1
|
Lin Y, Lee C, Sung J, Chen C. Genetic exploration of roles of acid-sensing ion channel subtypes in neurosensory mechanotransduction including proprioception. Exp Physiol 2024; 109:66-80. [PMID: 37489658 PMCID: PMC10988671 DOI: 10.1113/ep090762] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/03/2023] [Indexed: 07/26/2023]
Abstract
Although acid-sensing ion channels (ASICs) are proton-gated ion channels responsible for sensing tissue acidosis, accumulating evidence has shown that ASICs are also involved in neurosensory mechanotransduction. However, in contrast to Piezo ion channels, evidence of ASICs as mechanically gated ion channels has not been found using conventional mechanoclamp approaches. Instead, ASICs are involved in the tether model of mechanotransduction, with the channels gated via tethering elements of extracellular matrix and intracellular cytoskeletons. Methods using substrate deformation-driven neurite stretch and micropipette-guided ultrasound were developed to reveal the roles of ASIC3 and ASIC1a, respectively. Here we summarize the evidence supporting the roles of ASICs in neurosensory mechanotransduction in knockout mouse models of ASIC subtypes and provide insight to further probe their roles in proprioception.
Collapse
Affiliation(s)
- Yi‐Chen Lin
- Department of Neurology, Wan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
- The Ph.D. Program for Translational MedicineTaipei Medical University and Academia SinicaNew Taipei CityTaiwan
- Taipei Neuroscience InstituteTaipei Medical UniversityNew Taipei CityTaiwan
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
| | - Cheng‐Han Lee
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
- Neuroscience Program of Academia SinicaAcademia SinicaTaipeiTaiwan
| | - Jia‐Ying Sung
- Department of Neurology, Wan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
- Taipei Neuroscience InstituteTaipei Medical UniversityNew Taipei CityTaiwan
- Department of Neurology, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Chih‐Cheng Chen
- The Ph.D. Program for Translational MedicineTaipei Medical University and Academia SinicaNew Taipei CityTaiwan
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
- Neuroscience Program of Academia SinicaAcademia SinicaTaipeiTaiwan
- Taiwan Mouse Clinic – National Comprehensive Mouse Phenotyping and Drug Testing CenterAcademia SinicaTaipeiTaiwan
- TMU Neuroscience Research Center, Taipei Medical UniversityNew Taipei CityTaiwan
| |
Collapse
|
2
|
Tamaki T, Muramatsu K, Ikutomo M, Komagata J. Effects of low-intensity exercise on contractile property of skeletal muscle and the number of motor neurons in diabetic rats. Anat Sci Int 2024; 99:106-117. [PMID: 37768514 DOI: 10.1007/s12565-023-00741-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023]
Abstract
The mode of diabetes-induced muscle and motor neuron damage depends on the type of muscle and motor neuron. One of the purposes of exercise therapy for diabetes is to improve blood glucose levels; however, information on the effects of low-intensity exercise on muscle and motor neuron disorders remain unknown. Therefore, this study aimed to examine the effects of low-intensity exercise on diabetes-induced muscle and motor neuron damage in a rat model of type 1 diabetes mellitus. We subjected adult male Wistar rats treated with streptozotocin to develop type 1 diabetes and age-matched rats to low-intensity treadmill exercise for 12 weeks. We recorded electrically evoked maximum twitch tension in leg muscles, and examined the number of motor neurons and cell body sizes. Low-intensity exercise ameliorated the prolonged half-relaxation time and the decreased numbers of the retrograde-labeled motor neurons observed in the soleus muscle of type 1 diabetic rats. However, no effect was observed in the diabetic group, as atrophy was not improved and the twitch force in the medial gastrocnemius muscle was decreased in the diabetic group. In addition, there was no improvement in the blood glucose levels after exercise. These data indicate that low-intensity exercise may relieve the onset of muscle and motor neuron damage in the soleus muscle of type 1 diabetic rats.
Collapse
Affiliation(s)
- Toru Tamaki
- Department of Physical Therapy, Nagoya Women's University, 3-40 Shioji-cho, Mizuho-Ku, Nagoya, Aichi, 467-8610, Japan.
