1
|
Pellitteri R, La Cognata V, Russo C, Patti A, Sanfilippo C. Protective Role of Eicosapentaenoic and Docosahexaenoic and Their N-Ethanolamide Derivatives in Olfactory Glial Cells Affected by Lipopolysaccharide-Induced Neuroinflammation. Molecules 2024; 29:4821. [PMID: 39459191 PMCID: PMC11510059 DOI: 10.3390/molecules29204821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Neuroinflammation is a symptom of different neurodegenerative diseases, and growing interest is directed towards active drug development for the reduction of its negative effects. The anti-inflammatory activity of polyunsaturated fatty acids, eicosapentaenoic (EPA), docosahexaenoic (DHA), and their amide derivatives was largely investigated on some neural cells. Herein, we aimed to elucidate the protective role of both EPA and DHA and the corresponding N-ethanolamides EPA-EA and DHA-EA on neonatal mouse Olfactory Ensheathing Cells (OECs) after exposition to lipopolysaccharide (LPS)-induced neuroinflammation. To verify their anti-inflammatory effect and cell morphological features on OECs, the expression of IL-10 cytokine, and cytoskeletal proteins (vimentin and GFAP) was evaluated by immunocytochemical procedures. In addition, MTT assays, TUNEL, and mitochondrial health tests were carried out to assess their protective effects on OEC viability. Our results highlight a reduction in GFAP and vimentin expression in OECs exposed to LPS and treated with EPA or DHA or EPA-EA or DHA-EA in comparison with OECs exposed to LPS alone. We observed a protective role of EPA and DHA on cell morphology, while the amides EPA-EA and DHA-EA mainly exerted a superior anti-inflammatory effect compared to free acids.
Collapse
Affiliation(s)
- Rosalia Pellitteri
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, I-95126 Catania, Italy;
| | - Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, I-95126 Catania, Italy;
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, Section of Pathology, University of Catania, Via Santa Sofia 97, I-95123 Catania, Italy;
| | - Angela Patti
- Institute of Biomolecular Chemistry, National Research Council, Via P. Gaifami 18, I-95126 Catania, Italy;
| | - Claudia Sanfilippo
- Institute of Biomolecular Chemistry, National Research Council, Via P. Gaifami 18, I-95126 Catania, Italy;
| |
Collapse
|
2
|
Rastogi SK, Ciliberto VC, Trevino MZ, Campbell BA, Brittain WJ. Green Approach Toward Triazole Forming Reactions for Developing Anticancer Drugs. Curr Org Synth 2024; 21:380-420. [PMID: 37157212 DOI: 10.2174/1570179420666230508125144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 05/10/2023]
Abstract
Compounds containing triazole have many significant applications in the dye and ink industry, corrosion inhibitors, polymers, and pharmaceutical industries. These compounds possess many antimicrobial, antioxidant, anticancer, antiviral, anti-HIV, antitubercular, and anticancer activities. Several synthetic methods have been reported for reducing time, minimizing synthetic steps, and utilizing less hazardous and toxic solvents and reagents to improve the yield of triazoles and their analogues synthesis. Among the improvement in methods, green approaches towards triazole forming biologically active compounds, especially anticancer compounds, would be very important for pharmaceutical industries as well as global research community. In this article, we have reviewed the last five years of green chemistry approaches on click reaction between alkyl azide and alkynes to install 1,2,3-triazole moiety in natural products and synthetic drug-like molecules, such as in colchicine, flavanone cardanol, bisphosphonates, thiabendazoles, piperazine, prostanoid, flavonoid, quinoxalines, C-azanucleoside, dibenzylamine, and aryl-azotriazole. The cytotoxicity of triazole hybrid analogues was evaluated against a panel of cancer cell lines, including multidrug-resistant cell lines.
