 Sariyer-Istanbul, Turkey.
| | - Alper Okyar
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, TR-34116 Beyazit-Istanbul, Turkey.
| |
Collapse
|
9
|
Dallmann R, Okyar A, Lévi F. Dosing-Time Makes the Poison: Circadian Regulation and Pharmacotherapy. Trends Mol Med 2016; 22:430-445. [PMID: 27066876 DOI: 10.1016/j.molmed.2016.03.004] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/17/2016] [Indexed: 12/14/2022]
Abstract
Daily rhythms in physiology significantly modulate drug pharmacokinetics and pharmacodynamics according to the time-of-day, a finding that has led to the concept of chronopharmacology. The importance of biological clocks for xenobiotic metabolism has gained increased attention with the discovery of the molecular circadian clockwork. Mechanistic understanding of the cell-autonomous molecular circadian oscillator and the circadian timing system as a whole has opened new conceptual and methodological lines of investigation to understand first, the clock's impact on a specific drug's daily variations or the effects/side effects of environmental substances, and second, how clock-controlled pathways are coordinated within a given tissue or organism. Today, there is an increased understanding of the circadian modulation of drug effects. Moreover, several molecular strategies are being developed to treat disease-dependent and drug-induced clock disruptions in humans.
Collapse
Affiliation(s)
- Robert Dallmann
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK; Warwick Systems Biology Centre, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Alper Okyar
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Beyazit-Istanbul, Turkey
| | - Francis Lévi
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK; Warwick Systems Biology Centre, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| |
Collapse
|
10
|
Keniry M, Dearth RK, Persans M, Parsons R. New Frontiers for the NFIL3 bZIP Transcription Factor in Cancer, Metabolism and Beyond. Discoveries (Craiova) 2014; 2:e15. [PMID: 26539561 PMCID: PMC4629104 DOI: 10.15190/d.2014.7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The bZIP transcription factor NFIL3 (Nuclear factor Interleukin 3 regulated, also known as E4 binding protein 4, E4BP4) regulates diverse biological processes from circadian rhythm to cellular viability. Recently, a host of novel roles have been identified for NFIL3 in immunological signal transduction, cancer, aging and metabolism. Elucidating the signaling pathways that are impacted by NFIL3 and the regulatory mechanisms that it targets, inhibits or activates will be critical for developing a clearer picture of its physiological roles in disease and normal processes. This review will discuss the recent advances and emerging issues regarding NFIL3-mediated transcriptional regulation of CEBPb and FOXO1 activated genes and signal transduction.
Collapse
Affiliation(s)
- Megan Keniry
- Department of Biology, University of Texas- Pan American, 1201 W. University Dr., Edinburg, TX 78539, USA
| | - Robert K Dearth
- Department of Biology, University of Texas- Pan American, 1201 W. University Dr., Edinburg, TX 78539, USA
| | - Michael Persans
- Department of Biology, University of Texas- Pan American, 1201 W. University Dr., Edinburg, TX 78539, USA
| | - Ramon Parsons
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave HCSM 6-117, New York, NY 10029, USA
| |
Collapse
|
11
|
Tong X, Muchnik M, Chen Z, Patel M, Wu N, Joshi S, Rui L, Lazar MA, Yin L. Transcriptional repressor E4-binding protein 4 (E4BP4) regulates metabolic hormone fibroblast growth factor 21 (FGF21) during circadian cycles and feeding. J Biol Chem 2010; 285:36401-9. [PMID: 20851878 DOI: 10.1074/jbc.m110.172866] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a potent antidiabetic and triglyceride-lowering hormone whose hepatic expression is highly responsive to food intake. FGF21 induction in the adaptive response to fasting has been well studied, but the molecular mechanism responsible for feeding-induced repression remains unknown. In this study, we demonstrate a novel link between FGF21 and a key circadian output protein, E4BP4. Expression of Fgf21 displays a circadian rhythm, which peaks during the fasting phase and is anti-phase to E4bp4, which is elevated during feeding periods. E4BP4 strongly suppresses Fgf21 transcription by binding to a D-box element in the distal promoter region. Depletion of E4BP4 in synchronized Hepa1c1c-7 liver cells augments the amplitude of Fgf21 expression, and overexpression of E4BP4 represses FGF21 secretion from primary mouse hepatocytes. Mimicking feeding effects, insulin significantly increases E4BP4 expression and binding to the Fgf21 promoter through AKT activation. Thus, E4BP4 is a novel insulin-responsive repressor of FGF21 expression during circadian cycles and feeding.
