1
|
Huang YH, Shih HW, Tsai YC. Expressing miR-282 mitigates Aβ42-induced neurodegeneration in Alzheimer's model in Drosophila. Biochem Biophys Res Commun 2024; 734:150768. [PMID: 39357339 DOI: 10.1016/j.bbrc.2024.150768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Alzheimer's disease is a complex neurodegenerative condition characterized by the accumulation of amyloid beta plaques, leading to memory loss, cognitive decline, and impaired autonomous behavior. Despite extensive research, an effective treatment remains elusive. The buildup of amyloid beta plaques (Aβ42) in the brain causes oxidative stress and disrupts normal molecular signaling, adversely affecting neuron function. Previous research has identified factors that can either exacerbate or mitigate neurodegenerative diseases. Our study aimed to uncover new factors involved in the pathogenesis of Alzheimer's disease. Using Drosophila as a model organism, we employed the Gal4/UAS system to express human Aβ42 in the flies' retinal neurons which led to neurodegenerative changes in their compound eyes. To identify genetic modifiers, we conducted a screen by co-expressing microRNAs and found that miR-282 acts as a suppressor. Overexpressing miR-282 in the GMR > Aβ42 background reduced Aβ42-induced neurodegeneration. Further analysis using prediction tools and RNA interference experiments identified three potential downstream targets of miR-282: calpain-B, knot, and scabrous. Downregulating these genes via RNA interference in the GMR > Aβ42 background mitigated neurodegeneration. Our research highlights miR-282 as a novel molecule that may influence the progression of Alzheimer's disease, offering potential avenues for future therapeutic or diagnostic developments.
Collapse
Affiliation(s)
- Yu-Hsuan Huang
- Department of Life Science and Life Science Center, Tunghai University, Taichung, 40704, Taiwan R.O.C
| | - Hui-Wen Shih
- Department of Life Science and Life Science Center, Tunghai University, Taichung, 40704, Taiwan R.O.C
| | - Yu-Chen Tsai
- Department of Life Science and Life Science Center, Tunghai University, Taichung, 40704, Taiwan R.O.C.
| |
Collapse
|
2
|
Deshpande P, Chen CY, Chimata AV, Li JC, Sarkar A, Yeates C, Chen CH, Kango-Singh M, Singh A. miR-277 targets the proapoptotic gene-hid to ameliorate Aβ42-mediated neurodegeneration in Alzheimer's model. Cell Death Dis 2024; 15:71. [PMID: 38238337 PMCID: PMC10796706 DOI: 10.1038/s41419-023-06361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024]
Abstract
Alzheimer's disease (AD), an age-related progressive neurodegenerative disorder, exhibits reduced cognitive function with no cure to date. One of the reasons for AD is the accumulation of Amyloid-beta 42 (Aβ42) plaque(s) that trigger aberrant gene expression and signaling, which results in neuronal cell death by an unknown mechanism(s). Misexpression of human Aβ42 in the developing retina of Drosophila exhibits AD-like neuropathology. Small non-coding RNAs, microRNAs (miRNAs), post-transcriptionally regulate the expression of their target genes and thereby regulate different signaling pathways. In a forward genetic screen, we identified miR-277 (human ortholog is hsa-miR-3660) as a genetic modifier of Aβ42-mediated neurodegeneration. Loss-of-function of miR-277 enhances the Aβ42-mediated neurodegeneration. Whereas gain-of-function of miR-277 in the GMR > Aβ42 background downregulates cell death to maintain the number of neurons and thereby restores the retinal axonal targeting defects indicating the functional rescue. In addition, gain-of-function of miR-277 rescues the eclosion- and climbing assays defects observed in GMR > Aβ42 background. Thus, gain-of-function of miR-277 rescues both structurally as well as functionally the Aβ42-mediated neurodegeneration. Furthermore, we identified head involution defective (hid), an evolutionarily conserved proapoptotic gene, as one of the targets of miR-277 and validated these results using luciferase- and qPCR -assays. In the GMR > Aβ42 background, the gain-of-function of miR-277 results in the reduction of hid transcript levels to one-third of its levels as compared to GMR > Aβ42 background alone. Here, we provide a novel molecular mechanism where miR-277 targets and downregulates proapoptotic gene, hid, transcript levels to rescue Aβ42-mediated neurodegeneration by blocking cell death. These studies shed light on molecular mechanism(s) that mediate cell death response following Aβ42 accumulation seen in neurodegenerative disorders in humans and provide new therapeutic targets for neurodegeneration.