Collapse
Affiliation(s)
- Shiva K Rastogi
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Veronica C Ciliberto
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Monica Z Trevino
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Brooke A Campbell
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - William J Brittain
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| |
Collapse
|
3
|
Campisi A, Sposito G, Grasso R, Bisicchia J, Spatuzza M, Raciti G, Scordino A, Pellitteri R. Effect of Astaxanthin on Tissue Transglutaminase and Cytoskeletal Protein Expression in Amyloid-Beta Stressed Olfactory Ensheathing Cells: Molecular and Delayed Luminescence Studies. Antioxidants (Basel) 2023; 12:antiox12030750. [PMID: 36978998 PMCID: PMC10045022 DOI: 10.3390/antiox12030750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Astaxanthin, a natural compound of Haematococcus pluvialis, possesses antioxidant, anti-inflammatory, anti-tumor and immunomodulatory activities. It also represents a potential therapeutic in Alzheimer’s disease (AD), that is related to oxidative stress and agglomeration of proteins such as amyloid-beta (Aβ). Aβ is a neurotoxic protein and a substrate of tissue transglutaminase (TG2), an ubiquitary protein involved in AD. Herein, the effect of astaxanthin pretreatment on olfactory ensheathing cells (OECs) exposed to Aβ(1–42) or by Aβ(25–35) or Aβ(35–25), and on TG2 expression were assessed. Vimentin, GFAP, nestin, cyclin D1 and caspase-3 were evaluated. ROS levels and the percentage of cell viability were also detected. In parallel, delayed luminescence (DL) was used to monitor mitochondrial status. ASTA reduced TG2, GFAP and vimentin overexpression, inhibiting cyclin D1 levels and apoptotic pathway activation which induced an increase in the nestin levels. In addition, significant changes in DL intensities were particularly observed in OECs exposed to Aβ toxic fragment (25–35), that completely disappear when OECs were pre-incubated in astaxantin. Therefore, we suggest that ASTA pre-treatment might represent an innovative mechanism to contrast TG2 overexpression in AD.
Collapse
Affiliation(s)
- Agatina Campisi
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- CERNUT, Research Centre for Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
- Correspondence: ; Tel.: +39-095-738-4070; Fax: +39-095-738-4220
| | - Giovanni Sposito
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- CERNUT, Research Centre for Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| | - Rosaria Grasso
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, 95123 Catania, Italy
| | - Julia Bisicchia
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Michela Spatuzza
- Institute for Biomedical Research and Innovation (IRIB), National Research Council, 95126 Catania, Italy
| | - Giuseppina Raciti
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Agata Scordino
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, 95123 Catania, Italy
- Laboratori Nazionali del Sud, National Institute for Nuclear Physics, 95123 Catania, Italy
| | - Rosalia Pellitteri
- Institute for Biomedical Research and Innovation (IRIB), National Research Council, 95126 Catania, Italy
| |
Collapse
|
4
|
Attanzio A, Restivo I, Tutone M, Tesoriere L, Allegra M, Livrea MA. Redox Properties, Bioactivity and Health Effects of Indicaxanthin, a Bioavailable Phytochemical from Opuntia ficus indica, L.: A Critical Review of Accumulated Evidence and Perspectives. Antioxidants (Basel) 2022; 11:antiox11122364. [PMID: 36552572 PMCID: PMC9774763 DOI: 10.3390/antiox11122364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Phytochemicals from plant foods are considered essential to human health. Known for their role in the adaptation of plants to their environment, these compounds can induce adaptive responses in cells, many of which are directed at maintaining the redox tone. Indicaxanthin is a long-known betalain pigment found in the genus Opuntia of cactus pear and highly concentrated in the edible fruits of O. ficus indica, L. whose bioactivity has been overlooked until recently. This review summarizes studies conducted so far in vitro and in vivo, most of which have been performed in our laboratory. The chemical and physicochemical characteristics of Indicaxanthin are reflected in the molecule's reducing properties and antioxidant effects and help explain its ability to interact with membranes, modulate redox-regulated cellular pathways, and possibly bind to protein molecules. Measurement of bioavailability in volunteers has been key to exploring its bioactivity; amounts consistent with dietary intake, or plasma concentration after dietary consumption of cactus pear fruit, have been used in experimental setups mimicking physiological or pathophysiological conditions, in cells and in animals, finally suggesting pharmacological potential and relevance of Indicaxanthin as a nutraceutical. In reporting experimental results, this review also aimed to raise questions and seek insights for further basic research and health promotion applications.
