1
|
Takarada Y, Nozaki D. Force overestimation during vascular occlusion is triggered by motor system inhibition. Sci Rep 2025; 15:8652. [PMID: 40082521 PMCID: PMC11906618 DOI: 10.1038/s41598-025-93193-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 03/05/2025] [Indexed: 03/16/2025] Open
Abstract
Low-intensity resistance exercise with vascular occlusion enhances human muscular strength by elevating neural drive to muscles, which is accompanied by the additional activation of fast-twitch fibers because of muscle fatigue. However, few previous studies have investigated the underlying neuromotor mechanisms from a perspective other than muscle fatigue. Notably, participants require more voluntary effort to exert muscular force to lift a weight immediately after vascular occlusion, indicating its acute effect on the force perception system without muscle fatigue. However, the major cause of force overestimation under these conditions remains unclear. We sought to elucidate the neural mechanism of force exertion combined with tourniquet-induced vascular occlusion, with special reference to exerted force perception, using motor evoked potentials in response to transcranial magnetic stimulation applied over the contralateral primary motor cortex as well as upper extremity H-reflex measurements. Rapid force overestimation was accompanied by the instantaneous inhibition of spinal motoneuron and corticospinal tract excitability. Thus, force overestimation may be caused by motor-related cortical areas functioning as the source of excitatory input to the corticospinal tract; participants would be unable to exert the same handgrip force as with normal blood flow without a compensatory input to the corticospinal tract from motor-related cortical areas.
Collapse
Affiliation(s)
- Yudai Takarada
- Faculty of Sports Sciences, Waseda University, Saitama, 359-1192, Japan.
| | - Daichi Nozaki
- Graduate School of Education, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
2
|
Takarada Y, Nozaki D. Unconscious goal pursuit strengthens voluntary force during sustained maximal effort via enhanced motor system state. Heliyon 2024; 10:e39762. [PMID: 39553609 PMCID: PMC11566863 DOI: 10.1016/j.heliyon.2024.e39762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/04/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024] Open
Abstract
Maximal voluntary force is known to be enhanced by shouting during sustained maximal voluntary contraction (MVC) via the enhancement of motor cortical excitability. However, whether excitatory input to the primary motor cortex from areas other than the motor-related cortical area induces muscular force-enhancing effects on the exertion of sustained maximal force remains unclear. Therefore, by examining motor evoked potentials to transcranial magnetic stimulation during sustained MVC and assessing handgrip force, the present study aimed to investigate the effects of subliminal goal-priming with motivational rewards on the state of the motor system. The findings revealed that when combined with rewards in the form of a consciously visible positive stimulus, barely visible priming of an action concept increased the maximal voluntary force and reduced the silent period (i.e., reduced motor cortical inhibition). To our knowledge, this is the first study to report a link between the muscular force of subliminal reward-goal priming during MVC and the enhancement of motor system activity through subliminal reward-goal priming operating on the motor system, possibly through the potentiation of activity of the reward-linked dopaminergic system.
Collapse
Affiliation(s)
- Yudai Takarada
- Faculty of Sports Sciences, Waseda University, Saitama 359-1192, Japan
| | - Daichi Nozaki
- Graduate School of Education, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
3
|
Matsuura R. Fatiguing unilateral handgrip influences force during force-matching task with lower limb. Physiol Behav 2024; 275:114455. [PMID: 38161041 DOI: 10.1016/j.physbeh.2023.114455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
This study aimed to test the hypotheses that fatiguing unilateral handgrip contraction exhibits different changes in corticomotor excitability, which is evaluated by motor-evoked potentials (MEPs), in the lower limbs ipsilateral and contralateral to the fatigued hand, and that the changes in corticomotor excitability estimated by MEPs in the non-fatigued lower limbs affect the force exerted based on the sense of effort. Ten healthy males completed fatiguing unilateral handgrip contraction and force-matching tasks by static dorsiflexion before, immediately after, and 10 min after handgrip contraction. MEPs in the tibialis anterior (TA) were also measured before, immediately after, and 10 min after handgrip contraction. Fatiguing handgrip contractions resulted in asymmetrical MEPs in the TA muscles. Specifically, MEPs in the contralateral TA muscle were significantly increased (158 ± 60 %) and MEPs in the contralateral TA muscle were greater after the handgrip contraction than the ipsilateral MEPs (111 ± 30 %). Moreover, the torque exerted during the force-matching task significantly increased only in the contralateral ankle after the fatiguing handgrip contraction. Fatiguing unilateral handgrip contraction results in asymmetric changes in corticomotor excitability in the TA muscle, and the force exerted during the force-matching task based on the sense of effort becomes higher in the TA muscle with greater corticomotor excitability than that before fatiguing unilateral handgrip contraction.
Collapse
Affiliation(s)
- Ryouta Matsuura
- Graduate School of Education, Joetsu University of Education, 1 Yamayashiki-machi, Joetsu, 943-8512, Japan; Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, 359-8555, Japan.
| |
Collapse
|
4
|
Baharlouei H, Goosheh M, Moore M, Ramezani Ahmadi AH, Yassin M, Jaberzadeh S. The effect of transcranial direct current stimulation on rating of perceived exertion: A systematic review of the literature. Psychophysiology 2024; 61:e14520. [PMID: 38217074 DOI: 10.1111/psyp.14520] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/14/2024]
Abstract
The rating of perceived exertion (RPE) is a widely used method for monitoring the load during training, as it provides insight into the subjective intensity of effort experienced during exercises. Considering the role of brain in monitoring and perception of the effort, several studies explored the effect of transcranial direct current stimulation (tDCS) on RPE in different populations. The aim of current study is to review the studies that investigated the effect of tDCS on RPE in three groups including healthy untrained people, physically active persons, and athletes. Nine databases were searched for papers assessing the effect of tDCS on RPE. The data from the included studies were extracted and methodological quality was examined using the risk of bias 2 (ROB2) tool. Thirty-three studies met the inclusion criteria. According to the meta-analysis, active a-tDCS significantly decreased the RPE compared to the sham stimulation. The a-tDCS could decrease the RPE when it was applied over M1 or DLPF. Regarding the measurement tool, Borg's scale 6-20 and OMNI scale could show an improvement in RPE scale. A-tDCS is a promising technique that can decrease the RPE. M1 and DLPFC are suggested as the target area of stimulation. From the tools that measure the RPE, Borg's RPE 6-20 and OMNI scale could better show the effect of a-tDCS.
