1
|
Pérez-Carbonell L, Iranzo A. REM sleep and neurodegeneration. J Sleep Res 2025; 34:e14263. [PMID: 38867555 DOI: 10.1111/jsr.14263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Several brainstem, subcortical and cortical areas are involved in the generation of rapid eye movement (REM) sleep. The alteration of these structures as a result of a neurodegenerative process may therefore lead to REM sleep anomalies. REM sleep behaviour disorder is associated with nightmares, dream-enacting behaviours and increased electromyographic activity in REM sleep. Its isolated form is a harbinger of synucleinopathies such as Parkinson's disease or dementia with Lewy bodies, and neuroprotective interventions are advocated. This link might also be present in patients taking antidepressants, with post-traumatic stress disorder, or with a history of repeated traumatic head injury. REM sleep likely contributes to normal memory processes. Its alteration has also been proposed to be part of the neuropathological changes occurring in Alzheimer's disease.
Collapse
Affiliation(s)
- Laura Pérez-Carbonell
- Sleep Disorders Centre, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK
| | - Alex Iranzo
- Neurology Service, Sleep Disorders Centre, Hospital Clínic de Barcelona, IDIBAPS, CIBERNED, University of Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Wongveerakul P, Cheaha D, Kumarnsit E, Samerphob N. Circuit-specific neural perturbations and recovery in methamphetamine addiction in a mouse model. Neurosci Lett 2025; 853:138201. [PMID: 40101836 DOI: 10.1016/j.neulet.2025.138201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 01/29/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
Drug addiction is characterized by profound brain adaptations, including altered neural circuit dynamics in reward-related regions, which reinforce compulsive drug-seeking behavior. This study investigated the effects of 5 mg/kg methamphetamine (METH) administration on brain activity measured by local field potentials (LFPs) in the nucleus accumbens (NAc) and dorsal hippocampus (dHP) of C57BL/6 mice. The study further examined the sensitivity of these brain regions during an abstinent period on day 8 and following a low-dose METH challenge. METH administration reduced theta power activity and enhanced gamma activity in the NAc, but decreased alpha2 power with specific high gamma increases in the dHP during conditioning and challenge phases. The sleep analysis revealed a reduction in NREM during the conditioning and challenge phases, however, these parameters returned to normal after 8 days abstinence from METH. These findings suggest that repeated METH administration induces neural sensitization and alters sleep architecture. However, the minimization of adverse neural changes, particularly in sleep regulation, highlights potential avenues for therapeutic applications in managing addiction and promoting recovery.
Collapse
Affiliation(s)
- Pongpanot Wongveerakul
- Division of Health and Applied Sciences Physiology Program, Faculty of Science, Prince of Songkla University, Thailand
| | - Dania Cheaha
- Division of Biological Science Biology Program, Faculty of Science, Prince of Songkla University, Thailand
| | - Ekkasit Kumarnsit
- Division of Health and Applied Sciences Physiology Program, Faculty of Science, Prince of Songkla University, Thailand
| | - Nifareeda Samerphob
- Division of Health and Applied Sciences Physiology Program, Faculty of Science, Prince of Songkla University, Thailand.
| |
Collapse
|
3
|
Shinohara Y, Koketsu S, Ohno N, Hirase H, Ueki T. Brain State-Dependent Neocortico-Hippocampal Network Dynamics Are Modulated by Postnatal Stimuli. J Neurosci 2025; 45:e0053212025. [PMID: 39870530 PMCID: PMC11884400 DOI: 10.1523/jneurosci.0053-21.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 11/19/2024] [Accepted: 01/08/2025] [Indexed: 01/29/2025] Open
Abstract
Neurons in the cerebral cortex and hippocampus discharge synchronously in a brain state-dependent manner to transfer information. Published studies have highlighted the temporal coordination of neuronal activities between the hippocampus and a neocortical area; however, how the spatial extent of neocortical activity relates to hippocampal activity remains partially unknown. We imaged mesoscopic neocortical activity while recording hippocampal local field potentials in anesthetized and unanesthetized GCaMP-expressing transgenic mice. We found that neocortical activity elevates around hippocampal sharp wave ripples (SWRs). SWR-associated neocortical activities occurred predominantly in vision-related regions including the visual, retrosplenial, and frontal cortex. While pre-SWR neocortical activities were frequently observed in awake and natural sleeping states, post-SWR neocortical activity decreased significantly in the latter. Urethane-anesthetized mice also exhibited SWR-correlated calcium elevation, but in longer timescale than observed in natural sleeping mice. During hippocampal theta oscillation states, phase-locked oscillations of calcium activity were observed throughout the entire neocortical areas. In addition, possible environmental effects on neocortico-hippocampal dynamics were assessed in this study by comparing mice reared in ISO (isolated condition) and ENR (enriched environment). In both SWR and theta oscillations, mice reared in ISO exhibited clearer brain state-dependent dynamics than those reared in ENR. Our data demonstrate that the neocortex and hippocampus exhibit heterogeneous activity patterns that characterize brain states, and postnatal experience plays a significant role in modulating these patterns.