Collapse
|
5
|
Amyloid-Beta Induces Different Expression Pattern of Tissue Transglutaminase and Its Isoforms on Olfactory Ensheathing Cells: Modulatory Effect of Indicaxanthin. Int J Mol Sci 2021; 22:ijms22073388. [PMID: 33806203 PMCID: PMC8037686 DOI: 10.3390/ijms22073388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 01/29/2023] Open
Abstract
Herein, we assessed the effect of full native peptide of amyloid-beta (Aβ) (1-42) and its fragments (25-35 and 35-25) on tissue transglutaminase (TG2) and its isoforms (TG2-Long and TG2-Short) expression levels on olfactory ensheathing cells (OECs). Vimentin and glial fibrillary acid protein (GFAP) were also studied. The effect of the pre-treatment with indicaxanthin from Opuntia ficus-indica fruit on TG2 expression levels and its isoforms, cell viability, total reactive oxygen species (ROS), superoxide anion (O2−), and apoptotic pathway activation was assessed. The levels of Nestin and cyclin D1 were also evaluated. Our findings highlight that OECs exposure to Aβ(1-42) and its fragments induced an increase in TG2 expression levels and a different expression pattern of its isoforms. Indicaxanthin pre-treatment reduced TG2 overexpression, modulating the expression of TG2 isoforms. It reduced total ROS and O2− production, GFAP and Vimentin levels, inhibiting apoptotic pathway activation. It also induced an increase in the Nestin and cyclin D1 expression levels. Our data demonstrated that indicaxanthin pre-treatment stimulated OECs self-renewal through the reparative activity played by TG2. They also suggest that Aβ might modify TG2 conformation in OECs and that indicaxanthin pre-treatment might modulate TG2 conformation, stimulating neural regeneration in Alzheimer’s disease.
Collapse
|
6
|
Grasso R, Dell'Albani P, Carbone C, Spatuzza M, Bonfanti R, Sposito G, Puglisi G, Musumeci F, Scordino A, Campisi A. Synergic pro-apoptotic effects of Ferulic Acid and nanostructured lipid carrier in glioblastoma cells assessed through molecular and Delayed Luminescence studies. Sci Rep 2020; 10:4680. [PMID: 32170186 PMCID: PMC7070080 DOI: 10.1038/s41598-020-61670-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/28/2020] [Indexed: 11/13/2022] Open
Abstract
Herein, we assessed the effect of Ferulic Acid (FA), a natural antioxidant with anti-cancer effect, on the human glioblastoma cells through molecular and Delayed Luminescence (DL) studies. DL, a phenomenon of ultra-week emission of optical photons, was used to monitor mitochondrial assessment. The effect of FA loaded in nanostructured lipid carriers (NLCs) was also assessed. To validate NLCs as a drug delivery system for glioblastoma treatment, particular attention was focused on their effect. We found that free FA induced a significant decrease in c-Myc and Bcl-2 expression levels accompanied by the apoptotic pathway activation. Blank NLCs, even if they did not induce cytotoxicity and caspase-3 cleavage, decreased Bcl-2, ERK1/2, c-Myc expression levels activating PARP-1 cleavage. The changes in DL intensity and kinetics highlighted a possible effect of nanoparticle matrix on mitochondria, through the involvement of the NADH pool and ROS production that, in turn, activates ERK1/2 pathways. All the effects on protein expression levels and on the activation of apoptotic pathway appeared more evident when the cells were exposed to FA loaded in NLCs. We demonstrated that the observed effects are due to a synergic pro-apoptotic influence exerted by FA, whose bio-availability increases in the glioblastoma cells, and NLCs formulation.