- Department of Physical Therapy, Health Science University, 7187 Kodachi, Fujikawaguchiko-Town, Yamanashi, 401-0380, Japan.
| | - Ken Muramatsu
- Department of Physical Therapy, Kyorin University, 5-4-1 Simorenzyaku, Mitaka-City, Tokyo, 181-8612, Japan
| | - Masako Ikutomo
- Department of Physical Therapy, University of Tokyo Health Sciences, 4-11 Ochiai, Tama-City, Tokyo, 206-0003, Japan
| | - Junya Komagata
- Department of Physical Therapy, Nagoya Women's University, 3-40 Shioji-cho, Mizuho-Ku, Nagoya, Aichi, 467-8610, Japan
| |
Collapse
|
3
|
Motor skills training-induced activation of descending pathways mediating cortical command to hindlimb motoneurons in experimental diabetic rats. Exp Neurol 2023; 363:114357. [PMID: 36849002 DOI: 10.1016/j.expneurol.2023.114357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/29/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Diabetes disrupts the corticospinal tract (CST) system components that control hindlimb and trunk movement, resulting in weakness of the lower extremities. However, there is no information about a method to improve these disorders. This study aimed to investigate the rehabilitative effects of 2 weeks of aerobic training (AT) and complex motor skills training (ST) on motor disorders in streptozotocin-induced type 1 diabetic rats. In this study, electrophysiological mapping of the motor cortex showed that the diabetes mellitus (DM)-ST group had a larger motor cortical area compared to the DM-AT group and sedentary diabetic animals. Moreover, hand grip strength and rotarod latency increased in the DM-ST group; however, these two parameters did not change in the DM-AT group, as well as in control and sedentary diabetic rats. Furthermore, in the DM-ST group, cortical stimulation-induced and motor-evoked potentials were preserved after the interception of the CST; however, this potential disappeared after additional lesions were made on lateral funiculus, suggesting that their function extends to activating motor descending pathways other than the CST locating lateral funiculus. According to immunohistochemical analysis, the larger fibers present on the dorsal part of the lateral funiculus, which corresponds to the rubrospinal tract of the DM-ST group, expressed the phosphorylated growth-associated protein, 43 kD, which is a specific marker of axons with plastic changes. Additionally, electrical stimulation of the red nucleus revealed expansion of the hindlimb-responsible area and increased motor-evoked potentials of the hindlimb in the DM-ST group, suggesting a strengthening of synaptic connections between the red nucleus and spinal interneurons driving motoneurons. These results reveal that ST induces plastic changes in the rubrospinal tract in a diabetic model, which can compensate for diabetes by disrupting the CST system components that control the hindlimb. This finding suggests that ST can be a novel rehabilitation strategy to improve motor dysfunctions in diabetic patients.
Collapse
|
4
|
Ma OKF, Ronsisvalle S, Basile L, Xiang AW, Tomasella C, Sipala F, Pappalardo M, Chan KH, Milardi D, Ng RCL, Guccione S. Identification of a novel adiponectin receptor and opioid receptor dual acting agonist as a potential treatment for diabetic neuropathy. Biomed Pharmacother 2023; 158:114141. [PMID: 36542987 DOI: 10.1016/j.biopha.2022.114141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Diabetic neuropathy (DN) is a long-term complication of diabetes mellitus, affecting different periphery nerve systems including sensory and motor neurons. Hyperglycemia is the major cause of DN with symptoms such as weakness of balance or coordination, insensitivity to sensation, weakness of the muscles as well as numbness and pain in limbs Analgesic drug such as opioids can be effective to relief neuropathy pain but there is no effective treatment. Adiponectin is an anti-diabetic adipokine, which possesses insulin-sensitizing and neuroprotective effects. In this project, we aim to identify an agent which is dual acting to opioid and adiponectin receptors. Within a virtual screening repositioning campaign, a large collection of compounds with different structures comprehensive of adipoRon-like piperidine derivatives was screened by docking. Recently developed opioid receptor benzomorphanic agonists finally emerged as good ligands to adiponectin receptors showing some 2D and 3D structural similarities with AdipoRon. Particularly, we have identified (+)-MML1017, which has high affinity to the same binding domain of AdipoR1 and AdipoR2 as AdipoRon. Our western blot results indicate (+)-MML1017 activates AMPK phosphorylation through both adipoR1 and adipoR2 in neuronal cell line. Moreover, pretreatment of (+)-MML1017 can improve the cell viability with motor neurons under hyperglycermic conditions. The (+)-MML1017 also activates μ-opioid receptor cells in a concentration-dependent manner. Our study identified a novel compound having dual activity on opioid receptors and adiponectin receptors that may have analgesic effects and neuroprotective effects to treat diabetic neuropathy.