Collapse
Affiliation(s)
- Yoshiaki Shinohara
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
- Laboratory of Neuron-Glia Circuitry, RIKEN Center for Brain Science, Wako 351-0198, Japan
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University, Shimotsuke 329-0498, Japan
- Department of Anatomy and Systems Biology, Faculty of Medicine, University of Yamanashi, Chuo 409-3898, Japan
| | - Shinnosuke Koketsu
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Nobuhiko Ohno
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University, Shimotsuke 329-0498, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki 444-8787, Japan
| | - Hajime Hirase
- Laboratory of Neuron-Glia Circuitry, RIKEN Center for Brain Science, Wako 351-0198, Japan
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Takatoshi Ueki
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| |
Collapse
|
4
|
Iwase M, Diba K, Pastalkova E, Mizuseki K. Dynamics of spike transmission and suppression between principal cells and interneurons in the hippocampus and entorhinal cortex. Hippocampus 2024; 34:393-421. [PMID: 38874439 DOI: 10.1002/hipo.23612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/29/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024]
Abstract
Synaptic excitation and inhibition are essential for neuronal communication. However, the variables that regulate synaptic excitation and inhibition in the intact brain remain largely unknown. Here, we examined how spike transmission and suppression between principal cells (PCs) and interneurons (INTs) are modulated by activity history, brain state, cell type, and somatic distance between presynaptic and postsynaptic neurons by applying cross-correlogram analyses to datasets recorded from the dorsal hippocampus and medial entorhinal cortex (MEC) of 11 male behaving and sleeping Long Evans rats. The strength, temporal delay, and brain-state dependency of the spike transmission and suppression depended on the subregions/layers. The spike transmission probability of PC-INT excitatory pairs that showed short-term depression versus short-term facilitation was higher in CA1 and lower in CA3. Likewise, the intersomatic distance affected the proportion of PC-INT excitatory pairs that showed short-term depression and facilitation in the opposite manner in CA1 compared with CA3. The time constant of depression was longer, while that of facilitation was shorter in MEC than in CA1 and CA3. During sharp-wave ripples, spike transmission showed a larger gain in the MEC than in CA1 and CA3. The intersomatic distance affected the spike transmission gain during sharp-wave ripples differently in CA1 versus CA3. A subgroup of MEC layer 3 (EC3) INTs preferentially received excitatory inputs from and inhibited MEC layer 2 (EC2) PCs. The EC2 PC-EC3 INT excitatory pairs, most of which showed short-term depression, exhibited higher spike transmission probabilities than the EC2 PC-EC2 INT and EC3 PC-EC3 INT excitatory pairs. EC2 putative stellate cells exhibited stronger spike transmission to and received weaker spike suppression from EC3 INTs than EC2 putative pyramidal cells. This study provides detailed comparisons of monosynaptic interaction dynamics in the hippocampal-entorhinal loop, which may help to elucidate circuit operations.
Collapse
Affiliation(s)
- Motosada Iwase
- Department of Physiology, Graduate School of Medicine, Osaka City University, Osaka, Japan
- Department of Physiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kamran Diba
- Department of Anesthesiology, Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Eva Pastalkova
- The William Alanson White Institute of Psychiatry, Psychoanalysis & Psychology, New York, New York, USA
| | - Kenji Mizuseki
- Department of Physiology, Graduate School of Medicine, Osaka City University, Osaka, Japan
- Department of Physiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
5
|
Froula JM, Hastings SD, Krook-Magnuson E. The little brain and the seahorse: Cerebellar-hippocampal interactions. Front Syst Neurosci 2023; 17:1158492. [PMID: 37034014 PMCID: PMC10076554 DOI: 10.3389/fnsys.2023.1158492] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
There is a growing appreciation for the cerebellum beyond its role in motor function and accumulating evidence that the cerebellum and hippocampus interact across a range of brain states and behaviors. Acute and chronic manipulations, simultaneous recordings, and imaging studies together indicate coordinated coactivation and a bidirectional functional connectivity relevant for various physiological functions, including spatiotemporal processing. This bidirectional functional connectivity is likely supported by multiple circuit paths. It is also important in temporal lobe epilepsy: the cerebellum is impacted by seizures and epilepsy, and modulation of cerebellar circuitry can be an effective strategy to inhibit hippocampal seizures. This review highlights some of the recent key hippobellum literature.
Collapse
Affiliation(s)
- Jessica M. Froula
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | | | | |
Collapse
|
6
|
Atrophy asymmetry in hippocampal subfields in patients with Alzheimer's disease and mild cognitive impairment. Exp Brain Res 2023; 241:495-504. [PMID: 36593344 DOI: 10.1007/s00221-022-06543-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
Volumetric analysis of hippocampal subfields and their asymmetry assessment recently has been useful biomarkers in neuroscience. In this study, hippocampal subfields atrophy and pattern of their asymmetry in the patient with Alzheimer's disease (AD) and mild cognitive impairment (MCI) were evaluated. MRI images of 20 AD patients, 20 MCI patients, and 20 healthy control (HC) were selected. The volumes of hippocampal subfields were extracted automatically using Freesurfer toolkit. The subfields asymmetry index (AI) and laterality ([Formula: see text]) were also evaluated. Analysis of covariance was used to compare the subfields volume between three patient groups (age and gender as covariates). We used ANOVA (P < 0.05) test for multiple comparisons with Bonferroni's post hoc correction method. Hippocampal subfields volume in AD patients were significantly lower than HC and MCI groups (P < 0.02); however, no significant difference was observed between MCI and HC groups. The asymmetry index (AI) in some subfields was significantly different between AD and MCI, as well as between AD and HC, while there was not any significant difference between MCI groups with HC. In all three patient groups, rightward laterality ([Formula: see text]) was seen in several subfields except subiculum, presubiculum, and parasubiculum, while in AD patient, rightward lateralization slightly decrease. Hippocampal subfields asymmetry can be used as a quantitative biomarker in neurocognitive disorders. In this study, it was observed that the asymmetry index of some subfields in AD is significantly different from MCI. In AD, patient rightward laterality was less MCI an HC group.
Collapse
|
7
|
Mysin I, Shubina L. Hippocampal non-theta state: The "Janus face" of information processing. Front Neural Circuits 2023; 17:1134705. [PMID: 36960401 PMCID: PMC10027749 DOI: 10.3389/fncir.2023.1134705] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
The vast majority of studies on hippocampal rhythms have been conducted on animals or humans in situations where their attention was focused on external stimuli or solving cognitive tasks. These studies formed the basis for the idea that rhythmical activity coordinates the work of neurons during information processing. However, at rest, when attention is not directed to external stimuli, brain rhythms do not disappear, although the parameters of oscillatory activity change. What is the functional load of rhythmical activity at rest? Hippocampal oscillatory activity during rest is called the non-theta state, as opposed to the theta state, a characteristic activity during active behavior. We dedicate our review to discussing the present state of the art in the research of the non-theta state. The key provisions of the review are as follows: (1) the non-theta state has its own characteristics of oscillatory and neuronal activity; (2) hippocampal non-theta state is possibly caused and maintained by change of rhythmicity of medial septal input under the influence of raphe nuclei; (3) there is no consensus in the literature about cognitive functions of the non-theta-non-ripple state; and (4) the antagonistic relationship between theta and delta rhythms observed in rodents is not always observed in humans. Most attention is paid to the non-theta-non-ripple state, since this aspect of hippocampal activity has not been investigated properly and discussed in reviews.