Collapse
Affiliation(s)
- Rosaria Grasso
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, 95123, Catania, Italy. .,Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, 95123, Catania, Italy.
| | - Paola Dell'Albani
- Institute for Biomedical Research and Innovation, Italian National Research Council, 95126, Catania, Italy
| | - Claudia Carbone
- Department of Drug Sciences, Laboratory of Drug Delivery Technology, University of Catania, 95123, Catania, Italy
| | - Michela Spatuzza
- Oasi Institute for Research on Mental Retardation and Brain Aging (IRCCS), 94018, Troina, Italy
| | - Roberta Bonfanti
- Institute for Biomedical Research and Innovation, Italian National Research Council, 95126, Catania, Italy
| | - Giovanni Sposito
- Department of Drug Sciences, Section of Biochemistry, University of Catania, 95123, Catania, Italy
| | - Giovanni Puglisi
- Department of Drug Sciences, Laboratory of Drug Delivery Technology, University of Catania, 95123, Catania, Italy
| | - Francesco Musumeci
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, 95123, Catania, Italy.,Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, 95123, Catania, Italy
| | - Agata Scordino
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, 95123, Catania, Italy.,Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, 95123, Catania, Italy
| | - Agata Campisi
- Department of Drug Sciences, Section of Biochemistry, University of Catania, 95123, Catania, Italy.
| |
Collapse
|
7
|
Grasso R, Pellitteri R, Caravella SA, Musumeci F, Raciti G, Scordino A, Sposito G, Triglia A, Campisi A. Dynamic changes in cytoskeleton proteins of olfactory ensheathing cells induced by radiofrequency electromagnetic fields. J Exp Biol 2020; 223:jeb217190. [PMID: 32041804 DOI: 10.1242/jeb.217190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/02/2020] [Indexed: 01/13/2023]
Abstract
Several evidences have suggested the ability of radiofrequency electromagnetic fields to influence biological systems, even if the action mechanisms are not well understood. There are few data on the effect of radiofrequency electromagnetic fields on self-renewal of neural progenitor cells. A particular glial type that shows characteristics of stem cells is olfactory ensheathing cells (OECs). Herein, we assessed the non-thermal effects induced on OECs through radiofrequency electromagnetic fields changing the envelope of the electromagnetic wave. Primary OEC cultures were exposed to continuous or amplitude-modulated 900 MHz electromagnetic fields, in the far-field condition and at different exposure times (10, 15, 20 min). The expression of OEC markers (S-100 and nestin), cytoskeletal proteins (GFAP and vimentin), apoptotic pathway activation by caspase-3 cleavage and cell viability were evaluated. Our results highlight that 20 min of exposure to continuous or amplitude-modulated 900 MHz electromagnetic fields induced a different and significant decrease in cell viability. In addition, according to the electromagnetic field waveform, diverse dynamic changes in the expression of the analysed markers in OECs and activation of the apoptotic pathway were observed. The data suggest that radiofrequency electromagnetic fields might play different and important roles in the self-renewal of OEC stem cells, which are involved in nervous system repair.