Collapse
Affiliation(s)
- Hamzeh Baharlouei
- Musculoskeletal Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Meysam Goosheh
- Physical Therapy Department, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maha Moore
- Physical Therapy Department, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Marzieh Yassin
- Iranian Center of Excellence in Physiotherapy, Rehabilitation Research Center, Department of Physiotherapy, School of Rehabilitation Sciences, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Shapour Jaberzadeh
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Lopes TR, Pereira HM, Silva BM. Perceived Exertion: Revisiting the History and Updating the Neurophysiology and the Practical Applications. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192114439. [PMID: 36361320 PMCID: PMC9658641 DOI: 10.3390/ijerph192114439] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 05/25/2023]
Abstract
The perceived exertion construct creation is a landmark in exercise physiology and sport science. Obtaining perceived exertion is relatively easy, but practitioners often neglect some critical methodological issues in its assessment. Furthermore, the perceived exertion definition, neurophysiological basis, and practical applications have evolved since the perceived exertion construct's inception. Therefore, we revisit the careful work devoted by Gunnar Borg with psychophysical methods to develop the perceived exertion construct, which resulted in the creation of two scales: the rating of perceived exertion (RPE) and the category-ratio 10 (CR10). We discuss a contemporary definition that considers perceived exertion as a conscious perception of how hard, heavy, and strenuous the exercise is, according to the sense of effort to command the limbs and the feeling of heavy breathing (respiratory effort). Thus, other exercise-evoked sensations would not hinder the reported perceived exertion. We then describe the neurophysiological mechanisms involved in the perceived exertion genesis during exercise, including the influence of the peripheral feedback from the skeletal muscles and the cardiorespiratory system (i.e., afferent feedback) and the influence of efferent copies from the motor command and respiratory drive (i.e., corollary discharges), as well as the interaction between them. We highlight essential details practitioners should consider when using the RPE and CR10 scales, such as the perceived exertion definition, the original scales utilization, and the descriptors anchoring process. Finally, we present how practitioners can use perceived exertion to assess cardiorespiratory fitness, individualize exercise intensity prescription, predict endurance exercise performance, and monitor athletes' responses to physical training.
Collapse
Affiliation(s)
- Thiago Ribeiro Lopes
- Laboratory of Exercise Physiology at Olympic Center of Training and Research, Department of Physiology, Federal University of São Paulo, São Paulo 04023-000, SP, Brazil
- São Paulo Association for Medicine Development, São Paulo 04037-003, SP, Brazil
| | - Hugo Maxwell Pereira
- Department of Health and Exercise Science, The University of Oklahoma, Norman, OK 73019, USA
| | - Bruno Moreira Silva
- Laboratory of Exercise Physiology at Olympic Center of Training and Research, Department of Physiology, Federal University of São Paulo, São Paulo 04023-000, SP, Brazil
| |
Collapse
|
6
|
Shouting strengthens voluntary force during sustained maximal effort through enhancement of motor system state via motor commands. Sci Rep 2022; 12:16182. [PMID: 36171262 PMCID: PMC9519961 DOI: 10.1038/s41598-022-20643-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 09/16/2022] [Indexed: 11/08/2022] Open
Abstract
Previous research indicates that shouting during momentary maximal exertion effort potentiates the maximal voluntary force through the potentiation of motor cortical excitability. However, the muscular force-enhancing effects of shouting on sustained maximal force production remain unclear. We investigated the effect of shouting on the motor system state by examining motor evoked potentials in response to transcranial magnetic stimulation applied over the hand area of the contralateral primary motor cortex (M1) during sustained maximal voluntary contraction, and by assessing handgrip maximal voluntary force. We observed that shouting significantly increased handgrip maximal voluntary force and reduced the silent period. Our results indicate that shouting increased handgrip voluntary force during sustained maximal exertion effort through the reduced silent period. This is the first objective evidence that the muscular force of shouting during maximal force exertion is associated with the potentiation of motor system activity produced by the additional drive of shouting operating on the motor system (i.e., shouting-induced excitatory input to M1).
Collapse
|
7
|
Abstract
The last decade has seen the emergence of new theoretical frameworks to explain pathological fatigue, a much neglected, yet highly significant symptom across a wide range of diseases. While the new models of fatigue provide new hypotheses to test, they also raise a number of questions. The primary purpose of this essay is to examine the predictions of three recently proposed models of fatigue, the overlap and differences between them, and the evidence from diseases that may lend support to the models of fatigue. I also present expansions for the sensory attenuation model of fatigue. Further questions examined here are the following: What are the neural substrates of fatigue? How can sensory attenuation, which underpins agency also explain fatigue? Are fatigue and agency related?
