1
|
Hagio H, Koyama W, Hosaka S, Song AD, Narantsatsral J, Matsuda K, Sugihara T, Shimizu T, Koyanagi M, Terakita A, Hibi M. Optogenetic manipulation of Gq- and Gi/o-coupled receptor signaling in neurons and heart muscle cells. eLife 2023; 12:e83974. [PMID: 37589544 PMCID: PMC10435233 DOI: 10.7554/elife.83974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 07/27/2023] [Indexed: 08/18/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) transmit signals into cells depending on the G protein type. To analyze the functions of GPCR signaling, we assessed the effectiveness of animal G-protein-coupled bistable rhodopsins that can be controlled into active and inactive states by light application using zebrafish. We expressed Gq- and Gi/o-coupled bistable rhodopsins in hindbrain reticulospinal V2a neurons, which are involved in locomotion, or in cardiomyocytes. Light stimulation of the reticulospinal V2a neurons expressing Gq-coupled spider Rh1 resulted in an increase in the intracellular Ca2+ level and evoked swimming behavior. Light stimulation of cardiomyocytes expressing the Gi/o-coupled mosquito Opn3, pufferfish TMT opsin, or lamprey parapinopsin induced cardiac arrest, and the effect was suppressed by treatment with pertussis toxin or barium, suggesting that Gi/o-dependent regulation of inward-rectifier K+ channels controls cardiac function. These data indicate that these rhodopsins are useful for optogenetic control of GPCR-mediated signaling in zebrafish neurons and cardiomyocytes.
Collapse
Affiliation(s)
- Hanako Hagio
- Graduate School of Science, Nagoya UniversityNagoyaJapan
- Graduate School of Bioagricultural Sciences, Nagoya UniversityNagoyaJapan
- Institute for Advanced Research, Nagoya UniversityNagoyaJapan
| | - Wataru Koyama
- Graduate School of Science, Nagoya UniversityNagoyaJapan
| | - Shiori Hosaka
- Graduate School of Science, Nagoya UniversityNagoyaJapan
| | | | | | - Koji Matsuda
- Graduate School of Science, Nagoya UniversityNagoyaJapan
| | | | | | | | - Akihisa Terakita
- Graduate School of Science, Osaka Metropolitan UniversityOsakaJapan
| | - Masahiko Hibi
- Graduate School of Science, Nagoya UniversityNagoyaJapan
| |
Collapse
|
2
|
Böhm UL, Kimura Y, Kawashima T, Ahrens MB, Higashijima SI, Engert F, Cohen AE. Voltage imaging identifies spinal circuits that modulate locomotor adaptation in zebrafish. Neuron 2022; 110:1211-1222.e4. [PMID: 35104451 PMCID: PMC8989672 DOI: 10.1016/j.neuron.2022.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/17/2021] [Accepted: 01/04/2022] [Indexed: 12/20/2022]
Abstract
Motor systems must continuously adapt their output to maintain a desired trajectory. While the spinal circuits underlying rhythmic locomotion are well described, little is known about how the network modulates its output strength. A major challenge has been the difficulty of recording from spinal neurons during behavior. Here, we use voltage imaging to map the membrane potential of large populations of glutamatergic neurons throughout the spinal cord of the larval zebrafish during fictive swimming in a virtual environment. We characterized a previously undescribed subpopulation of tonic-spiking ventral V3 neurons whose spike rate correlated with swimming strength and bout length. Optogenetic activation of V3 neurons led to stronger swimming and longer bouts but did not affect tail beat frequency. Genetic ablation of V3 neurons led to reduced locomotor adaptation. The power of voltage imaging allowed us to identify V3 neurons as a critical driver of locomotor adaptation in zebrafish.