Collapse
|
8
|
Mizuseki K, Miyawaki H. Fast network oscillations during non-REM sleep support memory consolidation. Neurosci Res 2022; 189:3-12. [PMID: 36581177 DOI: 10.1016/j.neures.2022.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
The neocortex is disconnected from the outside world during sleep, which has been hypothesized to be relevant for synaptic reorganization involved in memory consolidation. Fast network oscillations, such as hippocampal sharp-wave ripples, cortical ripples, and amygdalar high-frequency oscillations, are prominent during non-REM sleep. Although these oscillations are thought to be generated by local circuit mechanisms, their occurrence rates and amplitudes are modulated by thalamocortical spindles and neocortical slow oscillations during non-REM sleep, suggesting that fast network oscillations and slower oscillations cooperatively work to facilitate memory consolidation. This review discusses the recent progress in understanding the generation, coordination, and functional roles of fast network oscillations. Further, it outlines how fast network oscillations in distinct brain regions synergistically support memory consolidation and retrieval by hosting cross-regional coactivation of memory-related neuronal ensembles.
Collapse
Affiliation(s)
- Kenji Mizuseki
- Department of Physiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan.
| | - Hiroyuki Miyawaki
- Department of Physiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| |
Collapse
|
9
|
Functional roles of REM sleep. Neurosci Res 2022; 189:44-53. [PMID: 36572254 DOI: 10.1016/j.neures.2022.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Rapid eye movement (REM) sleep is an enigmatic and intriguing sleep state. REM sleep differs from non-REM sleep by its characteristic brain activity and from wakefulness by a reduced anti-gravity muscle tone. In addition to these key traits, diverse physiological phenomena appear across the whole body during REM sleep. However, it remains unclear whether these phenomena are the causes or the consequences of REM sleep. Experimental approaches using humans and animal models have gradually revealed the functional roles of REM sleep. Extensive efforts have been made to interpret the characteristic brain activity in the context of memory functions. Numerous physical and psychological functions of REM sleep have also been proposed. Moreover, REM sleep has been implicated in aspects of brain development. Here, we review the variety of functional roles of REM sleep, mainly as revealed by animal models. In addition, we discuss controversies regarding the functional roles of REM sleep.
Collapse
|
10
|
Miyawaki H, Mizuseki K. De novo inter-regional coactivations of preconfigured local ensembles support memory. Nat Commun 2022; 13:1272. [PMID: 35277492 PMCID: PMC8917150 DOI: 10.1038/s41467-022-28929-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 02/21/2022] [Indexed: 12/31/2022] Open
Abstract
Neuronal ensembles in the amygdala, ventral hippocampus, and prefrontal cortex are involved in fear memory; however, how inter-regional ensemble interactions support memory remains elusive. Using multi-regional large-scale electrophysiology in the aforementioned structures of fear-conditioned rats, we found that the local ensembles activated during fear memory acquisition are inter-regionally coactivated during the subsequent sleep period, which relied on brief bouts of fast network oscillations. During memory retrieval, the coactivations reappeared, together with fast oscillations. Coactivation-participating-ensembles were configured prior to memory acquisition in the amygdala and prefrontal cortex but developed through experience in the hippocampus. Our findings suggest that elements of a given memory are instantly encoded within various brain regions in a preconfigured manner, whereas hippocampal ensembles and the network for inter-regional integration of the distributed information develop in an experience-dependent manner to form a new memory, which is consistent with the hippocampal memory index hypothesis. The authors show that fear-memory-related cell-ensembles in the amygdala, hippocampus, and prefrontal cortex are inter-regionally co-activated in post-learning sleep. The co-activations are hosted by fast network oscillations and re-appear during recall.
Collapse
Affiliation(s)
- Hiroyuki Miyawaki
- Department of Physiology, Osaka City University Graduate School of Medicine, Asahimachi 1-4-3, Abeno-ku, Osaka, 545-8585, Japan.
| | - Kenji Mizuseki
- Department of Physiology, Osaka City University Graduate School of Medicine, Asahimachi 1-4-3, Abeno-ku, Osaka, 545-8585, Japan.
| |
Collapse
|
11
|
Fazekas CL, Szabó A, Török B, Bánrévi K, Correia P, Chaves T, Daumas S, Zelena D. A New Player in the Hippocampus: A Review on VGLUT3+ Neurons and Their Role in the Regulation of Hippocampal Activity and Behaviour. Int J Mol Sci 2022; 23:790. [PMID: 35054976 PMCID: PMC8775679 DOI: 10.3390/ijms23020790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 01/05/2023] Open
Abstract
Glutamate is the most abundant excitatory amino acid in the central nervous system. Neurons using glutamate as a neurotransmitter can be characterised by vesicular glutamate transporters (VGLUTs). Among the three subtypes, VGLUT3 is unique, co-localising with other "classical" neurotransmitters, such as the inhibitory GABA. Glutamate, manipulated by VGLUT3, can modulate the packaging as well as the release of other neurotransmitters and serve as a retrograde signal through its release from the somata and dendrites. Its contribution to sensory processes (including seeing, hearing, and mechanosensation) is well characterised. However, its involvement in learning and memory can only be assumed based on its prominent hippocampal presence. Although VGLUT3-expressing neurons are detectable in the hippocampus, most of the hippocampal VGLUT3 positivity can be found on nerve terminals, presumably coming from the median raphe. This hippocampal glutamatergic network plays a pivotal role in several important processes (e.g., learning and memory, emotions, epilepsy, cardiovascular regulation). Indirect information from anatomical studies and KO mice strains suggests the contribution of local VGLUT3-positive hippocampal neurons as well as afferentations in these events. However, further studies making use of more specific tools (e.g., Cre-mice, opto- and chemogenetics) are needed to confirm these assumptions.