Collapse
Affiliation(s)
- Oscar Ka-Fai Ma
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Simone Ronsisvalle
- Department of Drug and Health Science, University of Catania, Viale A.Doria 6 ed.2, I-95125 Catania, Italy
| | - Livia Basile
- Department of Drug and Health Science, University of Catania, Viale A.Doria 6 ed.2, I-95125 Catania, Italy
| | - Ariya Weiman Xiang
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Cristina Tomasella
- Department of Drug and Health Science, University of Catania, Viale A.Doria 6 ed.2, I-95125 Catania, Italy
| | - Federica Sipala
- Department of Drug and Health Science, University of Catania, Viale A.Doria 6 ed.2, I-95125 Catania, Italy
| | - Matteo Pappalardo
- Department of Drug and Health Science, University of Catania, Viale A.Doria 6 ed.2, I-95125 Catania, Italy
| | - Koon-Ho Chan
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Danilo Milardi
- CNR (National Research Council of Italy) - Institute of Crystallography, Via Paolo Gaifami 18, I-95126 Catania, Italy
| | - Roy Chun-Laam Ng
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| | - Salvatore Guccione
- Department of Drug and Health Science, University of Catania, Viale A.Doria 6 ed.2, I-95125 Catania, Italy.
| |
Collapse
|
5
|
Lian W, Hao F, Hao P, Zhao W, Gao Y, Rao JS, Duan H, Yang Z, Li X. Distribution Heterogeneity of Muscle Spindles Across Skeletal Muscles of Lower Extremities in C57BL/6 Mice. Front Neuroanat 2022; 16:838951. [PMID: 35370570 PMCID: PMC8968039 DOI: 10.3389/fnana.2022.838951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/02/2022] [Indexed: 12/05/2022] Open
Abstract
Muscle spindles, an important proprioceptor scattered in the skeletal muscle, participate in maintaining muscle tension and the fine regulation of random movement. Although muscle spindles exist in all skeletal muscles, explanations about the distribution and morphology of muscle spindles remain lacking for the indetermination of spindle location across muscles. In this study, traditional time-consuming histochemical technology was utilized to determine the muscle spindle anatomical and morphological characteristics in the lower extremity skeletal muscle in C57BL/6 mice. The relative distance from spindles to nerve-entry points varied from muscles in the ventral-dorsal direction, in which spindles in the lateral of gastrocnemius were not considered to be close to its nerve-entry point. In the longitudinal pattern, the domain with the highest abundance of spindles corresponded to the nerve-entry point, excluding the tibialis anterior. Spindles are mainly concentrated at the middle and rostral domain in all muscles. The results suggest a heterogeneity of the distribution of spindles in different muscles, but the distribution trend generally follows the location pattern of the nerve-entry point. Histochemical staining revealed that the spindle did not have a symmetrical structure along the equator, and this result does not agree with previous findings. Exploring the distribution and structural characteristics of muscle spindles in skeletal muscle can provide some anatomical basis for the study of muscle spindles at the molecular level and treatment of exercise-related diseases and provide a comprehensive understanding of muscle spindle morphology.
Collapse
Affiliation(s)
- Wenxi Lian
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Fei Hao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Peng Hao
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Wen Zhao
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Yudan Gao
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- *Correspondence: Jia-Sheng Rao,
| | - Hongmei Duan
- Department of Neurobiology, Capital Medical University, Beijing, China
- Hongmei Duan,
| | - Zhaoyang Yang
- Department of Neurobiology, Capital Medical University, Beijing, China
- Zhaoyang Yang,
| | - Xiaoguang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Department of Neurobiology, Capital Medical University, Beijing, China
- Xiaoguang Li,
| |
Collapse
|
6
|
Barrett P, Quick TJ, Mudera V, Player DJ. Neuregulin 1 Drives Morphological and Phenotypical Changes in C2C12 Myotubes: Towards De Novo Formation of Intrafusal Fibres In Vitro. Front Cell Dev Biol 2022; 9:760260. [PMID: 35087826 PMCID: PMC8787273 DOI: 10.3389/fcell.2021.760260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Muscle spindles are sensory organs that detect and mediate both static and dynamic muscle stretch and monitor muscle position, through a specialised cell population, termed intrafusal fibres. It is these fibres that provide a key contribution to proprioception and muscle spindle dysfunction is associated with multiple neuromuscular diseases, aging and nerve injuries. To date, there are few publications focussed on de novo generation and characterisation of intrafusal muscle fibres in vitro. To this end, current models of skeletal muscle focus on extrafusal fibres and lack an appreciation for the afferent functions of the muscle spindle. The goal of this study was to produce and define intrafusal bag and chain myotubes from differentiated C2C12 myoblasts, utilising the addition of the developmentally associated protein, Neuregulin 1 (Nrg-1). Intrafusal bag myotubes have a fusiform shape and were assigned using statistical morphological parameters. The model was further validated using immunofluorescent microscopy and western blot analysis, directed against an extensive list of putative intrafusal specific markers, as identified in vivo. The addition of Nrg-1 treatment resulted in a 5-fold increase in intrafusal bag myotubes (as assessed by morphology) and increased protein and gene expression of the intrafusal specific transcription factor, Egr3. Surprisingly, Nrg-1 treated myotubes had significantly reduced gene and protein expression of many intrafusal specific markers and showed no specificity towards intrafusal bag morphology. Another novel finding highlights a proliferative effect for Nrg-1 during the serum starvation-initiated differentiation phase, leading to increased nuclei counts, paired with less myotube area per myonuclei. Therefore, despite no clear collective evidence for specific intrafusal development, Nrg-1 treated myotubes share two inherent characteristics of intrafusal fibres, which contain increased satellite cell numbers and smaller myonuclear domains compared with their extrafusal neighbours. This research represents a minimalistic, monocellular C2C12 model for progression towards de novo intrafusal skeletal muscle generation, with the most extensive characterisation to date. Integration of intrafusal myotubes, characteristic of native, in vivo intrafusal skeletal muscle into future biomimetic tissue engineered models could provide platforms for developmental or disease state studies, pre-clinical screening, or clinical applications.