Collapse
Affiliation(s)
- Annapoorna Kuppuswamy
- Department of Clinical and Movement Neuroscience, Institute of Neurology, University College London, London, UK
| |
Collapse
|
8
|
Jaberzadeh S, Zoghi M. Transcranial Direct Current Stimulation Enhances Exercise Performance: A Mini Review of the Underlying Mechanisms. FRONTIERS IN NEUROERGONOMICS 2022; 3:841911. [PMID: 38235480 PMCID: PMC10790841 DOI: 10.3389/fnrgo.2022.841911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/18/2022] [Indexed: 01/19/2024]
Abstract
Exercise performance (EP) is affected by a combination of factors including physical, physiological, and psychological factors. This includes factors such as peripheral, central, and mental fatigue, external peripheral factors such as pain and temperature, and psychological factors such as motivation and self-confidence. During the last century, numerous studies from different fields of research were carried out to improve EP by modifying these factors. During the last two decades, the focus of research has been mainly moved toward the brain as a dynamic ever-changing organ and the ways changes in this organ may lead to improvements in physical performance. Development of centrally-acting performance modifiers such as level of motivation or sleep deprivation and the emergence of novel non-invasive brain stimulation (NIBS) techniques such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are the key motives behind this move. This article includes three sections. Section Introduction provides an overview of the mechanisms behind the reduction of EP. The main focus of the Effects of tDCS on EP section is to provide a brief description of the effects of tDCS on maximal and submaximal types of exercise and finally, the section Mechanisms Behind the Effects of tDCS on EP provides description of the mechanisms behind the effects of tDCS on EP.
Collapse
Affiliation(s)
- Shapour Jaberzadeh
- Non-invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, VIC, Australia
| | - Maryam Zoghi
- Discipline of Physiotherapy, School of Health, Federation University Australia, Churchill, VIC, Australia
| |
Collapse
|
9
|
Shouting strengthens maximal voluntary force and is associated with augmented pupillary dilation. Sci Rep 2021; 11:18419. [PMID: 34531493 PMCID: PMC8445920 DOI: 10.1038/s41598-021-97949-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/01/2021] [Indexed: 11/11/2022] Open
Abstract
Previous research has demonstrated that human maximal voluntary force is generally limited by neural inhibition. Producing a shout during maximal exertion effort enhances the force levels of maximal voluntary contraction. However, the mechanisms underlying this enhancement effect on force production remain unclear. We investigated the influence of producing a shout on the pupil-linked neuromodulatory system state by examining pupil size. We also examined its effects on the motor system state by examining motor evoked potentials in response to transcranial magnetic stimulation applied over the contralateral primary motor cortex, and by evaluating handgrip maximal voluntary force. Analysis revealed that producing a shout significantly increased handgrip maximal voluntary force, followed by an increase in pupil size and a reduction of the cortical silent period. Our results indicate that producing a shout increased handgrip maximal voluntary force through the enhancement of motor cortical excitability, possibly via the enhancement of noradrenergic system activity. This study provides evidence that the muscular force-enhancing effect of shouting during maximal force exertion is related to both the motor system state and the pupil-linked neuromodulatory system state.
Collapse
|
10
|
Hamaguchi T, Yamada N, Hada T, Abo M. Prediction of Motor Recovery in the Upper Extremity for Repetitive Transcranial Magnetic Stimulation and Occupational Therapy Goal Setting in Patients With Chronic Stroke: A Retrospective Analysis of Prospectively Collected Data. Front Neurol 2020; 11:581186. [PMID: 33193036 PMCID: PMC7606467 DOI: 10.3389/fneur.2020.581186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/03/2020] [Indexed: 01/03/2023] Open
Abstract
Recovery from motor paralysis is facilitated by affected patients' recognition of the need for and practice of their own exercise goals. Neurorehabilitation has been proposed and used for the treatment of motor paralysis in stroke, and its effect has been verified. If an expected score for the neurorehabilitation effect can be calculated using the Fugl-Meyer Motor Assessment (FMA), a global assessment index, before neurorehabilitation, such a score will be useful for optimizing the treatment application criteria and for setting a goal to enhance the treatment effect. Therefore, this study verified whether the responsiveness to a treatment method, the NovEl intervention using repetitive transcranial magnetic stimulation and occupational therapy (NEURO), in patients with post-stroke upper extremity (UE) motor paralysis could be predicted by the pretreatment FMA score. No control group was established in this study for NEURO treatment. To analyze the recovery of the motor function in the UE, delta-FMA was calculated from the pre- and post-FMA scores obtained during NEURO treatment. The probability of three levels of treatment responsiveness was evaluated in association with delta-FMA score (<5, 5 ≤ delta-FMA <10, and ≥10 as non-responders; responders; and hyper-responders, respectively) according to the reported minimal clinically important difference (MCID). The association of the initial FMA scores with post-FMA scores, from the status of the treatment responsiveness, was determined by multinomial logistic regression analysis. Finally, 1,254 patients with stroke, stratified by FMA scores were analyzed. About 45% of the patients who had FMA scores ranging from 30 to 40 before treatment showed improvement over the MCID by NEURO treatment (odds ratio = 0.93, 95% CI = 0.92–0.95). Furthermore, more than 25% of the patients with more severe initial values, ranging from 26 to 30, improved beyond the MCID calculated in the acute phase (odds ratio = 0.87, 95% CI = 0.85–0.89). These results suggest that the evaluated motor function score of the UE before NEURO treatment can be used to estimate the possibility of a patient recovering beyond MCID in the chronic phase. This study provided clinical data to estimate the effect of NEURO treatment by the pretreatment FMA-UE score.