Collapse
Affiliation(s)
- Xin Tong
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhang YKJ, Yeager RL, Klaassen CD. Circadian expression profiles of drug-processing genes and transcription factors in mouse liver. Drug Metab Dispos 2009; 37:106-15. [PMID: 18838502 PMCID: PMC2683654 DOI: 10.1124/dmd.108.024174] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 10/02/2008] [Indexed: 11/22/2022] Open
Abstract
Temporal coordination of hepatic drug-processing gene (DPG) expression facilitates absorption, biotransformation, and excretion of exogenous and endogenous compounds. To further elucidate the circadian rhythm of hepatic DPG expression, male C57BL/6 mice were subjected to a standard 12-h light/dark cycle, and livers were collected at 2:00, 6:00, and 10:00 AM and 2:00, 6:00, and 10:00 PM. The mRNAs of hepatic phase I enzymes (cytochromes P450, aldehyde dehydrogenases, and carboxylesterases), phase II enzymes (glucuronosyltransferases, sulfotransferases, and glutathione S-transferases), uptake and efflux transporters, and transcription factors were quantified. Messenger RNAs of various genes were graphed across time of day and compared by hierarchical clustering. In general, the mRNA of phase I enzymes increased during the dark phase, whereas the mRNAs of most phase II enzymes and transporters reached maximal levels during the light phase. The majority of hepatic transcription factors exhibited expression peaks either before or after the onset of the dark phase. During the same time period, the negative clock regulator gene Rev-Erbalpha and the hepatic clock-controlled gene Dbp also reached mRNA expression peaks. Considering their important role in xenobiotic metabolism, hepatic transcription factors, such as constitutive androstane receptor, pregnane X receptor, aryl hydrocarbon receptor, and peroxisomal proliferator activated receptor alpha, may be involved in coupling the hepatic circadian clock to environmental cues. Taken together, these data demonstrate that the circadian expression of the DPG battery and transcription factors contribute to the temporal detoxification cycle in the liver.
Collapse
Affiliation(s)
- Yu-Kun Jennifer Zhang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | |
Collapse
|
13
|
Murakami Y, Higashi Y, Matsunaga N, Koyanagi S, Ohdo S. Circadian clock-controlled intestinal expression of the multidrug-resistance gene mdr1a in mice. Gastroenterology 2008; 135:1636-1644.e3. [PMID: 18773899 DOI: 10.1053/j.gastro.2008.07.073] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2007] [Revised: 06/16/2008] [Accepted: 07/24/2008] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS P-glycoprotein, the product of the multidrug resistance (mdr) gene, functions as a xenobiotic transporter contributing to the intestinal barrier. Although intestinal expression of the mdr1a gene and its efflux pump function has been shown to exhibit 24-hour variation, the mechanism of the variations remains poorly understood. Here, we demonstrated that the molecular components of the circadian clock act as regulators to control 24-hour variation in the expression of the mdr1a gene. METHODS Luciferase reporter assay and gel mobility shift assay were used to study the mechanism of transcriptional regulation of the mdr1a gene by clock gene products. The messenger RNA levels and protein abundances in colon 26 cells and mouse intestine were measured by quantitative real-time polymerase chain reaction and Western blotting, respectively. RESULTS Hepatic leukemia factor (HLF) and E4 promoter binding protein-4 (E4BP4) regulated transcription of the mdr1a gene by competing with each other for the same DNA binding site. Molecular and biochemical analyses of HLF- and E4BP4-down-regulated colon 26 cells and the intestinal tract of Clock mutant mice suggested that these 2 proteins consisted of a reciprocating mechanism in which HLF activated the transcription of the mdr1a gene, whereas E4BP4 periodically suppressed transcription at the time of day when E4BP4 was abundant. CONCLUSIONS The intestinal expression of the mdr1a gene is influenced by the circadian organization of molecular clockwork. Our present findings provide a link between the circadian timekeeping system and xenobiotic detoxification.
Collapse
Affiliation(s)
- Yuichi Murakami
- Pharmaceutics, Division of Clinical Pharmacy, Department of Medico-Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|