Collapse
Affiliation(s)
- Philip Barrett
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Tom J Quick
- Peripheral Nerve Injury Research Unit, Royal National Orthopaedic Hospital, London, United Kingdom.,UCL Centre for Nerve Engineering, University College London, London, United Kingdom
| | - Vivek Mudera
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Darren J Player
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom
| |
Collapse
|
7
|
Gartych M, Jackowiak H, Bukowska D, Celichowski J. Evaluating Sexual Dimorphism of the Muscle Spindles and Intrafusal Muscle Fibers in the Medial Gastrocnemius of Male and Female Rats. Front Neuroanat 2021; 15:734555. [PMID: 34658799 PMCID: PMC8517148 DOI: 10.3389/fnana.2021.734555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/14/2021] [Indexed: 11/27/2022] Open
Abstract
This study sought to investigate the sexual dimorphism of muscle spindles in rat medial gastrocnemius muscle. The muscles were cut transversely into 5–10 and 20 μm thick serial sections and the number, density, and morphometric properties of the muscle spindles were determined. There was no significant difference (p > 0.05) in the number of muscle spindles of male (14.45 ± 2.77) and female (15.00 ± 3.13) rats. Muscle mass was 38.89% higher in males (1.08 vs. 0.66 g in females), making the density of these receptors significantly higher (p < 0.01) in females (approximately one spindle per 51.14 mg muscle mass vs. one per 79.91 mg in males). There were no significant differences between the morphometric properties of intrafusal muscle fibers or muscle spindles in male and female rats (p > 0.05): 5.16 ± 2.43 and 5.37 ± 2.27 μm for male and female intrafusal muscle fiber diameter, respectively; 5.57 ± 2.20 and 5.60 ± 2.16 μm for male and female intrafusal muscle fiber number, respectively; 25.85 ± 10.04 and 25.30 ± 9.96 μm for male and female shorter muscle spindle diameter, respectively; and 48.99 ± 20.73 and 43.97 ± 16.96 μm for male and female longer muscle spindle diameter, respectively. These findings suggest that sexual dimorphism in the muscle spindles of rat medial gastrocnemius is limited to density, which contrasts previous findings reporting differences in extrafusal fibers diameter.
Collapse
Affiliation(s)
- Magdalena Gartych
- Department of Neurobiology, Poznań University of Physical Education, Poznań, Poland
| | - Hanna Jackowiak
- Department of Histology and Embryology, Poznań University of Life Sciences, Poznań, Poland
| | - Dorota Bukowska
- Department of Neurobiology, Poznań University of Physical Education, Poznań, Poland
| | - Jan Celichowski
- Department of Neurobiology, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
8
|
Muramatsu K, Shimo S, Tamaki T, Ikutomo M, Niwa M. Functional and Structural Changes in the Corticospinal Tract of Streptozotocin-Induced Diabetic Rats. Int J Mol Sci 2021; 22:10123. [PMID: 34576288 PMCID: PMC8472618 DOI: 10.3390/ijms221810123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 11/26/2022] Open
Abstract
This study aimed to reveal functional and morphological changes in the corticospinal tract, a pathway shown to be susceptible to diabetes. Type 1 diabetes was induced in 13-week-old male Wistar rats administered streptozotocin. Twenty-three weeks after streptozotocin injection, diabetic animals and age-matched control animals were used to demonstrate the conduction velocity of the corticospinal tract. Other animals were used for morphometric analyses of the base of the dorsal funiculus of the corticospinal tract in the spinal cord using both optical and electron microscopy. The conduction velocity of the corticospinal tract decreased in the lumbar spinal cord in the diabetic animal, although it did not decrease in the cervical spinal cord. Furthermore, atrophy of the fibers of the base of the dorsal funiculus was observed along their entire length, with an increase in the g-ratio in the lumbar spinal cord in the diabetic animal. This study indicates that the corticospinal tract fibers projecting to the lumbar spinal cord experience a decrease in conduction velocity at the lumbar spinal cord of these axons in diabetic animals, likely caused by a combination of axonal atrophy and an increased g-ratio due to thinning of the myelin sheath.