Collapse
Affiliation(s)
| | - Chao-Yi Chen
- Institution of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | | | - Jian-Chiuan Li
- Institution of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Ankita Sarkar
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA
| | - Catherine Yeates
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA
| | - Chun-Hong Chen
- Institution of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan.
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.
| | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA.
- Premedical Program, University of Dayton, Dayton, OH, USA.
- Integrative Science and Engineering (ISE), University of Dayton, Dayton, OH, USA.
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA.
- Premedical Program, University of Dayton, Dayton, OH, USA.
- Integrative Science and Engineering (ISE), University of Dayton, Dayton, OH, USA.
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA.
| |
Collapse
|
3
|
Majcin Dorcikova M, Duret LC, Pottié E, Nagoshi E. Circadian clock disruption promotes the degeneration of dopaminergic neurons in male Drosophila. Nat Commun 2023; 14:5908. [PMID: 37737209 PMCID: PMC10516932 DOI: 10.1038/s41467-023-41540-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
Sleep and circadian rhythm disruptions are frequent comorbidities of Parkinson's disease (PD), a disorder characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra. However, the causal role of circadian clocks in the degenerative process remains uncertain. We demonstrated here that circadian clocks regulate the rhythmicity and magnitude of the vulnerability of DA neurons to oxidative stress in male Drosophila. Circadian pacemaker neurons are presynaptic to a subset of DA neurons and rhythmically modulate their susceptibility to degeneration. The arrhythmic period (per) gene null mutation exacerbates the age-dependent loss of DA neurons and, in combination with brief oxidative stress, causes premature animal death. These findings suggest that circadian clock disruption promotes dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- Michaëla Majcin Dorcikova
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva, Switzerland
| | - Lou C Duret
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva, Switzerland
| | - Emma Pottié
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva, Switzerland
| | - Emi Nagoshi
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva, Switzerland.
| |
Collapse
|
4
|
Inami S, Sato T, Sakai T. Circadian Neuropeptide-Expressing Clock Neurons as Regulators of Long-Term Memory: Molecular and Cellular Perspectives. Front Mol Neurosci 2022; 15:934222. [PMID: 35909447 PMCID: PMC9326319 DOI: 10.3389/fnmol.2022.934222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
The neuropeptide pigment-dispersing factor (Pdf) is critically involved in the regulation of circadian rhythms in various insects. The function of Pdf in circadian rhythms has been best studied in the fruitfly, i.e., Drosophila melanogaster. Drosophila Pdf is produced in a small subset of circadian clock neurons in the adult brain and functions as a circadian output signal. Recently, however, Pdf has been shown to play important roles not only in regulating circadian rhythms but also in innate and learned behaviors in Drosophila. In this mini-review, we will focus on the current findings that Pdf signaling and Pdf-producing neurons are essential for consolidating and maintaining long-term memory induced by the courtship conditioning in Drosophila and discuss the mechanisms of courtship memory processing through Pdf-producing neurons.