Collapse
Affiliation(s)
- Csilla Lea Fazekas
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS) INSERM, Sorbonne Université, CNRS, 75005 Paris, France;
| | - Adrienn Szabó
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Bibiána Török
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Krisztina Bánrévi
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
| | - Pedro Correia
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Tiago Chaves
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Stéphanie Daumas
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS) INSERM, Sorbonne Université, CNRS, 75005 Paris, France;
| | - Dóra Zelena
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
12
|
Czarnecki P, Lin J, Aton SJ, Zochowski M. Dynamical Mechanism Underlying Scale-Free Network Reorganization in Low Acetylcholine States Corresponding to Slow Wave Sleep. FRONTIERS IN NETWORK PHYSIOLOGY 2021; 1:759131. [PMID: 35785148 PMCID: PMC9249096 DOI: 10.3389/fnetp.2021.759131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022]
Abstract
Sleep is indispensable for most animals' cognitive functions, and is hypothesized to be a major factor in memory consolidation. Although we do not fully understand the mechanisms of network reorganisation driving memory consolidation, available data suggests that sleep-associated neurochemical changes may be important for such processes. In particular, global acetylcholine levels change across the sleep/wake cycle, with high cholinergic tone during wake and REM sleep and low cholinergic tone during slow wave sleep. Furthermore, experimental perturbation of cholinergic tone has been shown to impact memory storage. Through in silico modeling of neuronal networks, we show how spiking dynamics change in highly heterogenous networks under varying levels of cholinergic tone, with neuronal networks under high cholinergic modulation firing asynchronously and at high frequencies, while those under low cholinergic modulation exhibit synchronous patterns of activity. We further examined the network's dynamics and its reorganization mediated via changing levels of acetylcholine within the context of different scale-free topologies, comparing network activity within the hub cells, a small group of neurons having high degree connectivity, and with the rest of the network. We show a dramatic, state-dependent change in information flow throughout the network, with highly active hub cells integrating information in a high-acetylcholine state, and transferring it to rest of the network in a low-acetylcholine state. This result is experimentally corroborated by frequency-dependent frequency changes observed in vivo experiments. Together, these findings provide insight into how new neurons are recruited into memory traces during sleep, a mechanism which may underlie system memory consolidation.
Collapse
Affiliation(s)
- Paulina Czarnecki
- Department of Mathematics, University of Michigan, Ann Arbor, MI, United States
| | - Jack Lin
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
| | - Sara J. Aton
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Michal Zochowski
- Department of Physics and Biophysics Program, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
13
|
Ruby P, Eskinazi M, Bouet R, Rheims S, Peter-Derex L. Dynamics of hippocampus and orbitofrontal cortex activity during arousing reactions from sleep: An intracranial electroencephalographic study. Hum Brain Mapp 2021; 42:5188-5203. [PMID: 34355461 PMCID: PMC8519849 DOI: 10.1002/hbm.25609] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/04/2021] [Accepted: 07/20/2021] [Indexed: 11/08/2022] Open
Abstract
Sleep is punctuated by transient elevations of vigilance level called arousals or awakenings depending on their durations. Understanding the dynamics of brain activity modifications during these transitional phases could help to better understand the changes in cognitive functions according to vigilance states. In this study, we investigated the activity of memory‐related areas (hippocampus and orbitofrontal cortex) during short (3 s to 2 min) arousing reactions detected from thalamic activity, using intracranial recordings in four drug‐resistant epilepsy patients. The average power of the signal between 0.5 and 128 Hz was compared across four time windows: 10 s of preceding sleep, the first part and the end of the arousal/awakening, and 10 s of wakefulness. We observed that (a) in most frequency bands, the spectral power during hippocampal arousal/awakenings is intermediate between wakefulness and sleep whereas frontal cortex shows an early increase in low and fast activities during non‐rapid‐eye‐movement (NREM) sleep arousals/awakenings; (b) this pattern depends on the preceding sleep stage with fewer modifications for REM than for non‐REM sleep arousal/awakenings, potentially reflecting the EEG similarities between REM sleep and wakefulness; (c) a greater activation at the arousing reaction onset in the prefrontal cortex predicts longer arousals/awakenings. Our findings suggest that hippocampus and prefrontal arousals/awakenings are progressive phenomena modulated by sleep stage, and, in the neocortex, by the intensity of the early activation. This pattern of activity could underlie the link between sleep stage, arousal/awakening duration and restoration of memory abilities including dream recall.
Collapse
Affiliation(s)
- Perrine Ruby
- INSERM U1028 - PAM Team, Lyon Neuroscience Research Center, CNRS UMR 5292, Lyon, France
| | - Mickael Eskinazi
- INSERM U1028 - PAM Team, Lyon Neuroscience Research Center, CNRS UMR 5292, Lyon, France
| | - Romain Bouet
- INSERM U1028 - DYCOG Team, Lyon Neuroscience Research Center, CNRS UMR 5292, Lyon, France
| | - Sylvain Rheims
- Lyon 1 University, Lyon, France.,Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, University of Lyon, Lyon, France.,INSERM U1028 - TIGER Team, Lyon Neuroscience Research Center, CNRS UMR 5292, Lyon, France
| | - Laure Peter-Derex
- INSERM U1028 - PAM Team, Lyon Neuroscience Research Center, CNRS UMR 5292, Lyon, France.,Lyon 1 University, Lyon, France.,Center for Sleep Medicine and Respiratory Diseases, Lyon University Hospital, Lyon, France
| |
Collapse
|
14
|
Dias I, Levers MR, Lamberti M, Hassink GC, van Wezel R, le Feber J. Consolidation of memory traces in cultured cortical networks requires low cholinergic tone, synchronized activity and high network excitability. J Neural Eng 2021; 18. [PMID: 33892486 DOI: 10.1088/1741-2552/abfb3f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/23/2021] [Indexed: 11/11/2022]
Abstract
In systems consolidation, encoded memories are replayed by the hippocampus during slow-wave sleep (SWS), and permanently stored in the neocortex. Declarative memory consolidation is believed to benefit from the oscillatory rhythms and low cholinergic tone observed in this sleep stage, but underlying mechanisms remain unclear. To clarify the role of cholinergic modulation and synchronized activity in memory consolidation, we applied repeated electrical stimulation in mature cultures of dissociated rat cortical neurons with high or low cholinergic tone, mimicking the cue replay observed during systems consolidation under distinct cholinergic concentrations. In the absence of cholinergic input, these cultures display activity patterns hallmarked by network bursts, synchronized events reminiscent of the low frequency oscillations observed during SWS. They display stable activity and connectivity, which mutually interact and achieve an equilibrium. Electrical stimulation reforms the equilibrium to include the stimulus response, a phenomenon interpreted as memory trace formation. Without cholinergic input, activity was burst-dominated. First application of a stimulus induced significant connectivity changes, while subsequent repetition no longer affected connectivity. Presenting a second stimulus at a different electrode had the same effect, whereas returning to the initial stimuli did not induce further connectivity alterations, indicating that the second stimulus did not erase the 'memory trace' of the first. Distinctively, cultures with high cholinergic tone displayed reduced network excitability and dispersed firing, and electrical stimulation did not induce significant connectivity changes. We conclude that low cholinergic tone facilitates memory formation and consolidation, possibly through enhanced network excitability. Network bursts or SWS oscillations may merely reflect high network excitability.