Collapse
Affiliation(s)
- Toyohiro Hamaguchi
- Department of Rehabilitation Medicine, The Jikei University School of Medicine, Tokyo, Japan.,Department of Rehabilitation, Graduate School of Health Sciences, Saitama Prefectural University, Koshigaya, Japan
| | - Naoki Yamada
- Department of Rehabilitation Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takuya Hada
- Department of Rehabilitation Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Masahiro Abo
- Department of Rehabilitation Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Miyamoto T, Kizuka T, Ono S. Influence of preceding muscle activity on perceptually guided force production during superimposed ballistic contraction. Physiol Behav 2020; 222:112933. [PMID: 32376328 DOI: 10.1016/j.physbeh.2020.112933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 10/24/2022]
Abstract
Current study attempted to clarify whether preceding muscle activity influences the perceptually guided force production during superimposed ballistic contractions using isometric abduction of index finger. Subjects were verbally asked to produce ballistic force at requested percentages of their MVC with and without preceding muscle activity at 10% and 20%MVC. Our results showed that the ballistic force and EMG activity were increased significantly with preceding muscle activity at 20%MVC, but no change for 10%MVC. These results suggest that preceding muscle activity at sufficient intensity facilitates spinal motoneuron excitability, which could alter the relationship between the produced force and sense of effort.
Collapse
Affiliation(s)
- Takeshi Miyamoto
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8574, Japan
| | - Tomohiro Kizuka
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8574, Japan
| | - Seiji Ono
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8574, Japan.
| |
Collapse
|
12
|
van Polanen V, Rens G, Davare M. The role of the anterior intraparietal sulcus and the lateral occipital cortex in fingertip force scaling and weight perception during object lifting. J Neurophysiol 2020; 124:557-573. [PMID: 32667252 PMCID: PMC7500375 DOI: 10.1152/jn.00771.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Skillful object lifting relies on scaling fingertip forces according to the object’s weight. When no visual cues about weight are available, force planning relies on previous lifting experience. Recently, we showed that previously lifted objects also affect weight estimation, as objects are perceived to be lighter when lifted after heavy objects compared with after light ones. Here, we investigated the underlying neural mechanisms mediating these effects. We asked participants to lift objects and estimate their weight. Simultaneously, we applied transcranial magnetic stimulation (TMS) during the dynamic loading or static holding phase. Two subject groups received TMS over either the anterior intraparietal sulcus (aIPS) or the lateral occipital area (LO), known to be important nodes in object grasping and perception. We hypothesized that TMS over aIPS and LO during object lifting would alter force scaling and weight perception. Contrary to our hypothesis, we did not find effects of aIPS or LO stimulation on force planning or weight estimation caused by previous lifting experience. However, we found that TMS over both areas increased grip forces, but only when applied during dynamic loading, and decreased weight estimation, but only when applied during static holding, suggesting time-specific effects. Interestingly, our results also indicate that TMS over LO, but not aIPS, affected load force scaling specifically for heavy objects, which further indicates that load and grip forces might be controlled differently. These findings provide new insights on the interactions between brain networks mediating action and perception during object manipulation. NEW & NOTEWORTHY This article provides new insights into the neural mechanisms underlying object lifting and perception. Using transcranial magnetic stimulation during object lifting, we show that effects of previous experience on force scaling and weight perception are not mediated by the anterior intraparietal sulcus or the lateral occipital cortex (LO). In contrast, we highlight a unique role for LO in load force scaling, suggesting different brain processes for grip and load force scaling in object manipulation.
Collapse
Affiliation(s)
- Vonne van Polanen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Guy Rens
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium.,The Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| | - Marco Davare
- Department of Clinical Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
13
|
Martin K, Meeusen R, Thompson KG, Keegan R, Rattray B. Mental Fatigue Impairs Endurance Performance: A Physiological Explanation. Sports Med 2019; 48:2041-2051. [PMID: 29923147 DOI: 10.1007/s40279-018-0946-9] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mental fatigue reflects a change in psychobiological state, caused by prolonged periods of demanding cognitive activity. It has been well documented that mental fatigue impairs cognitive performance; however, more recently, it has been demonstrated that endurance performance is also impaired by mental fatigue. The mechanism behind the detrimental effect of mental fatigue on endurance performance is poorly understood. Variables traditionally believed to limit endurance performance, such as heart rate, lactate accumulation and neuromuscular function, are unaffected by mental fatigue. Rather, it has been suggested that the negative impact of mental fatigue on endurance performance is primarily mediated by the greater perception of effort experienced by mentally fatigued participants. Pageaux et al. (Eur J Appl Physiol 114(5):1095-1105, 2014) first proposed that prolonged performance of a demanding cognitive task increases cerebral adenosine accumulation and that this accumulation may lead to the higher perception of effort experienced during subsequent endurance performance. This theoretical review looks at evidence to support and extend this hypothesis.
Collapse
Affiliation(s)
- Kristy Martin
- University of Canberra Research Institute for Sport and Exercise, Canberra, ACT, Australia.