Collapse
Affiliation(s)
- Show Inami
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Tomohito Sato
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Takaomi Sakai
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
- *Correspondence: Takaomi Sakai
| |
Collapse
|
5
|
Suzuki Y, Kurata Y, Sakai T. Dorsal‐lateral clock neurons modulate consolidation and maintenance of long‐term memory in
Drosophila. Genes Cells 2022; 27:266-279. [DOI: 10.1111/gtc.12923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Yuki Suzuki
- Department of Biological Sciences Tokyo Metropolitan University Tokyo 192‐0397 Japan
| | - Yuto Kurata
- Department of Biological Sciences Tokyo Metropolitan University Tokyo 192‐0397 Japan
| | - Takaomi Sakai
- Department of Biological Sciences Tokyo Metropolitan University Tokyo 192‐0397 Japan
| |
Collapse
|
6
|
Consolidation and maintenance of long-term memory involve dual functions of the developmental regulator Apterous in clock neurons and mushroom bodies in the Drosophila brain. PLoS Biol 2021; 19:e3001459. [PMID: 34860826 PMCID: PMC8641882 DOI: 10.1371/journal.pbio.3001459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
Memory is initially labile but can be consolidated into stable long-term memory (LTM) that is stored in the brain for extended periods. Despite recent progress, the molecular and cellular mechanisms underlying the intriguing neurobiological processes of LTM remain incompletely understood. Using the Drosophila courtship conditioning assay as a memory paradigm, here, we show that the LIM homeodomain (LIM-HD) transcription factor Apterous (Ap), which is known to regulate various developmental events, is required for both the consolidation and maintenance of LTM. Interestingly, Ap is involved in these 2 memory processes through distinct mechanisms in different neuronal subsets in the adult brain. Ap and its cofactor Chip (Chi) are indispensable for LTM maintenance in the Drosophila memory center, the mushroom bodies (MBs). On the other hand, Ap plays a crucial role in memory consolidation in a Chi-independent manner in pigment dispersing factor (Pdf)-containing large ventral–lateral clock neurons (l-LNvs) that modulate behavioral arousal and sleep. Since disrupted neurotransmission and electrical silencing in clock neurons impair memory consolidation, Ap is suggested to contribute to the stabilization of memory by ensuring the excitability of l-LNvs. Indeed, ex vivo imaging revealed that a reduced function of Ap, but not Chi, results in exaggerated Cl− responses to the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) in l-LNvs, indicating that wild-type (WT) Ap maintains high l-LNv excitability by suppressing the GABA response. Consistently, enhancing the excitability of l-LNvs by knocking down GABAA receptors compensates for the impaired memory consolidation in ap null mutants. Overall, our results revealed unique dual functions of the developmental regulator Ap for LTM consolidation in clock neurons and LTM maintenance in MBs. A neurogenetic study using Drosophila reveals that the centrally expressed LIM-homeodomain transcription factor Apterous plays a crucial neuron-type-dependent role in two different memory processes - consolidation and maintenance of long-term memory.
Collapse
|
7
|
Crocker KL, Marischuk K, Rimkus SA, Zhou H, Yin JCP, Boekhoff-Falk G. Neurogenesis in the adult Drosophila brain. Genetics 2021; 219:6297258. [PMID: 34117750 PMCID: PMC8860384 DOI: 10.1093/genetics/iyab092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/08/2021] [Indexed: 11/14/2022] Open
Abstract
Neurodegenerative diseases such as Alzheimer's and Parkinson's currently affect ∼25 million people worldwide (Erkkinen et al. 2018). The global incidence of traumatic brain injury (TBI) is estimated at ∼70 million/year (Dewan et al. 2018). Both neurodegenerative diseases and TBI remain without effective treatments. We are utilizing adult Drosophila melanogaster to investigate the mechanisms of brain regeneration with the long term goal of identifying targets for neural regenerative therapies. We specifically focused on neurogenesis, i.e. the generation of new cells, as opposed to the regrowth of specific subcellular structures such as axons. Like mammals, Drosophila have few proliferating cells in the adult brain. Nonetheless, within 24 hours of a Penetrating Traumatic Brain Injury (PTBI) to the central brain, there is a significant increase in the number of proliferating cells. We subsequently detect both new glia and new neurons and the formation of new axon tracts that target appropriate brain regions. Glial cells divide rapidly upon injury to give rise to new glial cells. Other cells near the injury site upregulate neural progenitor genes including asense and deadpan and later give rise to the new neurons. Locomotor abnormalities observed after PTBI are reversed within two weeks of injury, supporting the idea that there is functional recovery. Together, these data indicate that adult Drosophila brains are capable of neuronal repair. We anticipate that this paradigm will facilitate the dissection of the mechanisms of neural regeneration and that these processes will be relevant to human brain repair.