Collapse
Affiliation(s)
- Inês Dias
- Department of Clinical Neurophysiology, University of Twente, Enschede, PO Box 217 7500AE, The Netherlands
| | - Marloes R Levers
- Department of Clinical Neurophysiology, University of Twente, Enschede, PO Box 217 7500AE, The Netherlands
| | - Martina Lamberti
- Department of Clinical Neurophysiology, University of Twente, Enschede, PO Box 217 7500AE, The Netherlands
| | - Gerco C Hassink
- Department of Clinical Neurophysiology, University of Twente, Enschede, PO Box 217 7500AE, The Netherlands
| | - Richard van Wezel
- Department of Biomedical Signals and Systems, University of Twente, Enschede, PO Box 217 7500AE, The Netherlands.,Department of Biophysics, Radboud University, Nijmegen, PO Box 9010 6525AJ, The Netherlands
| | - Joost le Feber
- Department of Clinical Neurophysiology, University of Twente, Enschede, PO Box 217 7500AE, The Netherlands
| |
Collapse
|
15
|
Luboeinski J, Tetzlaff C. Memory consolidation and improvement by synaptic tagging and capture in recurrent neural networks. Commun Biol 2021; 4:275. [PMID: 33658641 PMCID: PMC7977149 DOI: 10.1038/s42003-021-01778-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 01/21/2021] [Indexed: 11/09/2022] Open
Abstract
The synaptic-tagging-and-capture (STC) hypothesis formulates that at each synapse the concurrence of a tag with protein synthesis yields the maintenance of changes induced by synaptic plasticity. This hypothesis provides a biological principle underlying the synaptic consolidation of memories that is not verified for recurrent neural circuits. We developed a theoretical model integrating the mechanisms underlying the STC hypothesis with calcium-based synaptic plasticity in a recurrent spiking neural network. In the model, calcium-based synaptic plasticity yields the formation of strongly interconnected cell assemblies encoding memories, followed by consolidation through the STC mechanisms. Furthermore, we show for the first time that STC mechanisms modify the storage of memories such that after several hours memory recall is significantly improved. We identify two contributing processes: a merely time-dependent passive improvement, and an active improvement during recall. The described characteristics can provide a new principle for storing information in biological and artificial neural circuits.
Collapse
Affiliation(s)
- Jannik Luboeinski
- Department of Computational Neuroscience, III. Institute of Physics-Biophysics, University of Göttingen, Göttingen, Germany.
- Bernstein Center for Computational Neuroscience, Göttingen, Germany.
| | - Christian Tetzlaff
- Department of Computational Neuroscience, III. Institute of Physics-Biophysics, University of Göttingen, Göttingen, Germany.
- Bernstein Center for Computational Neuroscience, Göttingen, Germany.
| |
Collapse
|
16
|
Bertocchi I, Eltokhi A, Rozov A, Chi VN, Jensen V, Bus T, Pawlak V, Serafino M, Sonntag H, Yang B, Burnashev N, Li SB, Obenhaus HA, Both M, Niewoehner B, Single FN, Briese M, Boerner T, Gass P, Rawlins JNP, Köhr G, Bannerman DM, Sprengel R. Voltage-independent GluN2A-type NMDA receptor Ca 2+ signaling promotes audiogenic seizures, attentional and cognitive deficits in mice. Commun Biol 2021; 4:59. [PMID: 33420383 PMCID: PMC7794508 DOI: 10.1038/s42003-020-01538-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
The NMDA receptor-mediated Ca2+ signaling during simultaneous pre- and postsynaptic activity is critically involved in synaptic plasticity and thus has a key role in the nervous system. In GRIN2-variant patients alterations of this coincidence detection provoked complex clinical phenotypes, ranging from reduced muscle strength to epileptic seizures and intellectual disability. By using our gene-targeted mouse line (Grin2aN615S), we show that voltage-independent glutamate-gated signaling of GluN2A-containing NMDA receptors is associated with NMDAR-dependent audiogenic seizures due to hyperexcitable midbrain circuits. In contrast, the NMDAR antagonist MK-801-induced c-Fos expression is reduced in the hippocampus. Likewise, the synchronization of theta- and gamma oscillatory activity is lowered during exploration, demonstrating reduced hippocampal activity. This is associated with exploratory hyperactivity and aberrantly increased and dysregulated levels of attention that can interfere with associative learning, in particular when relevant cues and reward outcomes are disconnected in space and time. Together, our findings provide (i) experimental evidence that the inherent voltage-dependent Ca2+ signaling of NMDA receptors is essential for maintaining appropriate responses to sensory stimuli and (ii) a mechanistic explanation for the neurological manifestations seen in the NMDAR-related human disorders with GRIN2 variant-meidiated intellectual disability and focal epilepsy.