Collapse
Affiliation(s)
- Urs L Böhm
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Yukiko Kimura
- National Institutes of Natural Sciences, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan
| | - Takashi Kawashima
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Misha B Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Shin-Ichi Higashijima
- National Institutes of Natural Sciences, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Adam E Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
3
|
Petel Légaré V, Harji ZA, Rampal CJ, Allard-Chamard X, Rodríguez EC, Armstrong GAB. Augmentation of spinal cord glutamatergic synaptic currents in zebrafish primary motoneurons expressing mutant human TARDBP (TDP-43). Sci Rep 2019; 9:9122. [PMID: 31235725 PMCID: PMC6591224 DOI: 10.1038/s41598-019-45530-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022] Open
Abstract
Though there is compelling evidence that de-innervation of neuromuscular junctions (NMJ) occurs early in amyotrophic lateral sclerosis (ALS), defects arising at synapses in the spinal cord remain incompletely understood. To investigate spinal cord synaptic dysfunction, we took advantage of a zebrafish larval model and expressed either wild type human TARDBP (wtTARDBP) or the ALS-causing G348C variant (mutTARDBP). The larval zebrafish is ideally suited to examine synaptic connectivity between descending populations of neurons and spinal cord motoneurons as a fully intact spinal cord is preserved during experimentation. Here we provide evidence that the tail-beat motor pattern is reduced in both frequency and duration in larvae expressing mutTARDBP. In addition, we report that motor-related synaptic depolarizations in primary motoneurons of the spinal cord are shorter in duration and fewer action potentials are evoked in larvae expressing mutTARDBP. To more thoroughly examine spinal cord synaptic dysfunction in our ALS model, we isolated AMPA/kainate-mediated glutamatergic miniature excitatory post-synaptic currents in primary motoneurons and found that in addition to displaying a larger amplitude, the frequency of quantal events was higher in larvae expressing mutTARDBP when compared to larvae expressing wtTARDBP. In a final series of experiments, we optogenetically drove neuronal activity in the hindbrain and spinal cord population of descending ipsilateral glutamatergic interneurons (expressing Chx10) using the Gal4-UAS system and found that larvae expressing mutTARDBP displayed abnormal tail-beat patterns in response to optogenetic stimuli and augmented synaptic connectivity with motoneurons. These findings indicate that expression of mutTARDBP results in functionally altered glutamatergic synapses in the spinal cord.
Collapse
Affiliation(s)
- Virginie Petel Légaré
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Canada
| | - Ziyaan A Harji
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Canada
| | - Christian J Rampal
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Canada
| | - Xavier Allard-Chamard
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Canada
| | - Esteban C Rodríguez
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Canada
| | - Gary A B Armstrong
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Canada.
| |
Collapse
|
4
|
Iwasawa S, Yanagi K, Kikuchi A, Kobayashi Y, Haginoya K, Matsumoto H, Kurosawa K, Ochiai M, Sakai Y, Fujita A, Miyake N, Niihori T, Shirota M, Funayama R, Nonoyama S, Ohga S, Kawame H, Nakayama K, Aoki Y, Matsumoto N, Kaname T, Matsubara Y, Shoji W, Kure S. Recurrent de novo
MAPK8IP3
variants cause neurological phenotypes. Ann Neurol 2019; 85:927-933. [DOI: 10.1002/ana.25481] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Shinya Iwasawa
- Department of PediatricsTohoku University Graduate School of Medicine Sendai Japan
| | - Kumiko Yanagi
- National Center for Child Health and Development Tokyo Japan
| | - Atsuo Kikuchi
- Department of PediatricsTohoku University Graduate School of Medicine Sendai Japan
| | - Yasuko Kobayashi
- Department of PediatricsNational Hospital Organization Sendai‐Nishitaga Hospital Sendai Japan
- Department of Pediatric NeurologyTakuto Rehabilitation Center for Children Sendai Japan
| | - Kazuhiro Haginoya
- Department of Pediatric NeurologyTakuto Rehabilitation Center for Children Sendai Japan
- Department of Pediatric NeurologyMiyagi Children's Hospital Sendai Japan
| | - Hiroshi Matsumoto
- Department of PediatricsNational Defense Medical College Saitama Japan
| | - Kenji Kurosawa
- Division of Medical GeneticsKanagawa Children's Medical Center Yokohama Japan
| | - Masayuki Ochiai
- Department of PediatricsGraduate School of Medical Sciences, Kyushu University Fukuoka Japan
| | - Yasunari Sakai
- Department of PediatricsGraduate School of Medical Sciences, Kyushu University Fukuoka Japan
| | - Atsushi Fujita
- Department of Human GeneticsYokohama City University Graduate School of Medicine Yokohama Japan
| | - Noriko Miyake
- Department of Human GeneticsYokohama City University Graduate School of Medicine Yokohama Japan
| | - Tetsuya Niihori
- Department of Medical GeneticsTohoku University Graduate School of Medicine Sendai Japan
| | - Matsuyuki Shirota
- Division of Interdisciplinary Medical Sciences, United Centers for Advanced Research and Translational MedicineTohoku University Graduate School of Medicine Sendai Japan
| | - Ryo Funayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational MedicineTohoku University Graduate School of Medicine Sendai Japan
| | - Shigeaki Nonoyama