Collapse
Affiliation(s)
- Kassi L Crocker
- Genetics Graduate Training Program, University of Wisconsin-Madison, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA.,Science and Medicine Graduate Research Scholars Program, University of Wisconsin-Madison, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Khailee Marischuk
- Genetics Graduate Training Program, University of Wisconsin-Madison, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Stacey A Rimkus
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Hong Zhou
- Department of Genetics, University of Wisconsin-Madison, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Jerry C P Yin
- Department of Genetics, University of Wisconsin-Madison, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Grace Boekhoff-Falk
- Genetics Graduate Training Program, University of Wisconsin-Madison, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
8
|
Glia-derived temporal signals orchestrate neurogenesis in the Drosophila mushroom body. Proc Natl Acad Sci U S A 2021; 118:2020098118. [PMID: 34078666 DOI: 10.1073/pnas.2020098118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intrinsic mechanisms such as temporal series of transcription factors orchestrate neurogenesis from a limited number of neural progenitors in the brain. Extrinsic regulations, however, remain largely unexplored. Here we describe a two-step glia-derived signal that regulates neurogenesis in the Drosophila mushroom body (MB). In a temporal manner, glial-specific ubiquitin ligase dSmurf activates non-cell-autonomous Hedgehog signaling propagation by targeting the receptor Patched to suppress and promote the exit of MB neuroblast (NB) proliferation, thereby specifying the correct α/β cell number without affecting differentiation. Independent of NB proliferation, dSmurf also stabilizes the expression of the cell-adhesion molecule Fasciclin II (FasII) via its WW domains and regulates FasII homophilic interaction between glia and MB axons to refine α/β-lobe integrity. Our findings provide insights into how extrinsic glia-to-neuron communication coordinates with NB proliferation capacity to regulate MB neurogenesis; glial proteostasis is likely a generalized mechanism in orchestrating neurogenesis.
Collapse
|
9
|
Palazzo O, Rass M, Brembs B. Identification of FoxP circuits involved in locomotion and object fixation in Drosophila. Open Biol 2020; 10:200295. [PMID: 33321059 PMCID: PMC7776582 DOI: 10.1098/rsob.200295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The FoxP family of transcription factors is necessary for operant self-learning, an evolutionary conserved form of motor learning. The expression pattern, molecular function and mechanisms of action of the Drosophila FoxP orthologue remain to be elucidated. By editing the genomic locus of FoxP with CRISPR/Cas9, we find that the three different FoxP isoforms are expressed in neurons, but not in glia and that not all neurons express all isoforms. Furthermore, we detect FoxP expression in, e.g. the protocerebral bridge, the fan-shaped body and in motor neurons, but not in the mushroom bodies. Finally, we discover that FoxP expression during development, but not adulthood, is required for normal locomotion and landmark fixation in walking flies. While FoxP expression in the protocerebral bridge and motor neurons is involved in locomotion and landmark fixation, the FoxP gene can be excised from dorsal cluster neurons and mushroom-body Kenyon cells without affecting these behaviours.
Collapse
Affiliation(s)
- Ottavia Palazzo
- Institut für Zoologie - Neurogenetik, Universität Regensburg, Regensburg, Germany
| | - Mathias Rass
- Institut für Zoologie - Neurogenetik, Universität Regensburg, Regensburg, Germany
| | - Björn Brembs
- Institut für Zoologie - Neurogenetik, Universität Regensburg, Regensburg, Germany
| |
Collapse
|
10
|
Emanuel S, Kaiser M, Pflueger HJ, Libersat F. On the Role of the Head Ganglia in Posture and Walking in Insects. Front Physiol 2020; 11:135. [PMID: 32153430 PMCID: PMC7047666 DOI: 10.3389/fphys.2020.00135] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/07/2020] [Indexed: 12/04/2022] Open
Abstract
In insects, locomotion is the result of rhythm generating thoracic circuits and their modulation by sensory reflexes and by inputs from the two head ganglia, the cerebral and the gnathal ganglia (GNG), which act as higher order neuronal centers playing different functions in the initiation, goal-direction, and maintenance of movement. Current knowledge on the various roles of major neuropiles of the cerebral ganglia (CRG), such as mushroom bodies (MB) and the central complex (CX), in particular, are discussed as well as the role of the GNG. Thoracic and head ganglia circuitries are connected by ascending and descending neurons. While less is known about the ascending neurons, recent studies in large insects and Drosophila have begun to unravel the identity of descending neurons and their appropriate roles in posture and locomotion. Descending inputs from the head ganglia are most important in initiating and modulating thoracic central pattern generating circuitries to achieve goal directed locomotion. In addition, the review will also deal with some known monoaminergic descending neurons which affect the motor circuits involved in posture and locomotion. In conclusion, we will present a few issues that have, until today, been little explored. For example, how and which descending neurons are selected to engage a specific motor behavior and how feedback from thoracic circuitry modulate the head ganglia circuitries. The review will discuss results from large insects, mainly locusts, crickets, and stick insects but will mostly focus on cockroaches and the fruit fly, Drosophila.