Collapse
Affiliation(s)
- Ilaria Bertocchi
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Research Group of the Max Planck Institute for Medical Research at the Institute for Anatomy and Cell Biology of the Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Via Cherasco 15, 10126, Torino, Italy
- Neuroscience Institute-Cavalieri-Ottolenghi Foundation (NICO), Laboratory of Neuropsychopharmacology, Regionale Gonzole 10, 10043 Orbassano, Torino, Italy
| | - Ahmed Eltokhi
- Research Group of the Max Planck Institute for Medical Research at the Institute for Anatomy and Cell Biology of the Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Otfried-Müller Str. 27, 72076, Tübingen, Germany
| | - Andrey Rozov
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Department of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
- OpenLab of Neurobiology, Kazan Federal University, 8 Kremlyovskaya Street, Kazan, 420008, Russian Federation
- Federal Center of Brain Research and Neurotechnologies, Ostrovityanova Str 1/10, Moscow, 117997, Russia
| | - Vivan Nguyễn Chi
- Department of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Vidar Jensen
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
| | - Thorsten Bus
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Research Group of the Max Planck Institute for Medical Research at the Institute for Anatomy and Cell Biology of the Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| | - Verena Pawlak
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Department of Behavior and Brain Organization, Research Center Caesar, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Marta Serafino
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- FARMA-DERMA s.r.l. Via dell'Artigiano 6-8, 40010, Sala Bolognese, Italy
| | - Hannah Sonntag
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Research Group of the Max Planck Institute for Medical Research at the Institute for Anatomy and Cell Biology of the Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| | - Boyi Yang
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Road, Wuhan, Hubei, 430030, China
| | - Nail Burnashev
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- INSERM UMR 1249 Mediterranean Institute of Neurobiology (INMED), Aix-Marseille University, Parc Scientifique de Luminy, 163 avenue de Luminy BP13, 13273, Marseille Cedex 09, France
| | - Shi-Bin Li
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford Way, Rm E152, Stanford, CA, 94305, USA
| | - Horst A Obenhaus
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Research Group of the Max Planck Institute for Medical Research at the Institute for Anatomy and Cell Biology of the Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
- Kavli Institute for Systems Neuroscience, Faculty of Medicine and Health Sciences, NTNU, Postboks 8905, NO-7491, Trondheim, Norway
| | - Martin Both
- Department of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Burkhard Niewoehner
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Anna Watts Building, Woodstock Rd, Oxford, OX2 6GG, UK
| | - Frank N Single
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Friedrich-Ebert-Str. 68, 51429, Bergisch Gladbach, Germany
| | - Michael Briese
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Anna Watts Building, Woodstock Rd, Oxford, OX2 6GG, UK
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Versbacherstraße 5, 97080, Wuerzburg, Germany
| | - Thomas Boerner
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Anna Watts Building, Woodstock Rd, Oxford, OX2 6GG, UK
| | - Peter Gass
- RG Animal Models in Psychiatry, Animal Models Psychatry, Central Institute of Mental Health (CIMH), Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany
| | - John Nick P Rawlins
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Anna Watts Building, Woodstock Rd, Oxford, OX2 6GG, UK
| | - Georg Köhr
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Department of Neurophysiology, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Anna Watts Building, Woodstock Rd, Oxford, OX2 6GG, UK.
| | - Rolf Sprengel
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany.
- Research Group of the Max Planck Institute for Medical Research at the Institute for Anatomy and Cell Biology of the Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany.
| |
Collapse
|
17
|
Sippel D, Schwabedal J, Snyder JC, Oyanedel CN, Bernas SN, Garthe A, Tröndle A, Storch A, Kempermann G, Brandt MD. Disruption of NREM sleep and sleep-related spatial memory consolidation in mice lacking adult hippocampal neurogenesis. Sci Rep 2020; 10:16467. [PMID: 33020501 PMCID: PMC7536189 DOI: 10.1038/s41598-020-72362-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/31/2020] [Indexed: 12/25/2022] Open
Abstract
Cellular plasticity at the structural level and sleep at the behavioural level are both essential for memory formation. The link between the two is not well understood. A functional connection between adult neurogenesis and hippocampus-dependent memory consolidation during NREM sleep has been hypothesized but not experimentally shown. Here, we present evidence that during a three-day learning session in the Morris water maze task a genetic knockout model of adult neurogenesis (Cyclin D2-/-) showed changes in sleep macro- and microstructure. Sleep EEG analyses revealed a lower total sleep time and NREM fraction in Cyclin D2-/- mice as well as an impairment of sleep specific neuronal oscillations that are associated with memory consolidation. Better performance in the memory task was associated with specific sleep parameters in wild-type, but not in Cyclin D2-/- mice. In wild-type animals the number of proliferating cells correlated with the amount of NREM sleep. The lack of adult neurogenesis led to changes in sleep architecture and oscillations that represent the dialog between hippocampus and neocortex during sleep. We suggest that adult neurogenesis-as a key event of hippocampal plasticity-might play an important role for sleep-dependent memory consolidation and modulates learning-induced changes of sleep macro- and microstructure.
Collapse
Affiliation(s)
- D Sippel
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, University Hospital Tübingen, 72076, Tübingen, Germany
| | - J Schwabedal
- Max Planck Institute for the Physics of Complex Systems, 01187, Dresden, Germany
| | - J C Snyder
- Department of Neurology, University Hospital, Technische Universität Dresden, 01307, Dresden, Germany
| | - C N Oyanedel
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076, Tübingen, Germany
| | - S N Bernas
- Center for Regenerative Therapies TU Dresden, 01307, Dresden, Germany
| | - A Garthe
- German Center for Neurodegenerative Diseases (DZNE) Dresden, 01307, Dresden, Germany
| | - A Tröndle
- Department of Neurology, University Hospital, Technische Universität Dresden, 01307, Dresden, Germany.,Center for Regenerative Therapies TU Dresden, 01307, Dresden, Germany
| | - A Storch
- German Center for Neurodegenerative Diseases (DZNE) Rostock, 18147, Rostock, Germany.,Department of Neurology, University of Rostock, 18147, Rostock, Germany
| | - G Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden, 01307, Dresden, Germany.,Center for Regenerative Therapies TU Dresden, 01307, Dresden, Germany
| | - M D Brandt
- Department of Neurology, University Hospital, Technische Universität Dresden, 01307, Dresden, Germany. .,German Center for Neurodegenerative Diseases (DZNE) Dresden, 01307, Dresden, Germany.
| |
Collapse
|
18
|
Mander BA. Local Sleep and Alzheimer's Disease Pathophysiology. Front Neurosci 2020; 14:525970. [PMID: 33071726 PMCID: PMC7538792 DOI: 10.3389/fnins.2020.525970] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Even prior to the onset of the prodromal stages of Alzheimer's disease (AD), a constellation of sleep disturbances are apparent. A series of epidemiological studies indicate that multiple forms of these sleep disturbances are associated with increased risk for developing mild cognitive impairment (MCI) and AD, even triggering disease onset at an earlier age. Through the combination of causal manipulation studies in humans and rodents, as well as targeted examination of sleep disturbance with respect to AD biomarkers, mechanisms linking sleep disturbance to AD are beginning to emerge. In this review, we explore recent evidence linking local deficits in brain oscillatory function during sleep with local AD pathological burden and circuit-level dysfunction and degeneration. In short, three deficits in the local expression of sleep oscillations have been identified in relation to AD pathophysiology: (1) frequency-specific frontal deficits in slow wave expression during non-rapid eye movement (NREM) sleep, (2) deficits in parietal sleep spindle expression, and (3) deficits in the quality of electroencephalographic (EEG) desynchrony characteristic of REM sleep. These deficits are noteworthy since they differ from that seen in normal aging, indicating the potential presence of an abnormal aging process. How each of these are associated with β-amyloid (Aβ) and tau pathology, as well as neurodegeneration of circuits sensitive to AD pathophysiology, are examined in the present review, with a focus on the role of dysfunction within fronto-hippocampal and subcortical sleep-wake circuits. It is hypothesized that each of these local sleep deficits arise from distinct network-specific dysfunctions driven by regionally-specific accumulation of AD pathologies, as well as their associated neurodegeneration. Overall, the evolution of these local sleep deficits offer unique windows into the circuit-specific progression of distinct AD pathophysiological processes prior to AD onset, as well as their impact on brain function. This includes the potential erosion of sleep-dependent memory mechanisms, which may contribute to memory decline in AD. This review closes with a discussion of the remaining critical knowledge gaps and implications of this work for future mechanistic studies and studies implementing sleep-based treatment interventions.