- Department of PediatricsNational Defense Medical College Saitama Japan
| | - Shouichi Ohga
- Department of PediatricsGraduate School of Medical Sciences, Kyushu University Fukuoka Japan
| | - Hiroshi Kawame
- Tohoku Medical Megabank organizationTohoku University Sendai Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational MedicineTohoku University Graduate School of Medicine Sendai Japan
| | - Yoko Aoki
- Department of Medical GeneticsTohoku University Graduate School of Medicine Sendai Japan
| | - Naomichi Matsumoto
- Department of Human GeneticsYokohama City University Graduate School of Medicine Yokohama Japan
| | - Tadashi Kaname
- National Center for Child Health and Development Tokyo Japan
| | | | - Wataru Shoji
- Frontier Research Institute for Interdisciplinary SciencesTohoku University Sendai Japan
| | - Shigeo Kure
- Department of PediatricsTohoku University Graduate School of Medicine Sendai Japan
- Tohoku Medical Megabank organizationTohoku University Sendai Japan
| |
Collapse
|
5
|
Wang H, Dewell RB, Ehrengruber MU, Segev E, Reimer J, Roukes ML, Gabbiani F. Optogenetic manipulation of medullary neurons in the locust optic lobe. J Neurophysiol 2018; 120:2049-2058. [PMID: 30110231 PMCID: PMC6230808 DOI: 10.1152/jn.00356.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 11/22/2022] Open
Abstract
The locust is a widely used animal model for studying sensory processing and its relation to behavior. Due to the lack of genomic information, genetic tools to manipulate neural circuits in locusts are not yet available. We examined whether Semliki Forest virus is suitable to mediate exogenous gene expression in neurons of the locust optic lobe. We subcloned a channelrhodopsin variant and the yellow fluorescent protein Venus into a Semliki Forest virus vector and injected the virus into the optic lobe of locusts ( Schistocerca americana). Fluorescence was observed in all injected optic lobes. Most neurons that expressed the recombinant proteins were located in the first two neuropils of the optic lobe, the lamina and medulla. Extracellular recordings demonstrated that laser illumination increased the firing rate of medullary neurons expressing channelrhodopsin. The optogenetic activation of the medullary neurons also triggered excitatory postsynaptic potentials and firing of a postsynaptic, looming-sensitive neuron, the lobula giant movement detector. These results indicate that Semliki Forest virus is efficient at mediating transient exogenous gene expression and provides a tool to manipulate neural circuits in the locust nervous system and likely other insects. NEW & NOTEWORTHY Using Semliki Forest virus, we efficiently delivered channelrhodopsin into neurons of the locust optic lobe. We demonstrate that laser illumination increases the firing of the medullary neurons expressing channelrhodopsin and elicits excitatory postsynaptic potentials and spiking in an identified postsynaptic target neuron, the lobula giant movement detector neuron. This technique allows the manipulation of neuronal activity in locust neural circuits using optogenetics.
Collapse
Affiliation(s)
- Hongxia Wang
- Department of Neuroscience, Baylor College of Medicine , Houston, Texas
| | - Richard B Dewell
- Department of Neuroscience, Baylor College of Medicine , Houston, Texas
| | | | - Eran Segev
- Department of Applied Physics and Material Science, California Institute of Technology , Pasadena, California
| | - Jacob Reimer
- Department of Neuroscience, Baylor College of Medicine , Houston, Texas
| | - Michael L Roukes
- Department of Applied Physics and Material Science, California Institute of Technology , Pasadena, California
| | - Fabrizio Gabbiani
- Department of Neuroscience, Baylor College of Medicine , Houston, Texas
- Electrical and Computer Engineering Department, Rice University , Houston, Texas
| |
Collapse
|
6
|
Immobility responses are induced by photoactivation of single glomerular species responsive to fox odour TMT. Nat Commun 2017; 8:16011. [PMID: 28685774 PMCID: PMC5504302 DOI: 10.1038/ncomms16011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/23/2017] [Indexed: 11/17/2022] Open
Abstract
Fox odour 2,4,5-trimethyl thiazoline (TMT) is known to activate multiple glomeruli in the mouse olfactory bulb (OB) and elicits strong fear responses. In this study, we screened TMT-reactive odourant receptors and identified Olfr1019 with high ligand reactivity and selectivity, whose glomeruli are located in the posterodorsal OB. In the channelrhodopsin knock-in mice for Olfr1019, TMT-responsive olfactory-cortical regions were activated by photostimulation, leading to the induction of immobility, but not aversive behaviour. Distribution of photoactivation signals was overlapped with that of TMT-induced signals, but restricted to the narrower regions. In the knockout mice, immobility responses were reduced, but not entirely abolished likely due to the compensatory function of other TMT-responsive glomeruli. Our results demonstrate that the activation of a single glomerular species in the posterodorsal OB is sufficient to elicit immobility responses and that TMT-induced fear may be separated into at least two different components of immobility and aversion. The olfactory bulb is arranged in glomeruli defined by their olfactory receptor expression. The authors identify an olfactory receptor for fox odour, TMT, and show that activation of the glomerulus expressing that receptor in mice leads to immobility, but does not lead to other fear behaviours.