Collapse
Affiliation(s)
- Stav Emanuel
- Department of Life Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Maayan Kaiser
- Department of Life Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Hans-Joachim Pflueger
- Fachbereich Biologie Chemie Pharmazie, Institut für Biologie, Neurobiologie, Freie Universität Berlin, Berlin, Germany
| | - Frederic Libersat
- Department of Life Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
11
|
Hamid R, Hajirnis N, Kushwaha S, Saleem S, Kumar V, Mishra RK. Drosophila Choline transporter non-canonically regulates pupal eclosion and NMJ integrity through a neuronal subset of mushroom body. Dev Biol 2019; 446:80-93. [DOI: 10.1016/j.ydbio.2018.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/25/2018] [Accepted: 12/07/2018] [Indexed: 12/19/2022]
|
12
|
Pírez N, Bernabei-Cornejo SG, Fernandez-Acosta M, Duhart JM, Ceriani MF. Contribution of non-circadian neurons to the temporal organization of locomotor activity. Biol Open 2019; 8:bio.039628. [PMID: 30530810 PMCID: PMC6361196 DOI: 10.1242/bio.039628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In the fruit fly, Drosophila melanogaster, the daily cycle of rest and activity is a rhythmic behavior that relies on the activity of a small number of neurons. The small ventral lateral neurons (sLNvs) are considered key in the control of locomotor rhythmicity. Previous work from our laboratory has showed that these neurons undergo structural remodeling on their axonal projections on a daily basis. Such remodeling endows sLNvs with the possibility to make synaptic contacts with different partners at different times throughout the day, as has been previously described. By using different genetic tools to alter membrane excitability of the sLNv putative postsynaptic partners, we tested their functional role in the control of locomotor activity. We also used optical imaging to test the functionality of these contacts. We found that these different neuronal groups affect the consolidation of rhythmic activity, suggesting that non-circadian cells are part of the circuit that controls locomotor activity. Our results suggest that new neuronal groups, in addition to the well-characterized clock neurons, contribute to the operations of the circadian network that controls locomotor activity in D. melanogaster. Summary: Here we characterized the impact of different putative postsynaptic partners of the sLNvs on the control of rhythmic locomotor behavior. We found that some of these novel neuronal clusters are relevant for the control of locomotor activity.
Collapse
Affiliation(s)
- Nicolás Pírez
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas-Buenos Aires (IIB-BA, CONICET), 1425 Buenos Aires, Argentina
| | - Sofia G Bernabei-Cornejo
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas-Buenos Aires (IIB-BA, CONICET), 1425 Buenos Aires, Argentina
| | - Magdalena Fernandez-Acosta
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas-Buenos Aires (IIB-BA, CONICET), 1425 Buenos Aires, Argentina
| | - José M Duhart
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas-Buenos Aires (IIB-BA, CONICET), 1425 Buenos Aires, Argentina
| | - M Fernanda Ceriani
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas-Buenos Aires (IIB-BA, CONICET), 1425 Buenos Aires, Argentina
| |
Collapse
|
13
|
Bianchini MC, Gularte COA, Nogara PA, Krum BN, Gayer MC, Bridi JC, Roos DH, Roehrs R, Fachinetto R, Pinton S, Ávila DS, Hirth F, Rocha JBT, Puntel RL. Thimerosal inhibits Drosophila melanogaster tyrosine hydroxylase (DmTyrH) leading to changes in dopamine levels and impaired motor behavior: implications for neurotoxicity. Metallomics 2019; 11:362-374. [DOI: 10.1039/c8mt00268a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thimerosal (THIM) is a well-established antifungal and antiseptic agent widely used as a preservative in vaccines.