| | - Romain Meeusen
- Vrije Universiteit Brussel Human Performance Research Group, Brussels, Belgium
| | - Kevin G Thompson
- University of Canberra Research Institute for Sport and Exercise, Canberra, ACT, Australia
- New South Wales Institute of Sport, Sydney, NSW, Australia
| | - Richard Keegan
- University of Canberra Research Institute for Sport and Exercise, Canberra, ACT, Australia
| | - Ben Rattray
- University of Canberra Research Institute for Sport and Exercise, Canberra, ACT, Australia
| |
Collapse
|
14
|
Nakagawa K, Sasaki A, Nakazawa K. Accuracy in Pinch Force Control Can Be Altered by Static Magnetic Field Stimulation Over the Primary Motor Cortex. Neuromodulation 2019; 22:871-876. [DOI: 10.1111/ner.12912] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/14/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Kento Nakagawa
- Graduate School of Arts and SciencesThe University of Tokyo Tokyo Japan
- Japan Society for the Promotion of Science Tokyo Japan
- Toronto Rehabilitation Institute—University Health Network Toronto Canada
| | - Atsushi Sasaki
- Graduate School of Arts and SciencesThe University of Tokyo Tokyo Japan
| | - Kimitaka Nakazawa
- Graduate School of Arts and SciencesThe University of Tokyo Tokyo Japan
| |
Collapse
|
15
|
Baldari C, Buzzachera CF, Vitor-Costa M, Gabardo JM, Bernardes AG, Altimari LR, Guidetti L. Effects of Transcranial Direct Current Stimulation on Psychophysiological Responses to Maximal Incremental Exercise Test in Recreational Endurance Runners. Front Psychol 2018; 9:1867. [PMID: 30356689 PMCID: PMC6189328 DOI: 10.3389/fpsyg.2018.01867] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/12/2018] [Indexed: 01/11/2023] Open
Abstract
Previous studies have suggested that transcranial direct current stimulation (tDCS) might improve exercise performance and alter psychophysiological responses to exercise. However, it is presently unknown whether this simple technique has similar (or greater) effects on running performance. The purpose of this study was, therefore, to test the hypothesis that, compared with sham and cathodal tDCS, anodal tDCS applied over the M1 region would attenuate perception of effort, improve affective valence, and enhance exercise tolerance, regardless of changes in physiological responses, during maximal incremental exercise. In a double-blind, randomized, counterbalanced design, 13 healthy recreational endurance runners, aged 20-42 years, volunteered to participate in this study. On three separate occasions, the subjects performed an incremental ramp exercise test from rest to volitional exhaustion on a motor-driven treadmill following 20-min of brain stimulation with either placebo tDCS (sham) or real tDCS (cathodal and anodal). Breath-by-breath pulmonary gas exchange and ventilation and indices of muscle hemodynamics and oxygenation were collected continuously during the ramp exercise test. Ratings of perceived exertion (RPE) and affective valence in response to the ramp exercise test were also measured. Compared with sham, neither anodal tDCS nor cathodal tDCS altered the physiological responses to exercise (P > 0.05). Similarly, RPE and affective responses during the incremental ramp exercise test did not differ between the three experimental conditions at any time (P > 0.05). The exercise tolerance was also not significantly different following brain stimulation with either sham (533 ± 46 s) or real tDCS (anodal tDCS: 530 ± 44 s, and cathodal tDCS: 537 ± 40 s; P > 0.05). These results demonstrate that acute tDCS applied over the M1 region did not alter physiological responses, perceived exertion, affective valence, or exercise performance in recreational endurance runners.
Collapse
Affiliation(s)
| | - Cosme F Buzzachera
- Department of Physical Education, North University of Paraná, Londrina, Brazil
| | - Marcelo Vitor-Costa
- Department of Physical Education, State University of Londrina, Londrina, Brazil
| | - Juliano M Gabardo
- Department of Physical Education, State University of Londrina, Londrina, Brazil
| | - Andrea G Bernardes
- Department of Physical Education, North University of Paraná, Londrina, Brazil
| | - Leandro R Altimari
- Department of Physical Education, State University of Londrina, Londrina, Brazil
| | - Laura Guidetti
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| |
Collapse
|
16
|
Takarada Y, Nozaki D. Motivational goal-priming with or without awareness produces faster and stronger force exertion. Sci Rep 2018; 8:10135. [PMID: 29973646 PMCID: PMC6031684 DOI: 10.1038/s41598-018-28410-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 06/20/2018] [Indexed: 11/28/2022] Open
Abstract
Previous research has demonstrated that barely visible (subliminal) goal-priming with motivational reward can alter the state of the motor system and enhance motor output. Research shows that these affective-motivational effects result from associations between goal representations and positive affect without conscious awareness. Here, we tested whether motivational priming can increase motor output even if the priming is fully visible (supraliminal), and whether the priming effect occurs through increased cortical excitability. Groups of participants were primed with either barely visible or fully visible words related to effort and control sequences of random letters that were each followed by fully visible positively reinforcing words. The priming effect was measured behaviourally by handgrip force and reaction time to the grip cue after the priming was complete. Physiologically, the effects were measured by pupil dilation and motor-evoked potentials (MEPs) in response to transcranial magnetic stimulation during the priming task. Analysis showed that for both the supraliminal and subliminal conditions, reaction time decreased and total force, MEP magnitude, and pupil dilation increased. None of the priming-induced changes in behaviour or physiology differed significantly between the supraliminal and the subliminal groups, indicating that implicit motivation towards motor goals might not require conscious perception of the goals.
Collapse
Affiliation(s)
- Yudai Takarada
- Faculty of Sports Sciences, Waseda University, 2-579-15 Tokorozawa, Saitama, 359-1192, Japan.
| | - Daichi Nozaki
- Graduate School of Education, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
17
|
Brandner CR, Warmington SA. Delayed Onset Muscle Soreness and Perceived Exertion After Blood Flow Restriction Exercise. J Strength Cond Res 2018; 31:3101-3108. [PMID: 28118308 DOI: 10.1519/jsc.0000000000001779] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Brandner, CR, and Warmington, SA. Delayed onset muscle soreness and perceived exertion after blood flow restriction exercise. J Strength Cond Res 31(11): 3101-3108, 2017-The purpose of this study was to determine the perceptual responses to resistance exercise with heavy loads (80% 1 repetition maximum [1RM]), light loads (20% 1RM), or light loads in combination with blood flow restriction (BFR). Despite the use of light loads, it has been suggested that the adoption of BFR resistance exercise may be limited because of increases in delayed onset muscle soreness (DOMS) and perceived exertion. Seventeen healthy untrained males participated in this balanced, randomized cross-over study. After 4 sets of elbow-flexion exercise, participants reported ratings of perceived exertion (RPE), with DOMS also recorded for 7 days after each trial. Delayed onset muscle soreness was significantly greater for low-pressure continuous BFR (until 48 hours postexercise) and high-pressure intermittent BFR (until 72 hours postexercise) than for traditional heavy-load resistance exercise and light-load resistance exercise. In addition, RPE was higher for heavy-load resistance exercise and high-pressure intermittent BFR than for low-pressure continuous BFR, with all trials greater than light-load resistance exercise. For practitioners working with untrained participants, this study provides evidence to suggest that to minimize the perception of effort and postexercise muscle soreness associated with BFR resistance exercise, continuous low-pressure application may be more preferential than intermittent high-pressure application. Importantly, these perceptual responses are relatively short-lived (∼2 days) and have previously been shown to subside after a few exercise sessions. Combined with smaller initial training volumes (set × repetitions), this may limit RPE and DOMS to strengthen uptake and adherence and assist in program progression for muscle hypertrophy and gains in strength.