Collapse
|
7
|
Umeda K, Shoji W. From neuron to behavior: Sensory-motor coordination of zebrafish turning behavior. Dev Growth Differ 2017; 59:107-114. [DOI: 10.1111/dgd.12345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 12/01/2022]
Affiliation(s)
- Keiko Umeda
- Frontier Research Institute for Interdisciplinary Sciences; Tohoku University; Sendai 9808578 Japan
| | - Wataru Shoji
- Frontier Research Institute for Interdisciplinary Sciences; Tohoku University; Sendai 9808578 Japan
- Department of Project Programs; Institute of Development, Aging and Cancer; Tohoku University; Sendai 9808575 Japan
| |
Collapse
|
8
|
Umeda K, Ishizuka T, Yawo H, Shoji W. Position- and quantity-dependent responses in zebrafish turning behavior. Sci Rep 2016; 6:27888. [PMID: 27292818 PMCID: PMC4904276 DOI: 10.1038/srep27888] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/27/2016] [Indexed: 11/30/2022] Open
Abstract
Neural reflexes are stereotypical automatic responses often modulated by both intrinsic and environmental factors. We report herein that zebrafish larval C-shaped turning is modulated by the stimulated position of Rohon-Beard (RB) neurons. Targeted stimulation of more anterior RB neurons produces larger trunk flexion, which anticipates adult escape behavior by coordinated turning toward the appropriate direction. We also demonstrated that turning laterality varies with the numbers of stimulated neurons. Multi-cell stimulation of RB neurons elicits contralateral turning, as seen in the touch response to physical contact, while minimum input from single-cell stimulation induces ipsilateral turning, a phenomenon not previously reported. This ipsilateral response, but not the contralateral one, is impaired by transecting the ascending neural tract known as the dorsolateral fascicule (DLF), indicating that two, distinct neural circuits trigger these two responses. Our results suggest that RB neurons transmit the position and quantity of sensory information, which are then processed separately to modulate behavioral strength and to select turning laterality.
Collapse
Affiliation(s)
- Keiko Umeda
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, 9808578, Japan
| | - Toru Ishizuka
- Department of Developmental Biology &Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, 9808577, Japan
| | - Hiromu Yawo
- Department of Developmental Biology &Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, 9808577, Japan
| | - Wataru Shoji
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, 9808578, Japan.,Department of Project Programs, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 9808575, Japan
| |
Collapse
|
9
|
Ji ZG, Wang H. ChR2 transgenic animals in peripheral sensory system: Sensing light as various sensations. Life Sci 2016; 150:95-102. [PMID: 26903290 DOI: 10.1016/j.lfs.2016.02.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/31/2015] [Accepted: 02/13/2016] [Indexed: 12/28/2022]
Abstract
Since the introduction of Channelrhodopsin-2 (ChR2) to neuroscience, optogenetics technology was developed, making it possible to activate specific neurons or circuits with spatial and temporal precision. Various ChR2 transgenic animal models have been generated and are playing important roles in revealing the mechanisms of neural activities, mapping neural circuits, controlling the behaviors of animals as well as exploring new strategy for treating the neurological diseases in both central and peripheral nervous system. An animal including humans senses environments through Aristotle's five senses (sight, hearing, smell, taste and touch). Usually, each sense is associated with a kind of sensory organ (eyes, ears, nose, tongue and skin). Is it possible that one could hear light, smell light, taste light and touch light? When ChR2 is targeted to different peripheral sensory neurons by viral vectors or generating ChR2 transgenic animals, the animals can sense the light as various sensations such as hearing, touch, pain, smell and taste. In this review, we focus on ChR2 transgenic animals in the peripheral nervous system. Firstly the working principle of ChR2 as an optogenetic actuator is simply described. Then the current transgenic animal lines where ChR2 was expressed in peripheral sensory neurons are presented and the findings obtained by these animal models are reviewed.