Collapse
Affiliation(s)
- Rosaria Grasso
- Department of Physics and Astronomy 'Ettore Majorana', University of Catania, 95123 Catania, Italy
- Laboratori Nazionali del Sud, National Institute for Nuclear Physics, 95123 Catania, Italy
| | - Rosalia Pellitteri
- Institute for Biomedical Research and Innovation, Italian National Research Council, 95126 Catania, Italy
| | | | - Francesco Musumeci
- Department of Physics and Astronomy 'Ettore Majorana', University of Catania, 95123 Catania, Italy
- Laboratori Nazionali del Sud, National Institute for Nuclear Physics, 95123 Catania, Italy
| | - Giuseppina Raciti
- Department of Drug Sciences, Section of Biochemistry, University of Catania, 95125 Catania, Italy
| | - Agata Scordino
- Department of Physics and Astronomy 'Ettore Majorana', University of Catania, 95123 Catania, Italy
- Laboratori Nazionali del Sud, National Institute for Nuclear Physics, 95123 Catania, Italy
| | - Giovanni Sposito
- Department of Drug Sciences, Section of Biochemistry, University of Catania, 95125 Catania, Italy
| | - Antonio Triglia
- Department of Physics and Astronomy 'Ettore Majorana', University of Catania, 95123 Catania, Italy
| | - Agata Campisi
- Department of Drug Sciences, Section of Biochemistry, University of Catania, 95125 Catania, Italy
| |
Collapse
|
8
|
Campisi A, Bonfanti R, Raciti G, Bonaventura G, Legnani L, Magro G, Pennisi M, Russo G, Chiacchio MA, Pappalardo F, Parenti R. Gene Silencing of Transferrin-1 Receptor as a Potential Therapeutic Target for Human Follicular and Anaplastic Thyroid Cancer. MOLECULAR THERAPY-ONCOLYTICS 2020; 16:197-206. [PMID: 32099899 PMCID: PMC7033459 DOI: 10.1016/j.omto.2020.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 01/09/2020] [Indexed: 11/17/2022]
Abstract
Herein, we assess the gene expression changes activated in thyroid tumors through a computational approach, using the MapReduce algorithm. Through this predictive analysis, we identified the TfR1 gene as a critical mediator of thyroid tumor progression. Then, we investigated the effect of TfR1 gene silencing through small interfering RNA (siRNA) in the expression of extracellular signal-regulated kinase 1/2 (Erk1/2) pathway and c-Myc in human differentiated follicular and undifferentiated anaplastic thyroid cancer. The expression levels of cyclin D1, p53, and p27, proteins involved in cell cycle progression, were also evaluated. The effect of TfR1 gene silencing through siRNA on the apoptotic pathway activation was also tested. Computational prediction and in vitro studies demonstrate that TfR1 plays a key role in thyroid cancer and that its downregulation was able to inhibit the ERK pathway, reducing also c-Myc expression, which blocks the cell cycle and activates the apoptotic pathway. We demonstrate that TfR1 plays a crucial role for a rapid and transient activation of the ERK signaling pathway, which induces a deregulation of genes involved in the aberrant accumulation of intracellular free iron and in drug resistance. We also suggest that TfR1 might represent an important target for thyroid cancer therapy.
Collapse
Affiliation(s)
- Agata Campisi
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Corresponding author: Agata Campisi, PhD, Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Roberta Bonfanti
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giuseppina Raciti
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Gabriele Bonaventura
- Institute for Biomedical Research and Innovation (IRIB), Italian National Research Council, Via P. Gaifami 18, 95126 Catania, Italy
| | - Laura Legnani
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Gaetano Magro
- Department of Department of Medical, Surgical, and Technological Sciences “G.B. Ingrassia,” University of Catania, Via S. Sofia 87, 95123 Catania, Italy
| | - Marzio Pennisi
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giulia Russo
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | | | - Francesco Pappalardo
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| |
Collapse
|
9
|
Grasso R, Pellitteri R, Caravella SA, Musumeci F, Raciti G, Scordino A, Sposito G, Triglia A, Campisi A. Non thermal effects of radiofrequency electromagnetic field exposure on neural cells. EPJ WEB OF CONFERENCES 2020. [DOI: 10.1051/epjconf/202023000004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The non-thermal mechanisms, underlying the damage induced on human cells by radiofrequency electromagnetic fields (RF-EMFs), are still unclear and only few studies reported about the effect of RFEMFs on self-renewal of neural progenitor cells. In this research, we investigated the influence of low-intensity RF-EMFs on Olfactory Ensheathing Cell (OEC) cultures, typical glia cells showing characteristics of stem cells. Cell cultures were exposed, in far-field condition, at 900 MHz continuous and amplitude modulated EMFs for 10, 15 and 20 min at 37°C. The expression of OEC marker (S-100), stem cell marker (Nestin), cytoskeletal proteins (GFAP and Vimentin), apoptotic pathway activation by Caspase-3 cleavage and cell viability, were evaluated. Surprisingly 20 min of exposure to continuous or amplitude modulated 900 MHz EMF induced a different and significant decrease in cell viability, some dynamic changes in the expression of the analysed markers and in the activation of the apoptotic pathway.