Collapse
Affiliation(s)
- Matheus C. Bianchini
- Universidade Federal do Pampa – Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq)
- Uruguaiana
- Brazil
| | - Claudia Ortiz Alves Gularte
- Universidade Federal do Pampa – Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq)
- Uruguaiana
- Brazil
| | - Pablo A. Nogara
- Universidade Federal de Santa Maria – Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas (CCNE)
- Santa Maria
- Brazil
| | - Bárbara N. Krum
- Universidade Federal de Santa Maria – Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde (CCS)
- Santa Maria
- Brazil
| | - Mateus C. Gayer
- Universidade Federal do Pampa – Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq)
- Uruguaiana
- Brazil
| | - Jessika C. Bridi
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience
- London
- UK
| | - Daniel H. Roos
- Universidade Federal do Pampa – Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq)
- Uruguaiana
- Brazil
| | - Rafael Roehrs
- Universidade Federal do Pampa – Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq)
- Uruguaiana
- Brazil
| | - Roselei Fachinetto
- Universidade Federal de Santa Maria – Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde (CCS)
- Santa Maria
- Brazil
| | - Simone Pinton
- Universidade Federal do Pampa – Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq)
- Uruguaiana
- Brazil
| | - Daiana S. Ávila
- Universidade Federal do Pampa – Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq)
- Uruguaiana
- Brazil
| | - Frank Hirth
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience
- London
- UK
| | - João B. T. Rocha
- Universidade Federal de Santa Maria – Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas (CCNE)
- Santa Maria
- Brazil
| | - Robson L. Puntel
- Universidade Federal do Pampa – Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq)
- Uruguaiana
- Brazil
| |
Collapse
|
14
|
Xue Y, Zhang Y. Emerging roles for microRNA in the regulation of Drosophila circadian clock. BMC Neurosci 2018; 19:1. [PMID: 29338692 PMCID: PMC5769547 DOI: 10.1186/s12868-018-0401-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022] Open
Abstract
Background The circadian clock, which operates within an approximately 24-h period, is closely linked to the survival and fitness of almost all living organisms. The circadian clock is generated through a negative transcription-translation feedback loop. microRNAs (miRNAs) are small non-coding RNAs comprised of approximately 22 nucleotides that post-transcriptionally regulate target mRNA by either inducing mRNA degradation or inhibiting translation. Results In recent years, miRNAs have been found to play important roles in the regulation of the circadian clock, especially in Drosophila. In this review, we will use fruit flies as an example, and summarize the progress achieved in the study of miRNA-mediated clock regulation. Three main aspects of the circadian clock, namely, the free-running period, locomotion phase, and circadian amplitude, are discussed in detail in the context of how miRNAs are involved in these regulations. In addition, approaches regarding the discovery of circadian-related miRNAs and their targets are also discussed. Conclusions Research in the last decade suggests that miRNA-mediated post-transcriptional regulation is crucial to the generation and maintenance of a robust circadian clock in animals. In flies, miRNAs are known to modulate circadian rhythmicity and the free-running period, as well as circadian outputs. Further characterization of miRNAs, especially in the circadian input, will be a vital step toward a more comprehensive understanding of the functions underlying miRNA-control of the circadian clock.
Collapse
Affiliation(s)
- Yongbo Xue
- Department of Biology, University of Nevada, Reno, 1664 North Virginia St., Reno, NV, 89557-0315, USA
| | - Yong Zhang
- Department of Biology, University of Nevada, Reno, 1664 North Virginia St., Reno, NV, 89557-0315, USA.
| |
Collapse
|