Collapse
Affiliation(s)
- Zhi-Gang Ji
- The Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Hongxia Wang
- The Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
10
|
Mayrhofer M, Mione M. The Toolbox for Conditional Zebrafish Cancer Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:21-59. [PMID: 27165348 DOI: 10.1007/978-3-319-30654-4_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here we describe the conditional zebrafish cancer toolbox, which allows for fine control of the expression of oncogenes or downregulation of tumor suppressors at the spatial and temporal level. Methods such as the Gal4/UAS or the Cre/lox systems paved the way to the development of elegant tumor models, which are now being used to study cancer cell biology, clonal evolution, identification of cancer stem cells and anti-cancer drug screening. Combination of these tools, as well as novel developments such as the promising genome editing system through CRISPR/Cas9 and clever application of light reactive proteins will enable the development of even more sophisticated zebrafish cancer models. Here, we introduce this growing toolbox of conditional transgenic approaches, discuss its current application in zebrafish cancer models and provide an outlook on future perspectives.
Collapse
Affiliation(s)
- Marie Mayrhofer
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Marina Mione
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
11
|
Hines JH, Ravanelli AM, Schwindt R, Scott EK, Appel B. Neuronal activity biases axon selection for myelination in vivo. Nat Neurosci 2015; 18:683-9. [PMID: 25849987 PMCID: PMC4414883 DOI: 10.1038/nn.3992] [Citation(s) in RCA: 328] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 03/10/2015] [Indexed: 02/06/2023]
Abstract
An essential feature of vertebrate neural development is ensheathment of axons with myelin, an insulating membrane formed by oligodendrocytes. Not all axons are myelinated, but mechanisms directing myelination of specific axons are unknown. Using zebrafish, we found that activity-dependent secretion stabilized myelin sheath formation on select axons. When VAMP2-dependent exocytosis was silenced in single axons, oligodendrocytes preferentially ensheathed neighboring axons. Nascent sheaths formed on silenced axons were shorter in length, but when activity of neighboring axons was also suppressed, inhibition of sheath growth was relieved. Using in vivo time-lapse microscopy, we found that only 25% of oligodendrocyte processes that initiated axon wrapping were stabilized during normal development and that initiation did not require activity. Instead, oligodendrocyte processes wrapping silenced axons retracted more frequently. We propose that axon selection for myelination results from excessive and indiscriminate initiation of wrapping followed by refinement that is biased by activity-dependent secretion from axons.
Collapse
Affiliation(s)
- Jacob H Hines
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Andrew M Ravanelli
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Rani Schwindt
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ethan K Scott
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Bruce Appel
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
12
|
Takeuchi M, Matsuda K, Yamaguchi S, Asakawa K, Miyasaka N, Lal P, Yoshihara Y, Koga A, Kawakami K, Shimizu T, Hibi M. Establishment of Gal4 transgenic zebrafish lines for analysis of development of cerebellar neural circuitry. Dev Biol 2014; 397:1-17. [PMID: 25300581 DOI: 10.1016/j.ydbio.2014.09.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/03/2014] [Accepted: 09/26/2014] [Indexed: 02/02/2023]
Abstract
The cerebellum is involved in some forms of motor coordination and motor learning. Here we isolated transgenic (Tg) zebrafish lines that express a modified version of Gal4-VP16 (GFF) in the cerebellar neural circuits: granule, Purkinje, or eurydendroid cells, Bergmann glia, or the neurons in the inferior olive nuclei (IO) which send climbing fibers to Purkinje cells, with the transposon Tol2 system. By combining GFF lines with Tg lines carrying a reporter gene located downstream of Gal4 binding sequences (upstream activating sequence: UAS), we investigated the anatomy and developmental processes of the cerebellar neural circuitry. Combining an IO-specific Gal4 line with a UAS reporter line expressing the photoconvertible fluorescent protein Kaede demonstrated the contralateral projections of climbing fibers. Combining a granule cell-specific Gal4 line with a UAS reporter line expressing wheat germ agglutinin (WGA) confirmed direct and/or indirect connections of granule cells with Purkinje cells, eurydendroid cells, and IO neurons in zebrafish. Time-lapse analysis of a granule cell-specific Gal4 line revealed initial random movements and ventral migration of granule cell nuclei. Transgenesis of a reporter gene with another transposon Tol1 system visualized neuronal structure at a single cell resolution. Our findings indicate the usefulness of these zebrafish Gal4 Tg lines for studying the development and function of cerebellar neural circuits.