Collapse
|
10
|
Abstract
Cell metabolism is a key determinant factor for the pluripotency and fate commitment of Stem Cells (SCs) during development, ageing, pathological onset and progression. We derived and cultured selected subpopulations of rodent fetal, postnatal, adult Neural SCs (NSCs) and postnatal glial progenitors, Olfactory Ensheathing Cells (OECs), respectively from the subventricular zone (SVZ) and the olfactory bulb (OB). Cell lysates were analyzed by proton Nuclear Magnetic Resonance (1H-NMR) spectroscopy leading to metabolites identification and quantitation. Subsequent multivariate analysis of NMR data by Principal Component Analysis (PCA), and Partial Least Square Discriminant Analysis (PLS-DA) allowed data reduction and cluster analysis. This strategy ensures the definition of specific features in the metabolic content of phenotypically similar SCs sharing a common developmental origin. The metabolic fingerprints for selective metabolites or for the whole spectra demonstrated enhanced peculiarities among cell types. The key result of our work is a neat divergence between OECs and the remaining NSC cells. We also show that statistically significant differences for selective metabolites characterizes NSCs of different ages. Finally, the retrived metabolome in cell cultures correlates to the physiological SC features, thus allowing an integrated bioengineering approach for biologic fingerprints able to dissect the (neural) SC molecular specificities.
Collapse
|
11
|
Pellitteri R, Bonfanti R, Spatuzza M, Cambria MT, Ferrara M, Raciti G, Campisi A. Effect of Some Growth Factors on Tissue Transglutaminase Overexpression Induced by β-Amyloid in Olfactory Ensheathing Cells. Mol Neurobiol 2016; 54:6785-6794. [PMID: 27757835 DOI: 10.1007/s12035-016-0152-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/22/2016] [Indexed: 02/07/2023]
Abstract
Herein, we assessed in a particular glial cell type, called olfactory ensheathing cells (OECs), the effect of some growth factors (GFs) on tissue transglutaminase (TG2) overexpression induced by amyloid-beta (Aβ) with native full-length peptide 1-42 or by fragments, 25-35 or 35-25, as control. Previously, we demonstrated that TG2 overexpression induced by some stressors was down-regulated by GFs exposure in OECs. To monitor cell viability, an MTT test was used, while TG2 expression was examined using immunocytochemical and Western blot analysis. We also considered the involvement of the TG2-mediated apoptotic pathway. Vimentin expression was evaluated as well. Reactive oxygen species and reduced glutathione levels were utilized to test the oxidative intracellular status. Lactate dehydrogenase released into the medium, as a marker of necrotic cell death, was evaluated. We found that in OECs exposed to Aβ(1-42) or Aβ(25-35) for 24 h, TG2 expression increased, and we observed that the protein appeared prevalently localized in the cytosol. The pre-treatment with GFs, basic fibroblast growth factor (bFGF) or glial-derived neurotrophic factor (GDNF), down-regulated the TG2 level, which was prevalently limited to the nuclear compartment. Vimentin expression and caspase cleavage showed a significant enhancement in Aβ(1-42) and Aβ(25-35) exposed cells. The pre-treatment with bFGF or GDNF was able to restore the levels of the proteins to control values, and the intracellular oxidative status modified by the exposure to Aβ(1-42) or Aβ(25-35). Our data suggest that both bFGF or GDNF could be an innovative mechanism to contrast TG2 expression, which plays a key role in Alzheimer's disease.
Collapse
Affiliation(s)
- Rosalia Pellitteri
- Institute of Neurological Sciences, National Research Council, Section of Catania, via P. Gaifami 18, 95126, Catania, Italy
| | - Roberta Bonfanti
- Institute of Neurological Sciences, National Research Council, Section of Catania, via P. Gaifami 18, 95126, Catania, Italy
| | - Michela Spatuzza
- Institute of Neurological Sciences, National Research Council, Section of Catania, via P. Gaifami 18, 95126, Catania, Italy
| | - Maria Teresa Cambria
- Department of Biomedical and Biotechnological Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Mariacristina Ferrara
- Department of Drug Sciences, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Giuseppina Raciti
- Department of Drug Sciences, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Agata Campisi
- Department of Drug Sciences, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125, Catania, Italy.