Collapse
Affiliation(s)
- Ken Muramatsu
- Department of Physical Therapy, Kyorin University, 5-4-1 Simorenzyaku, Mitaka, Tokyo 181-8612, Japan
| | - Satoshi Shimo
- Department of Occupational Therapy, Health Science University, 7187 Kodachi, Fujikawaguchiko, Yamanashi 401-0380, Japan;
| | - Toru Tamaki
- Department of Physical Therapy, Health Science University, 7187 Kodachi, Fujikawaguchiko, Yamanashi 401-0380, Japan;
| | - Masako Ikutomo
- Department of Physical Therapy, University of Tokyo Health Sciences, 4-11 Ochiai, Tama, Tokyo 206-0003, Japan;
| | - Masatoshi Niwa
- Department of Occupational Therapy, Kyorin University, 5-4-1 Simorenzyaku, Mitaka, Tokyo 181-8612, Japan;
| |
Collapse
|
9
|
Barrett P, Quick TJ, Mudera V, Player DJ. Generating intrafusal skeletal muscle fibres in vitro: Current state of the art and future challenges. J Tissue Eng 2020; 11:2041731420985205. [PMID: 34956586 PMCID: PMC8693220 DOI: 10.1177/2041731420985205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/12/2020] [Indexed: 01/18/2023] Open
Abstract
Intrafusal fibres are a specialised cell population in skeletal muscle, found within the muscle spindle. These fibres have a mechano-sensory capacity, forming part of the monosynaptic stretch-reflex arc, a key component responsible for proprioceptive function. Impairment of proprioception and associated dysfunction of the muscle spindle is linked with many neuromuscular diseases. Research to-date has largely been undertaken in vivo or using ex vivo preparations. These studies have provided a foundation for our understanding of muscle spindle physiology, however, the cellular and molecular mechanisms which underpin physiological changes are yet to be fully elucidated. Therefrom, the use of in vitro models has been proposed, whereby intrafusal fibres can be generated de novo. Although there has been progress, it is predominantly a developing and evolving area of research. This narrative review presents the current state of art in this area and proposes the direction of future work, with the aim of providing novel pre-clinical and clinical applications.
Collapse
Affiliation(s)
- Philip Barrett
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
| | - Tom J Quick
- Peripheral Nerve Injury Research Unit, Royal National Orthopaedic Hospital, Stanmore, UK
- UCL Centre for Nerve Engineering, University College London, London, UK
| | - Vivek Mudera
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
| | - Darren J Player
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
| |
Collapse
|
10
|
Diabetes Mellitus-Related Dysfunction of the Motor System. Int J Mol Sci 2020; 21:ijms21207485. [PMID: 33050583 PMCID: PMC7589125 DOI: 10.3390/ijms21207485] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022] Open
Abstract
Although motor deficits in humans with diabetic neuropathy have been extensively researched, its effect on the motor system is thought to be lesser than that on the sensory system. Therefore, motor deficits are considered to be only due to sensory and muscle impairment. However, recent clinical and experimental studies have revealed that the brain and spinal cord, which are involved in the motor control of voluntary movement, are also affected by diabetes. This review focuses on the most important systems for voluntary motor control, mainly the cortico-muscular pathways, such as corticospinal tract and spinal motor neuron abnormalities. Specifically, axonal damage characterized by the proximodistal phenotype occurs in the corticospinal tract and motor neurons with long axons, and the transmission of motor commands from the brain to the muscles is impaired. These findings provide a new perspective to explain motor deficits in humans with diabetes. Finally, pharmacological and non-pharmacological treatment strategies for these disorders are presented.