Collapse
Affiliation(s)
- Miki Takeuchi
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Koji Matsuda
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Shingo Yamaguchi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Kazuhide Asakawa
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | - Pradeep Lal
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | - Akihiko Koga
- Primate Research Institute, Kyoto University, Inuyama 464-8506, Japan
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Takashi Shimizu
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan; Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Masahiko Hibi
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan; Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.
| |
Collapse
|
13
|
Monesson-Olson BD, Browning-Kamins J, Aziz-Bose R, Kreines F, Trapani JG. Optical stimulation of zebrafish hair cells expressing channelrhodopsin-2. PLoS One 2014; 9:e96641. [PMID: 24791934 PMCID: PMC4008597 DOI: 10.1371/journal.pone.0096641] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/09/2014] [Indexed: 11/19/2022] Open
Abstract
Vertebrate hair cells are responsible for the high fidelity encoding of mechanical stimuli into trains of action potentials (spikes) in afferent neurons. Here, we generated a transgenic zebrafish line expressing Channelrhodopsin-2 (ChR2) under the control of the hair-cell specific myo6b promoter, in order to examine the role of the mechanoelectrical transduction (MET) channel in sensory encoding in afferent neurons. We performed in vivo recordings from afferent neurons of the zebrafish lateral line while activating hair cells with either mechanical stimuli from a waterjet or optical stimuli from flashes of ∼470-nm light. Comparison of the patterns of encoded spikes during 100-ms stimuli revealed no difference in mean first spike latency between the two modes of activation. However, there was a significant increase in the variability of first spike latency during optical stimulation as well as an increase in the mean number of spikes per stimulus. Next, we compared encoding of spikes during hair-cell stimulation at 10, 20, and 40-Hz. Consistent with the increased variability of first spike latency, we saw a significant decrease in the vector strength of phase-locked spiking during optical stimulation. These in vivo results support a physiological role for the MET channel in the high fidelity of first spike latency seen during encoding of mechanical sensory stimuli. Finally, we examined whether remote activation of hair cells via ChR2 activation was sufficient to elicit escape responses in free-swimming larvae. In transgenic larvae, 100-ms flashes of ∼470-nm light resulted in escape responses that occurred concomitantly with field recordings indicating Mauthner cell activity. Altogether, the myo6b:ChR2 transgenic line provides a platform to investigate hair-cell function and sensory encoding, hair-cell sensory input to the Mauthner cell, and the ability to remotely evoke behavior in free-swimming zebrafish.
Collapse
Affiliation(s)
| | - Jenna Browning-Kamins
- Neuroscience Program, Amherst College, Amherst, Massachusetts, United States of America
| | - Razina Aziz-Bose
- Neuroscience Program, Amherst College, Amherst, Massachusetts, United States of America
| | - Fabiana Kreines
- Neuroscience Program, Amherst College, Amherst, Massachusetts, United States of America
| | - Josef G. Trapani
- Department of Biology, Amherst College, Amherst, Massachusetts, United States of America
- Neuroscience Program, Amherst College, Amherst, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Efficient disruption of Zebrafish genes using a Gal4-containing gene trap. BMC Genomics 2013; 14:619. [PMID: 24034702 PMCID: PMC3848861 DOI: 10.1186/1471-2164-14-619] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 09/06/2013] [Indexed: 11/10/2022] Open
Abstract
Background External development and optical transparency of embryos make zebrafish exceptionally suitable for in vivo insertional mutagenesis using fluorescent proteins to visualize expression patterns of mutated genes. Recently developed Gene Breaking Transposon (GBT) vectors greatly improve the fidelity and mutagenicity of transposon-based gene trap vectors. Results We constructed and tested a bipartite GBT vector with Gal4-VP16 as the primary gene trap reporter. Our vector also contains a UAS:eGFP cassette for direct detection of gene trap events by fluorescence. To confirm gene trap events, we generated a UAS:mRFP tester line. We screened 270 potential founders and established 41 gene trap lines. Three of our gene trap alleles display homozygous lethal phenotypes ranging from embryonic to late larval: nsf tpl6, atp1a3atpl10 and flrtpl19. Our gene trap cassette is flanked by direct loxP sites, which enabled us to successfully revert nsf tpl6, atp1a3atpl10 and flrtpl19 gene trap alleles by injection of Cre mRNA. The UAS:eGFP cassette is flanked by direct FRT sites. It can be readily removed by injection of Flp mRNA for use of our gene trap alleles with other tissue-specific GFP-marked lines. The Gal4-VP16 component of our vector provides two important advantages over other GBT vectors. The first is increased sensitivity, which enabled us to detect previously unnoticed expression of nsf in the pancreas. The second advantage is that all our gene trap lines, including integrations into non-essential genes, can be used as highly specific Gal4 drivers for expression of other transgenes under the control of Gal4 UAS. Conclusions The Gal4-containing bipartite Gene Breaking Transposon vector presented here retains high specificity for integrations into genes, high mutagenicity and revertibility by Cre. These features, together with utility as highly specific Gal4 drivers, make gene trap mutants presented here especially useful to the research community.