Collapse
Affiliation(s)
- Christopher R Brandner
- 1Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Melbourne Campus at Burwood, Victoria, Australia; and 2Sport Science Department, Aspire Academy for Sports Excellence, Doha, Qatar
| | | |
Collapse
|
18
|
Angius L, Hopker J, Mauger AR. The Ergogenic Effects of Transcranial Direct Current Stimulation on Exercise Performance. Front Physiol 2017; 8:90. [PMID: 28261112 PMCID: PMC5306290 DOI: 10.3389/fphys.2017.00090] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/01/2017] [Indexed: 11/13/2022] Open
Abstract
The physical limits of the human performance have been the object of study for a considerable time. Most of the research has focused on the locomotor muscles, lungs, and heart. As a consequence, much of the contemporary literature has ignored the importance of the brain in the regulation of exercise performance. With the introduction and development of new non-invasive devices, the knowledge regarding the behavior of the central nervous system during exercise has advanced. A first step has been provided from studies involving neuroimaging techniques where the role of specific brain areas have been identified during isolated muscle or whole-body exercise. Furthermore, a new interesting approach has been provided by studies involving non-invasive techniques to manipulate specific brain areas. These techniques most commonly involve the use of an electrical or magnetic field crossing the brain. In this regard, there has been emerging literature demonstrating the possibility to influence exercise outcomes in healthy people following stimulation of specific brain areas. Specifically, transcranial direct current stimulation (tDCS) has been recently used prior to exercise in order to improve exercise performance under a wide range of exercise types. In this review article, we discuss the evidence provided from experimental studies involving tDCS. The aim of this review is to provide a critical analysis of the experimental studies investigating the application of tDCS prior to exercise and how it influences brain function and performance. Finally, we provide a critical opinion of the usage of tDCS for exercise enhancement. This will consequently progress the current knowledge base regarding the effect of tDCS on exercise and provides both a methodological and theoretical foundation on which future research can be based.
Collapse
Affiliation(s)
- Luca Angius
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent Chatham, UK
| | - James Hopker
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent Chatham, UK
| | - Alexis R Mauger
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent Chatham, UK
| |
Collapse
|
19
|
Cheron G. How to Measure the Psychological "Flow"? A Neuroscience Perspective. Front Psychol 2016; 7:1823. [PMID: 27999551 PMCID: PMC5138413 DOI: 10.3389/fpsyg.2016.01823] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/03/2016] [Indexed: 01/22/2023] Open
Affiliation(s)
- Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université Libre de BruxellesBrussels, Belgium; Laboratory of Electrophysiology, Université de Mons-HainautMons, Belgium
| |
Collapse
|
20
|
Angius L, Pageaux B, Hopker J, Marcora SM, Mauger AR. Transcranial direct current stimulation improves isometric time to exhaustion of the knee extensors. Neuroscience 2016; 339:363-375. [PMID: 27751960 DOI: 10.1016/j.neuroscience.2016.10.028] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 11/15/2022]
Abstract
Transcranial direct current stimulation (tDCS) can increase cortical excitability of a targeted brain area, which may affect endurance exercise performance. However, optimal electrode placement for tDCS remains unclear. We tested the effect of two different tDCS electrode montages for improving exercise performance. Nine subjects underwent a control (CON), placebo (SHAM) and two different tDCS montage sessions in a randomized design. In one tDCS session, the anodal electrode was placed over the left motor cortex and the cathodal on contralateral forehead (HEAD), while for the other montage the anodal electrode was placed over the left motor cortex and cathodal electrode above the shoulder (SHOULDER). tDCS was delivered for 10min at 2.0mA, after which participants performed an isometric time to exhaustion (TTE) test of the right knee extensors. Peripheral and central neuromuscular parameters were assessed at baseline, after tDCS application and after TTE. Heart rate (HR), ratings of perceived exertion (RPE), and leg muscle exercise-induced muscle pain (PAIN) were monitored during the TTE. TTE was longer and RPE lower in the SHOULDER condition (P<0.05). Central and peripheral parameters, and HR and PAIN did not present any differences between conditions after tDCS stimulation (P>0.05). In all conditions maximal voluntary contraction (MVC) significantly decreased after the TTE (P<0.05) while motor-evoked potential area (MEP) increased after TTE (P<0.05). These findings demonstrate that SHOULDER montage is more effective than HEAD montage to improve endurance performance, likely through avoiding the negative effects of the cathode on excitability.