Collapse
|
11
|
Estrada-Bonilla YC, Castro PATS, Luna GLF, Souza ABA, Santos GS, Salvini TF, Leal AMO, Russo TL. Reaching task performance is associated to neuromuscular junction adaptations in rats with induced diabetes mellitus. ACTA ACUST UNITED AC 2020; 53:e8763. [PMID: 32520205 PMCID: PMC7279698 DOI: 10.1590/1414-431x20208763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 02/13/2020] [Indexed: 11/22/2022]
Abstract
Upper limb performance is affected by diabetes mellitus (DM). Neuromuscular junction (NMJ) is a key structure to understand the relationship between performance and morphology in DM. The aim of the study was to analyze NMJ plasticity due to DM in an animal model and its relationship with the function of forelimbs in rats. Twelve Wistar rats were divided into control (C) and DM groups. Animals were trained to perform a grasping task, following procedures of habituation, shaping, and reaching task. DM was induced using streptozotocin. Forelimb neuromuscular performance for dexterity was evaluated one day before DM induction and five weeks following induction. After that, biceps, triceps, and finger flexors and extensors were removed. Connective tissue and muscle fiber cross-sectional area (CSA) were measured. NMJ was assessed by its morphometric characteristics (area, perimeter, and maximum diameter), using ImageJ software. Motor performance analyses were made using single pellet retrieval task performance test. Student’s t-test was used for comparisons between groups. A significant decrease in all NMJ morphometric parameters was observed in the DM group compared with the C group. Results showed that DM generated NMJ retraction in muscles involved in a reaching task. These alterations are related to signs of muscular atrophy and to poor reaching task performance. In conclusion, induced DM caused NMJ retraction and muscular atrophy in muscles involved in reaching task performance. Induced DM caused significantly lower motor performance, especially in the final moments of evaluation, when DM compromised the tropism of the muscular tissue.
Collapse
Affiliation(s)
- Y C Estrada-Bonilla
- Departamento de Fisioterapia, Universidade Federal de São Carlos, São Carlos, SP, Brasil.,Body, Subject and Education Research Group, Universidad Santo Tomás de Aquino, Bogotá, D.C., Colombia
| | - P A T S Castro
- Departamento de Fisioterapia, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - G L F Luna
- Departamento de Fisioterapia, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - A B A Souza
- Departamento de Fisioterapia, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - G S Santos
- Departamento de Fisioterapia, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - T F Salvini
- Departamento de Fisioterapia, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - A M O Leal
- Departamento de Medicina, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - T L Russo
- Departamento de Fisioterapia, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| |
Collapse
|
12
|
TRPA1 Antagonists for Pain Relief. Pharmaceuticals (Basel) 2018; 11:ph11040117. [PMID: 30388732 PMCID: PMC6316422 DOI: 10.3390/ph11040117] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 01/02/2023] Open
Abstract
Here, we review the literature assessing the role of transient receptor potential ankyrin 1 (TRPA1), a calcium-permeable non-selective cation channel, in various types of pain conditions. In the nervous system, TRPA1 is expressed in a subpopulation of nociceptive primary sensory neurons, astroglia, oligodendrocytes and Schwann cells. In peripheral terminals of nociceptive primary sensory neurons, it is involved in the transduction of potentially harmful stimuli and in their central terminals it is involved in amplification of nociceptive transmission. TRPA1 is a final common pathway for a large number of chemically diverse pronociceptive agonists generated in various pathophysiological pain conditions. Thereby, pain therapy using TRPA1 antagonists can be expected to be a superior approach when compared with many other drugs targeting single nociceptive signaling pathways. In experimental animal studies, pharmacological or genetic blocking of TRPA1 has effectively attenuated mechanical and cold pain hypersensitivity in various experimental models of pathophysiological pain, with only minor side effects, if any. TRPA1 antagonists acting peripherally are likely to be optimal for attenuating primary hyperalgesia (such as inflammation-induced sensitization of peripheral nerve terminals), while centrally acting TRPA1 antagonists are expected to be optimal for attenuating pain conditions in which central amplification of transmission plays a role (such as secondary hyperalgesia and tactile allodynia caused by various types of peripheral injuries). In an experimental model of peripheral diabetic neuropathy, prolonged blocking of TRPA1 has delayed the loss of nociceptive nerve endings and their function, thereby promising to provide a disease-modifying treatment.