Collapse
|
15
|
Kimura Y, Satou C, Fujioka S, Shoji W, Umeda K, Ishizuka T, Yawo H, Higashijima SI. Hindbrain V2a Neurons in the Excitation of Spinal Locomotor Circuits during Zebrafish Swimming. Curr Biol 2013; 23:843-9. [DOI: 10.1016/j.cub.2013.03.066] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 10/26/2022]
|
16
|
Parker MO, Brock AJ, Walton RT, Brennan CH. The role of zebrafish (Danio rerio) in dissecting the genetics and neural circuits of executive function. Front Neural Circuits 2013; 7:63. [PMID: 23580329 PMCID: PMC3619107 DOI: 10.3389/fncir.2013.00063] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/19/2013] [Indexed: 01/06/2023] Open
Abstract
Zebrafish have great potential to contribute to our understanding of behavioral genetics and thus to contribute to our understanding of the etiology of psychiatric disease. However, progress is dependent upon the rate at which behavioral assays addressing complex behavioral phenotypes are designed, reported and validated. Here we critically review existing behavioral assays with particular focus on the use of adult zebrafish to explore executive processes and phenotypes associated with human psychiatric disease. We outline the case for using zebrafish as models to study impulse control and attention, discussing the validity of applying extant rodent assays to zebrafish and evidence for the conservation of relevant neural circuits.
Collapse
Affiliation(s)
- Matthew O Parker
- School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| | | | | | | |
Collapse
|
17
|
Yawo H, Asano T, Sakai S, Ishizuka T. Optogenetic manipulation of neural and non-neural functions. Dev Growth Differ 2013; 55:474-90. [PMID: 23550617 DOI: 10.1111/dgd.12053] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 01/22/2023]
Abstract
Optogenetic manipulation of the neuronal activity enables one to analyze the neuronal network both in vivo and in vitro with precise spatio-temporal resolution. Channelrhodopsins (ChRs) are light-sensitive cation channels that depolarize the cell membrane, whereas halorhodopsins and archaerhodopsins are light-sensitive Cl(-) and H(+) transporters, respectively, that hyperpolarize it when exogenously expressed. The cause-effect relationship between a neuron and its function in the brain is thus bi-directionally investigated with evidence of necessity and sufficiency. In this review we discuss the potential of optogenetics with a focus on three major requirements for its application: (i) selection of the light-sensitive proteins optimal for optogenetic investigation, (ii) targeted expression of these selected proteins in a specific group of neurons, and (iii) targeted irradiation with high spatiotemporal resolution. We also discuss recent progress in the application of optogenetics to studies of non-neural cells such as glial cells, cardiac and skeletal myocytes. In combination with stem cell technology, optogenetics may be key to successful research using embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) derived from human patients through optical regulation of differentiation-maturation, through optical manipulation of tissue transplants and, furthermore, through facilitating survival and integration of transplants.
Collapse
Affiliation(s)
- Hiromu Yawo
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
| | | | | | | |
Collapse
|
18
|
Yawo H, Koizumi A, Hegemann P. Adventure beyond borders of scientific fields with optogenetics. Neurosci Res 2013; 75:1-2. [PMID: 23465316 DOI: 10.1016/j.neures.2013.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|