Collapse
Affiliation(s)
- L Angius
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Chatham Maritime, UK
| | - B Pageaux
- Laboratoire INSERM U1093, Université de Bourgogne, Dijon, France
| | - J Hopker
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Chatham Maritime, UK
| | - S M Marcora
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Chatham Maritime, UK
| | - A R Mauger
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Chatham Maritime, UK.
| |
Collapse
|
21
|
Huh DC, Lee JM, Oh SM, Lee JH, Van Donkelaar P, Lee DH. Repetitive Transcranial Magnetic Stimulation of the Primary Somatosensory Cortex Modulates Perception of the Tendon Vibration Illusion. Percept Mot Skills 2016; 123:424-44. [PMID: 27516411 DOI: 10.1177/0031512516663715] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effect of repetitive transcranial magnetic stimulation on kinesthetic perception, when applied to the somatosensory cortex, was examined. Further, the facilitatory and inhibitory effects of repetitive transcranial magnetic stimulation using different stimulation frequencies were tested. Six female (M age = 32.0 years, SD = 6.7) and nine male (M age = 32.9 years, SD = 6.6) participants were asked to perceive the tendon vibration illusion of the left wrist joint and to replicate the illusion with their right hand. When comparing changes in the corresponding movement amplitude and velocity after three different repetitive transcranial magnetic stimulation protocols (sham, 1 Hz inhibitory, and 5 Hz facilitatory repetitive transcranial magnetic stimulation), the movement amplitude was found to decrease with the inhibitory repetitive transcranial magnetic stimulation, while the movement velocity respectively increased and decreased with the facilitatory and inhibitory repetitive transcranial magnetic stimulation. These results confirmed the modulating effects of repetitive transcranial magnetic stimulation on kinesthetic perception in a single experimental paradigm.
Collapse
Affiliation(s)
- D C Huh
- Sungkyunkwan University, Suwon, Kyungi-Do, Republic of Korea
| | - J M Lee
- Sungkyunkwan University, Suwon, Kyungi-Do, Republic of Korea
| | - S M Oh
- Sungkyunkwan University, Suwon, Kyungi-Do, Republic of Korea
| | - J-H Lee
- Sungkyunkwan University, Suwon, Kyungi-Do, Republic of Korea
| | | | - D H Lee
- Sangmyung University, Republic of Korea
| |
Collapse
|
22
|
Clark EV, Ward NS, Kuppuswamy A. Prior physical exertion modulates allocentric distance perception: a demonstration of task-irrelevant cross-modal transfer. Exp Brain Res 2016; 234:2363-7. [PMID: 27052884 PMCID: PMC4923087 DOI: 10.1007/s00221-016-4641-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/25/2016] [Indexed: 11/23/2022]
Abstract
Physical exertion has been previously shown to influence distance perception in the egocentric framework. In this study, we show that physical exertion influences allocentric distance perception. Twenty healthy volunteers made allocentric line length estimates following varying levels of physical exertion. Each participant was presented with 30 different line lengths ranging from 1 to 12 cm, and each length was presented three times. Each line presentation was preceded by the participant exerting one of the following three levels of their maximal voluntary force (MVF): 20, 50, or 80 % MVF using their hand in the pinch force task. Psychometric curves were obtained for the lines perceived as ‘long’ following each of the three force levels. Lines that were perceived as ‘short’ following 20 and 50 % MVF were perceived as ‘long’ following 80 % MVF; that is, there was a significant leftward shift in the psychometric curve following 80 % MVF when compared to 20 and 50 % MVF. Here, we demonstrate that physical exertion influences perception of distances in the allocentric framework. We discuss our findings with respect to cross-modal interactions, fatigue physiology, peri- and extra-personal space interactions.
Collapse
Affiliation(s)
- Ella V Clark
- Institute of Neurology, University College London, 33, Queen Square, London, WC1N 3BG, UK
| | - Nick S Ward
- Institute of Neurology, University College London, 33, Queen Square, London, WC1N 3BG, UK
| | - Annapoorna Kuppuswamy
- Institute of Neurology, University College London, 33, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
23
|
Toma S, Lacquaniti F. Mapping Muscles Activation to Force Perception during Unloading. PLoS One 2016; 11:e0152552. [PMID: 27032087 PMCID: PMC4816335 DOI: 10.1371/journal.pone.0152552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/16/2016] [Indexed: 11/19/2022] Open
Abstract
It has been largely proved that while judging a force humans mainly rely on the motor commands produced to interact with that force (i.e., sense of effort). Despite of a large bulk of previous investigations interested in understanding the contributions of the descending and ascending signals in force perception, very few attempts have been made to link a measure of neural output (i.e., EMG) to the psychophysical performance. Indeed, the amount of correlation between EMG activity and perceptual decisions can be interpreted as an estimate of the contribution of central signals involved in the sensation of force. In this study we investigated this correlation by measuring the muscular activity of eight arm muscles while participants performed a quasi-isometric force detection task. Here we showed a method to quantitatively describe muscular activity ("muscle-metric function") that was directly comparable to the description of the participants' psychophysical decisions about the stimulus force. We observed that under our experimental conditions, muscle-metric absolute thresholds and the shape of the muscle-metric curves were closely related to those provided by the psychophysics. In fact a global measure of the muscles considered was able to predict approximately 60% of the perceptual decisions total variance. Moreover the inter-subjects differences in psychophysical sensitivity showed high correlation with both participants' muscles sensitivity and participants' joint torques. Overall, our findings gave insights into both the role played by the corticospinal motor commands while performing a force detection task and the influence of the gravitational muscular torque on the estimation of vertical forces.