Collapse
|
13
|
|
14
|
Qiao Y, Cong M, Li J, Li H, Li Z. The effects of neuregulin-1β on intrafusal muscle fiber formation in neuromuscular coculture of dorsal root ganglion explants and skeletal muscle cells. Skelet Muscle 2018; 8:29. [PMID: 30219099 PMCID: PMC6139134 DOI: 10.1186/s13395-018-0175-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/03/2018] [Indexed: 01/24/2023] Open
Abstract
Background The formation of intrafusal muscle (IM) fibers and their contact with afferent proprioceptive axons is critical for construction, function, and maintenance of the stretch reflex. Many factors affect the formation of IM fibers. Finding new factors and mechanisms of IM fiber formation is essential for the reconstruction of stretch reflex arc after injury. Methods We established a coculture system of organotypic dorsal root ganglion (DRG) explants and dissociated skeletal muscle (SKM) cells. The formation of IM fibers was observed in this coculture system after neuregulin-1β (NRG-1β) incubation. Results We found that NRG-1β promoted outgrowth of neurites and migration of neurons from the organotypic DRG explants and that this correlated with an induction of growth-associated protein 43 (GAP-43) expression. NRG-1β also increased the amount of nuclear bag fibers and nuclear chain fibers by elevating the proportion of tyrosine kinase receptor C (TrkC) phenotypic DRG neurons. In addition, we found that the effects of NRG-1β could be blocked by inhibiting ERK1/2, PI3K/Akt, and JAK2/STAT3 signaling pathways. Conclusion These data imply that NRG-1β promoted neurite outgrowth and neuronal migration from the organotypic DRG explants and that this correlated with an induction of GAP-43 expression. The modulating effects of NRG-1β on TrkC DRG neuronal phenotype may link to promote IM fiber formation. The effects produced by NRG-1β in this neuromuscular coculture system provide new data for the therapeutic potential on IM fiber formation after muscle injury. Electronic supplementary material The online version of this article (10.1186/s13395-018-0175-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuan Qiao
- Department of Anatomy, Shandong University School of Basic Medical Sciences, 44 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Department of Orthopaedics, Shandong University Qilu Hospital, Jinan, 250012, China
| | - Menglin Cong
- Department of Orthopaedics, Shandong University Qilu Hospital, Jinan, 250012, China
| | - Jianmin Li
- Department of Orthopaedics, Shandong University Qilu Hospital, Jinan, 250012, China
| | - Hao Li
- Department of Orthopaedics, Shandong University Qilu Hospital, Jinan, 250012, China
| | - Zhenzhong Li
- Department of Anatomy, Shandong University School of Basic Medical Sciences, 44 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.
| |
Collapse
|
15
|
Tamaki T, Muramatsu K, Ikutomo M, Oshiro N, Hayashi H, Niwa M. Effects of streptozotocin-induced diabetes on leg muscle contractile properties and motor neuron morphology in rats. Anat Sci Int 2018; 93:502-513. [PMID: 29876845 DOI: 10.1007/s12565-018-0444-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 05/24/2018] [Indexed: 11/24/2022]
Abstract
Skeletal muscle fiber subtypes are differentially sensitive to diabetes-related pathology; For example, fast-twitch muscles exhibit severe decreases in contraction force while slow-twitch muscles demonstrate prolonged half-relaxation time. However, such alterations have only been examined after a relatively short period following diabetes onset, with no information available regarding muscle damage caused by longer disease periods (>20 weeks). This study examined alterations in the contractile properties of the medial gastrocnemius (fast-twitch) and soleus (slow-twitch) muscles, as well as morphological changes in their motor neurons 12 and 22 weeks after diabetes onset. Adult male Wistar rats were divided into diabetic (12- or 22-week post-streptozotocin injection) and age-matched control groups. Electrically evoked maximum twitch and tetanic tension were recorded from leg muscles. Additionally, motor neuron number and cell body size were examined. At 12 weeks after diabetes onset, decreases in twitch force were observed predominantly in medial gastrocnemius muscles, while soleus muscles exhibited prolonged half-relaxation time. However, these differences became ambiguous at 22 weeks, with decreased twitch force and prolonged half-relaxation time observed in both muscles. On the other hand, reduction in soleus motor neurons was observed 12 weeks after diabetes onset, while medial gastrocnemius motor neurons were diminished at 22 weeks. These data indicate that experimental diabetes induces differential damage to medial gastrocnemius and soleus muscles as well as motor neurons. These diabetes-induced differences may partly underlie the differential deficits observed in gastrocnemius and soleus.
Collapse
Affiliation(s)
- Toru Tamaki
- Department of Occupational Therapy, Graduate School of Kyorin University, 5-4-1 Simorenzyaku, Mitaka-city, Tokyo, 181-8612, Japan. .,Department of Physical Therapy, Health Science University, 7187 Kodachi, Fujikawaguchiko-town, Yamanashi, 401-0380, Japan.