| |
Collapse
|
12
|
FA-loaded lipid drug delivery systems: preparation, characterization and biological studies. Eur J Pharm Sci 2014; 52:12-20. [PMID: 24514450 DOI: 10.1016/j.ejps.2013.10.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 08/29/2013] [Accepted: 10/08/2013] [Indexed: 11/20/2022]
Abstract
The main purpose of this research was to prepare and to characterize ferulic acid-loaded nanostructured lipid carrier (FA-NLC) to evaluate the cytotoxic effect on human glioblastoma cancer U87MG cells. First of all, the influence of different materials on mean size and homogeneity of NLC prepared by a low energy organic solvent-free method was investigated. Technological characterization (encapsulation efficiency, mean particle size, homogeneity and in vitro release profile) was performed on the selected NLC in comparison to others lipid carriers, nanoemulsion and SLN. Furthermore, the thermal behavior of NLC and SLN was investigated using Differential Scanning Calorimetry (DSC) in order to evaluate their structure. Biological studies (MTT bioassay and caspase-3 cleavage) on the selected NLC showed no cytotoxic effects of the unloaded tested NLC. Besides, the effectiveness of FA-loaded NLC was higher compared to the free drug. Cells treated with FA or FA-loaded NLC showed a greater effect compared to idebenone (IDE) or IDE-loaded NLC, respectively. These results strongly support that FA-loaded NLC could be potentially used for the treatment of glioblastoma.
Collapse
|
13
|
Romeo R, Giofrè SV, Carnovale C, Chiacchio MA, Campisi A, Mancuso R, Cirmi S, Navarra M. Synthesis and Biological Activity of Triazole-Appended N,O-Nucleosides. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
Scordino A, Campisi A, Grasso R, Bonfanti R, Gulino M, Iauk L, Parenti R, Musumeci F. Delayed luminescence to monitor programmed cell death induced by berberine on thyroid cancer cells. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:117005. [PMID: 25393968 DOI: 10.1117/1.jbo.19.11.117005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/17/2014] [Indexed: 06/04/2023]
Abstract
Correlation between apoptosis and UVA-induced ultraweak photon emission delayed luminescence (DL) from tumor thyroid cell lines was investigated. In particular, the effects of berberine, an alkaloid that has been reported to have anticancer activities, on two cancer cell lines were studied. The FTC-133 and 8305C cell lines, as representative of follicular and anaplastic thyroid human cancer, respectively, were chosen. The results show that berberine is able to arrest cell cycle and activate apoptotic pathway as shown in both cell lines by deoxyribonucleic acid fragmentation, caspase-3 cleavage, p53 and p27 protein overexpression. In parallel, changes in DL spectral components after berberine treatment support the hypothesis that DL from human cells originates mainly from mitochondria, since berberine acts especially at the mitochondrial level. The decrease of DL blue component for both cell lines could be related to the decrease of intra-mitochondrial nicotinamide adenine dinucleotide and may be a hallmark of induced apoptosis. In contrast, the response in the red spectral range is different for the two cell lines and may be ascribed to a different iron homeostasis.