Collapse
Affiliation(s)
- Simone Toma
- Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Francesco Lacquaniti
- Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Systems Medicine, University of Rome, Tor Vergata, Rome, Italy
| |
Collapse
|
24
|
Effects of cathodal transcranial direct current stimulation to primary somatosensory cortex on short-latency afferent inhibition. Neuroreport 2016; 26:634-7. [PMID: 26103117 DOI: 10.1097/wnr.0000000000000402] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of this study was to investigate the effects of cathodal transcranial direct current stimulation (tDCS) applied over the primary somatosensory cortex (S1) on short-interval afferent inhibition (SAI). Thirteen healthy individuals participated in this study. Cathodal tDCS was applied for 15 min at 1 mA over the left S1. Motor-evoked potentials (MEPs) were measured from the right first dorsal interosseous muscle in response to transcranial magnetic stimulation (TMS) of the left motor cortex before tDCS (pre), immediately after tDCS (immediately), and 15 min after tDCS (post-15 min). SAI was evaluated by measuring MEPs in response to TMS pulses applied 40 ms after peripheral electrical stimulation of the index finger. For each measurement period (pre, immediately, and post-15 min), MEP amplitude was significantly smaller when TMS followed index finger stimulation (SAI condition) than when TMS was delivered alone (single TMS) (P<0.01), indicating expression of SAI. The MEP ratio (MEP of SAI/MEP of single TMS) at post-15 min was significantly larger than that of pre (P<0.05), indicating suppression of SAI. However, no significant difference was observed between pre and immediately, and immediately and post-15 min. These results suggest that cathodal tDCS applied over the S1 causes a decrease in S1 excitability following peripheral electrical stimulation and cathodal tDCS applied over the S1 decreased the inhibitory effects of SAI.
Collapse
|
25
|
The role of dopamine in the pathophysiology and treatment of apathy. PROGRESS IN BRAIN RESEARCH 2016; 229:389-426. [DOI: 10.1016/bs.pbr.2016.05.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
26
|
Takarada Y. “Sense of effort” and M1 activity with special reference to resistance exercise with vascular occlusion. ACTA ACUST UNITED AC 2016. [DOI: 10.7600/jpfsm.5.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
van Polanen V, Davare M. Sensorimotor Memory Biases Weight Perception During Object Lifting. Front Hum Neurosci 2015; 9:700. [PMID: 26778993 PMCID: PMC4689183 DOI: 10.3389/fnhum.2015.00700] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/11/2015] [Indexed: 11/13/2022] Open
Abstract
When lifting an object, the brain uses visual cues and an internal object representation to predict its weight and scale fingertip forces accordingly. Once available, tactile information is rapidly integrated to update the weight prediction and refine the internal object representation. If visual cues cannot be used to predict weight, force planning relies on implicit knowledge acquired from recent lifting experience, termed sensorimotor memory. Here, we investigated whether perception of weight is similarly biased according to previous lifting experience and how this is related to force scaling. Participants grasped and lifted series of light or heavy objects in a semi-randomized order and estimated their weights. As expected, we found that forces were scaled based on previous lifts (sensorimotor memory) and these effects increased depending on the length of recent lifting experience. Importantly, perceptual weight estimates were also influenced by the preceding lift, resulting in lower estimations after a heavy lift compared to a light one. In addition, weight estimations were negatively correlated with the magnitude of planned force parameters. This perceptual bias was only found if the current lift was light, but not heavy since the magnitude of sensorimotor memory effects had, according to Weber's law, relatively less impact on heavy compared to light objects. A control experiment tested the importance of active lifting in mediating these perceptual changes and showed that when weights are passively applied on the hand, no effect of previous sensory experience is found on perception. These results highlight how fast learning of novel object lifting dynamics can shape weight perception and demonstrate a tight link between action planning and perception control. If predictive force scaling and actual object weight do not match, the online motor corrections, rapidly implemented to downscale forces, will also downscale weight estimation in a proportional manner.
Collapse
Affiliation(s)
- Vonne van Polanen
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, Biomedical Sciences Group, Department of Kinesiology Katholieke Universiteit Leuven, Leuven, Belgium
| | - Marco Davare
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, Biomedical Sciences Group, Department of KinesiologyKatholieke Universiteit Leuven, Leuven, Belgium; Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of NeurologyLondon, UK
| |
Collapse
|
28
|
|
29
|
de Morree HM, Klein C, Marcora SM. Cortical substrates of the effects of caffeine and time-on-task on perception of effort. J Appl Physiol (1985) 2014; 117:1514-23. [DOI: 10.1152/japplphysiol.00898.2013] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Caffeine intake results in a decrease in perception of effort, but the cortical substrates of this perceptual effect of caffeine are unknown. The aim of this randomized counterbalanced double-blind crossover study was to investigate the effect of caffeine on the motor-related cortical potential (MRCP) and its relationship with rating of perceived effort (RPE). We also investigated whether MRCP is associated with the increase in RPE occurring over time during submaximal exercise. Twelve healthy female volunteers performed 100 intermittent isometric knee extensions at 61 ± 5% of their maximal torque 1.5 h after either caffeine (6 mg/kg) or placebo ingestion, while RPE, vastus lateralis electromyogram (EMG), and MRCP were recorded. RPE and MRCP amplitude at the vertex during the first contraction epoch (0–1 s) were significantly lower after caffeine ingestion compared with placebo ( P < 0.05) and were significantly higher during the second half of the submaximal intermittent isometric knee-extension protocol compared with the first half ( P < 0.05). No significant effects of caffeine and time-on-task were found for EMG amplitude and submaximal force output variables. The covariation between MRCP and RPE across both caffeine and time-on-task ( r10 = −0.335, P < 0.05) provides evidence in favor of the theory that perception of effort arises from neurocognitive processing of corollary discharges from premotor and motor areas of the cortex. Caffeine seems to reduce perception of effort through a reduction in the activity of cortical premotor and motor areas necessary to produce a submaximal force, and time-on-task has the opposite effect.
Collapse
Affiliation(s)
- Helma M. de Morree
- School of Sport, Health and Exercise Sciences, Bangor University, Bangor, United Kingdom
| | - Christoph Klein
- School of Psychology, Bangor University, Bangor, United Kingdom
- Department of Child and Adolescent Psychiatry and Psychotherapy, University of Freiburg, Freiburg, Germany; and
| | - Samuele M. Marcora
- School of Sport, Health and Exercise Sciences, Bangor University, Bangor, United Kingdom
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Chatham, United Kingdom
| |
Collapse
|