Collapse
Affiliation(s)
- Bryce A. Mander
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
19
|
Hippocampal oscillatory dynamics and sleep atonia are altered in an animal model of fibromyalgia: Implications in the search for biomarkers. J Comp Neurol 2020; 528:1367-1391. [DOI: 10.1002/cne.24829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 11/07/2022]
|
20
|
Kumar M, Deshmukh SS. Differential propagation of ripples along the proximodistal and septotemporal axes of dorsal CA1 of rats. Hippocampus 2020; 30:970-986. [PMID: 32386276 DOI: 10.1002/hipo.23211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 03/15/2020] [Accepted: 04/09/2020] [Indexed: 11/10/2022]
Abstract
The functional connectivity of the hippocampus with its primary cortical input, the entorhinal cortex, is organized topographically. In area CA1 of the hippocampus, this leads to different functional gradients along the proximodistal and septotemporal axes of spatial/sensory responsivity and spatial resolution respectively. CA1 ripples, a network phenomenon, allow us to test whether the hippocampal neural network shows corresponding gradients in functional connectivity along the two axes. We studied the occurrence and propagation of ripples across the entire proximodistal axis along with a comparable spatial range of the septotemporal axis of dorsal CA1. We observed that ripples could occur at any location, and their amplitudes were independent of the tetrode location along the proximodistal and septotemporal axes. When a ripple was detected on a particular tetrode ("reference tetrode"), however, the probability of cooccurrence of ripples and ripple amplitude observed on the other tetrodes decreased as a function of distance from the reference tetrode. This reduction was greater along the proximodistal axis than the septotemporal axis. Furthermore, we found that ripples propagate primarily along the proximodistal axis. Thus, over a spatial scale of ∼1.5 mm, the network is anisotropic along the two axes, complementing the topographically organized cortico-hippocampal connections.
Collapse
Affiliation(s)
- Mekhala Kumar
- Centre for Neuroscience, Indian Institute of Science, Bangalore, Karnataka, India
| | - Sachin S Deshmukh
- Centre for Neuroscience, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
21
|
Horne J. REM sleep vs exploratory wakefulness: Alternatives within adult ‘sleep debt’? Sleep Med Rev 2020; 50:101252. [DOI: 10.1016/j.smrv.2019.101252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 10/25/2022]
|
22
|
Lu HC, Pollack H, Lefante JJ, Mills AA, Tian D. Altered sleep architecture, rapid eye movement sleep, and neural oscillation in a mouse model of human chromosome 16p11.2 microdeletion. Sleep 2020; 42:5239591. [PMID: 30541142 DOI: 10.1093/sleep/zsy253] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/05/2018] [Accepted: 12/10/2018] [Indexed: 01/08/2023] Open
Abstract
Sleep abnormalities are common among children with neurodevelopmental disorders. The human chr16p11.2 microdeletion is associated with a range of neurological and neurobehavioral abnormalities. Previous studies of a mouse model of human chr16p11.2 microdeletion (chr16p11.2df/+) have demonstrated pathophysiological changes at the synapses in the hippocampus and striatum; however, the impact of this genetic abnormality on system level brain functions, such as sleep and neural oscillation, has not been adequately investigated. Here, we show that chr16p11.2df/+ mice have altered sleep architecture, with increased wake time and reduced time in rapid eye movement (REM) and non-REM (NREM) sleep. Importantly, several measurements of REM sleep are significantly changed in deletion mice. The REM bout number and the bout number ratio of REM to NREM are decreased in mutant mice, suggesting a deficit in REM-NREM transition. The average REM bout duration is shorter in mutant mice, indicating a defect in REM maintenance. In addition, whole-cell patch clamp recording of the ventrolateral periaqueductal gray (vlPAG)-projecting gamma-aminobutyric acid (GABA)ergic neurons in the lateral paragigantocellular nucleus of ventral medulla of mutant mice reveal that these neurons, which are important for NREM-REM transition and REM maintenance, have hyperpolarized resting membrane potential and increased membrane resistance. These changes in intrinsic membrane properties suggest that these projection-specific neurons of mutant mice are less excitable, and thereby may play a role in deficient NREM-REM transition and REM maintenance. Furthermore, mutant mice exhibit changes in neural oscillation involving multiple frequency classes in several vigilance states. The most significant alterations occur in the theta frequency during wake and REM sleep.