Collapse
Affiliation(s)
- Agata Scordino
- University of Catania, Department of Physics and Astronomy, via Santa Sofia 64, Catania I95123, ItalybSouthern National Laboratories of National Institute for Nuclear Physics, via Santa Sofia 62, Catania I95123, Italy
| | - Agata Campisi
- University of Catania, Department of Drugs Science, viale Andrea Doria 6, Catania I95125, Italy
| | - Rosaria Grasso
- Southern National Laboratories of National Institute for Nuclear Physics, via Santa Sofia 62, Catania I95123, Italy
| | - Roberta Bonfanti
- University of Catania, Department of Drugs Science, viale Andrea Doria 6, Catania I95125, Italy
| | - Marisa Gulino
- Southern National Laboratories of National Institute for Nuclear Physics, via Santa Sofia 62, Catania I95123, Italyd"Kore" University, Faculty of Engineering, Architecture and Physical Education, Via delle Olimpiadi, Enna I94100, Italy
| | - Liliana Iauk
- University of Catania, Department of Bio-Medical Science, viale Andrea Doria 6, Catania I95125, Italy
| | - Rosalba Parenti
- University of Catania, Department of Bio-Medical Science, viale Andrea Doria 6, Catania I95125, Italy
| | - Francesco Musumeci
- University of Catania, Department of Physics and Astronomy, via Santa Sofia 64, Catania I95123, ItalybSouthern National Laboratories of National Institute for Nuclear Physics, via Santa Sofia 62, Catania I95123, Italy
| |
Collapse
|
15
|
Synthesis and biological evaluation of 3-hydroxymethyl-5-(1H-1,2,3-triazol) isoxazolidines. Bioorg Med Chem 2013; 21:7929-37. [DOI: 10.1016/j.bmc.2013.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
16
|
Chiacchio U, Barbera V, Bonfanti R, Broggini GL, Campisi A, Gazzola S, Parenti R, Romeo G. Synthesis and biological evaluation of 1,7,8,8a-tetrahydro-3H-oxazolo[3,4-a]pyrazin-6(5H)-ones as antitumoral agents. Bioorg Med Chem 2013; 21:5748-53. [PMID: 23916151 DOI: 10.1016/j.bmc.2013.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/08/2013] [Accepted: 07/09/2013] [Indexed: 10/26/2022]
Abstract
A series of 1,7,8,8a-tetrahydro-3H-oxazolo[3,4-a]pyrazin-6(5H)-ones has been synthesized by an intramolecular, palladium(II) catalyzed, aminooxygenation of alkenyl ureas, readily available from glycine allylamides as starting materials. Biological tests showed that the obtained compounds are endowed with an interesting antitumoral activity against two human thyroid cancer cell lines, namely FTC-133 and 8305C, by promoting the apoptotic pathway and DNA fragmentation.
Collapse
Affiliation(s)
- Ugo Chiacchio
- Dipartimento di Scienze del Farmaco, Università di Catania, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Su Z, Chen J, Qiu Y, Yuan Y, Zhu F, Zhu Y, Liu X, Pu Y, He C. Olfactory ensheathing cells: the primary innate immunocytes in the olfactory pathway to engulf apoptotic olfactory nerve debris. Glia 2013; 61:490-503. [PMID: 23339073 DOI: 10.1002/glia.22450] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 11/09/2012] [Indexed: 11/11/2022]
Abstract
The olfactory system is an unusual tissue in which olfactory receptor neurons (ORNs) are continuously replaced throughout the life of mammals. Clearance of the apoptotic ORNs corpses is a fundamental process serving important functions in the regulation of olfactory nerve turnover and regeneration. However, little is known about the underlying mechanisms. Olfactory ensheathing cells (OECs) are a unique type of glial cells that wrap olfactory axons and support their continual regeneration from the olfactory epithelium to the bulb. In the present study, OECs were identified to exist in two different states, resting and reactive, in which resting OECs could be activated by LPS stimulation and functioned as phagocytes for cleaning apoptotic ORNs corpses. Confocal analysis revealed that dead ORNs debris were engulfed by OECs and co-localized with lysosome associated membrane protein 1. Moreover, phosphatidylserine (PS) receptor was identified to express on OECs, which allowed OECs to recognize apoptotic ORNs by binding to PS. Importantly, engulfment of olfactory nerve debris by OECs was found in olfactory mucosa under normal turnover and was significantly increased in the animal model of olfactory bulbectomy, while little phagocytosis by Iba-1-positive microglia/macrophages was observed. Together, these results implicate OEC as a primary innate immunocyte in the olfactory pathway, and suggest a cellular and molecular mechanism by which ORNs corpses are removed during olfactory nerve turnover and regeneration.
Collapse
Affiliation(s)
- Zhida Su
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education, Neuroscience Research Center of Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|