| | - Ken Muramatsu
- Department of Physical Therapy, Health Science University, 7187 Kodachi, Fujikawaguchiko-town, Yamanashi, 401-0380, Japan
| | - Masako Ikutomo
- Department of Physical Therapy, Health Science University, 7187 Kodachi, Fujikawaguchiko-town, Yamanashi, 401-0380, Japan
| | - Naomi Oshiro
- Department of Occupational Therapy, Graduate School of Kyorin University, 5-4-1 Simorenzyaku, Mitaka-city, Tokyo, 181-8612, Japan
| | - Hisae Hayashi
- Department of Physical Therapy, Seijoh University, 2-172 Fukinodai, Tokai City, Aichi, 476-8588, Japan
| | - Masatoshi Niwa
- Department of Occupational Therapy, Graduate School of Kyorin University, 5-4-1 Simorenzyaku, Mitaka-city, Tokyo, 181-8612, Japan
| |
Collapse
|
16
|
Muramatsu K, Ikutomo M, Tamaki T, Shimo S, Niwa M. Effect of streptozotocin-induced diabetes on motor representations in the motor cortex and corticospinal tract in rats. Brain Res 2018; 1680:115-126. [PMID: 29273401 DOI: 10.1016/j.brainres.2017.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/07/2017] [Accepted: 12/13/2017] [Indexed: 12/13/2022]
Abstract
Motor disorders in patients with diabetes are associated with diabetic peripheral neuropathy, which can lead to symptoms such as lower extremity weakness. However, it is unclear whether central motor system disorders can disrupt motor function in patients with diabetes. In a streptozotocin-induced rat model of type 1 diabetes, we used intracortical microstimulation to evaluate motor representations in the motor cortex, recorded antidromic motor cortex responses to spinal cord stimulation to evaluate the function of corticospinal tract (CST) axons, and used retrograde labeling to evaluate morphological alterations of CST neurons. The diabetic rats exhibited size reductions in the hindlimb area at 4 weeks and in trunk and forelimb areas after 13 weeks, with the hindlimb and trunk area reductions being the most severe. Other areas were unaffected. Additionally, we observed reduced antidromic responses in CST neurons with axons projecting to lumbar spinal segments (CST-L) but not in those with axons projecting to cervical segments (CST-C). This was consistent with the observation that retrograde-labeled CST-L neurons were decreased in number following tracer injection into the spinal cord in diabetic animals but that CST-C neurons were preserved. These results show that diabetes disrupts the CST system components controlling hindlimb and trunk movement. This disruption may contribute to lower extremity weakness in patients.
Collapse
Affiliation(s)
- Ken Muramatsu
- Department of Physical Therapy, Health Science University, Yamanashi, Japan.
| | - Masako Ikutomo
- Department of Physical Therapy, Health Science University, Yamanashi, Japan
| | - Toru Tamaki
- Department of Physical Therapy, Health Science University, Yamanashi, Japan
| | - Satoshi Shimo
- Department of Occupational Therapy, Health Science University, Yamanashi, Japan
| | - Masatoshi Niwa
- Department of Occupational Therapy, Kyorin University, Tokyo, Japan
| |
Collapse
|
17
|
MacDonell CW, Chopek JW, Gardiner KR, Gardiner PF. α-Motoneurons maintain biophysical heterogeneity in obesity and diabetes in Zucker rats. J Neurophysiol 2017; 118:2318-2327. [PMID: 28747469 DOI: 10.1152/jn.00423.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 12/14/2022] Open
Abstract
Small-diameter sensory dysfunction resulting from diabetes has received much attention in the literature, whereas the impact of diabetes on α-motoneurons (MN) has not. In addition, the chance of developing insulin resistance and diabetes is increased in obesity. No study has examined the impact of obesity or diabetes on the biophysical properties of MN. Lean Zucker rats and Zucker diabetic fatty (ZDF) rats were separated into lean, obese (ZDF fed standard chow), and diabetic (ZDF fed high-fat diet that led to diabetes) groups. Glass micropipettes recorded hindlimb MN properties from identified flexor and extensor MN. MN were separated within their groups on the basis of input conductance, which created high- and low-input conductance subpopulations for each. A significant shorter (20%) afterhyperpolarization half-decay (AHP1/2) was found in low-conductance MN for the diabetic group only, whereas AHP½ tended to be shorter in the obese group (19%). Significant positive correlations were found among rheobase and input conductance for both lean and obese animals. No differences were found between the groups for afterhyperpolarization amplitude (AHPamp), input conductance, rheobase, or any of the rhythmic firing properties (frequency-current slope and spike-frequency adaptation index). MN properties continue to be heterogeneous in obese and diabetic animals. Obesity does not seem to influence lumbar MN. Despite the resistance of MN to the impact of diabetes, the reduced AHP1/2 decay and the tendency for a reduction in AHPamp may be the first sign of change to MN function.NEW & NOTEWORTHY Knowledge about the impact of obesity and diabetes on the biophysical properties of motoneurons is lacking. We found that diabetes reduces the duration of the afterhyperpolarization and that motoneuron function is unchanged by obesity. A reduced afterhyperpolarization may impact discharge characteristics and may be the first sign of change to motoneuron function.
Collapse
Affiliation(s)
- Christopher W MacDonell
- Spinal Cord Research Centre, Department of Physiology & Pathophysiology, Rady Faculty of Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jeremy W Chopek
- Spinal Cord Research Centre, Department of Physiology & Pathophysiology, Rady Faculty of Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kalan R Gardiner
- Spinal Cord Research Centre, Department of Physiology & Pathophysiology, Rady Faculty of Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Phillip F Gardiner
- Spinal Cord Research Centre, Department of Physiology & Pathophysiology, Rady Faculty of Health, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|