Collapse
Affiliation(s)
- Hung-Chi Lu
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA.,Developmental Neuroscience Program, The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA.,Neuroscience Graduate Program, University of Southern California, Los Angeles, CA
| | - Harvey Pollack
- Department of Radiology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA
| | - John J Lefante
- Department of Global Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA
| | - Alea A Mills
- Cold Spring Harbor Laboratory, Center for Cancer Research, Cold Spring Harbor, NY
| | - Di Tian
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA.,Developmental Neuroscience Program, The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA.,Neuroscience Graduate Program, University of Southern California, Los Angeles, CA.,Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
23
|
Broncel A, Bocian R, Kłos-Wojtczak P, Kulbat-Warycha K, Konopacki J. Vagal nerve stimulation as a promising tool in the improvement of cognitive disorders. Brain Res Bull 2020; 155:37-47. [DOI: 10.1016/j.brainresbull.2019.11.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
|
24
|
Iwase M, Kitanishi T, Mizuseki K. Cell type, sub-region, and layer-specific speed representation in the hippocampal-entorhinal circuit. Sci Rep 2020; 10:1407. [PMID: 31996750 PMCID: PMC6989659 DOI: 10.1038/s41598-020-58194-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
It has been hypothesised that speed information, encoded by ‘speed cells’, is important for updating spatial representation in the hippocampus and entorhinal cortex to reflect ongoing self-movement during locomotion. However, systematic characterisation of speed representation is still lacking. In this study, we compared the speed representation of distinct cell types across sub-regions/layers in the dorsal hippocampus and medial entorhinal cortex of rats during exploration. Our results indicate that the preferred theta phases of individual neurons are correlated with positive/negative speed modulation and a temporal shift of speed representation in a sub-region/layer and cell type-dependent manner. Most speed cells located in entorhinal cortex layer 2 represented speed prospectively, whereas those in the CA1 and entorhinal cortex layers 3 and 5 represented speed retrospectively. In entorhinal cortex layer 2, putative CA1-projecting pyramidal cells, but not putative dentate gyrus/CA3-projecting stellate cells, represented speed prospectively. Among the hippocampal interneurons, approximately one-third of putative dendrite-targeting (somatostatin-expressing) interneurons, but only a negligible fraction of putative soma-targeting (parvalbumin-expressing) interneurons, showed negative speed modulation. Putative parvalbumin-expressing CA1 interneurons and somatostatin-expressing CA3 interneurons represented speed more retrospectively than parvalbumin-expressing CA3 interneurons. These findings indicate that speed representation in the hippocampal-entorhinal circuit is cell-type, pathway, and theta-phase dependent.
Collapse
Affiliation(s)
- Motosada Iwase
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, 545-8585, Japan
| | - Takuma Kitanishi
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, 545-8585, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan
| | - Kenji Mizuseki
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, 545-8585, Japan. .,Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA.
| |
Collapse
|
25
|
Tsunematsu T, Patel AA, Onken A, Sakata S. State-dependent brainstem ensemble dynamics and their interactions with hippocampus across sleep states. eLife 2020; 9:52244. [PMID: 31934862 PMCID: PMC6996931 DOI: 10.7554/elife.52244] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/14/2020] [Indexed: 12/16/2022] Open
Abstract
The brainstem plays a crucial role in sleep-wake regulation. However, the ensemble dynamics underlying sleep regulation remain poorly understood. Here, we show slow, state-predictive brainstem ensemble dynamics and state-dependent interactions between the brainstem and the hippocampus in mice. On a timescale of seconds to minutes, brainstem populations can predict pupil dilation and vigilance states and exhibit longer prediction power than hippocampal CA1 neurons. On a timescale of sub-seconds, pontine waves (P-waves) are accompanied by synchronous firing of brainstem neurons during both rapid eye movement (REM) and non-REM (NREM) sleep. Crucially, P-waves functionally interact with CA1 activity in a state-dependent manner: during NREM sleep, hippocampal sharp wave-ripples (SWRs) precede P-waves. On the other hand, P-waves during REM sleep are phase-locked with ongoing theta oscillations and are followed by burst firing of CA1 neurons. This state-dependent global coordination between the brainstem and hippocampus implicates distinct functional roles of sleep. Though almost all animals sleep, its exact purpose remains an enigma. This is particularly true for the period of sleep where people dream most vividly, which is known as rapid eye movement sleep or REM sleep for short. In addition to the eye movements that give it its name, during this phase of sleep, the pupils of the eyes become smaller, muscles relax and neurons in part of the brain activate in a regular, repeating way known as pontine waves or P-waves. The brainstem is a key brain region that helps the body determine when it is time to sleep and when it is time to be awake. It is found at the back of the brain, and connects the brain to the spinal cord, serving as a conduit for nerve signals to and from the rest of the body. However, it was not clear how the brainstem’s activity during sleep interacts with other brain regions that are important in the sleep process, such as the hippocampus. REM sleep is not unique to humans; in fact, it occurs in all mammals. Tsunematsu et al. studied mice to better understand the role of the brainstem during sleep. In the experiments, the brain waves, muscle tone and pupil sizes of the mice were monitored, while a probe inserted into the brainstem of the mice measured the activity of the neurons. Analysis of the probe data could predict changes in pupil size ten seconds beforehand and transitions between wakefulness, REM sleep and non-REM sleep up to sixty seconds in advance. This long timescale suggests that there are a number of complex interactions following brainstem activity that lead to the changes in sleep state. Tsunematsu et al. were also able to detect P-waves for the first time in mice and found that they are timed with activity from the hippocampus depending on the sleep state. During REM sleep, the P-waves precede the hippocampal activity, while during non-REM sleep, they follow it. These results further imply that the two sleep states serve different purposes. The detection of P-waves in mice shows that they are similar to other mammals that have previously been studied. Further studies in mice could help to provide more insight into the mechanisms of sleep and the purpose of the different stages.
Collapse
Affiliation(s)
- Tomomi Tsunematsu
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom.,Super-Network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Amisha A Patel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Arno Onken
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Shuzo Sakata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
26
|
Mamelak M. Nightmares and the Cannabinoids. Curr Neuropharmacol 2020; 18:754-768. [PMID: 31934840 PMCID: PMC7536831 DOI: 10.2174/1570159x18666200114142321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/21/2019] [Accepted: 01/11/2020] [Indexed: 11/22/2022] Open
Abstract
The cannabinoids, Δ9 tetrahydrocannabinol and its analogue, nabilone, have been found to reliably attenuate the intensity and frequency of post-traumatic nightmares. This essay examines how a traumatic event is captured in the mind, after just a single exposure, and repeatedly replicated during the nights that follow. The adaptive neurophysiological, endocrine and inflammatory changes that are triggered by the trauma and that alter personality and behavior are surveyed. These adaptive changes, once established, can be difficult to reverse. But cannabinoids, uniquely, have been shown to interfere with all of these post-traumatic somatic adaptations. While cannabinoids can suppress nightmares and other symptoms of post-traumatic stress disorder, they are not a cure. There may be no cure. The cannabinoids may best be employed, alone, but more likely in conjunction with other agents, in the immediate aftermath of a trauma to mitigate or even abort the metabolic changes which are set in motion by the trauma and which may permanently alter the reactivity of the nervous system. Steps in this direction have already been taken.
Collapse
Affiliation(s)
- Mortimer Mamelak
- Department of Psychiatry, University of Toronto, Baycrest Hospital, Permanent Address: 19 Tumbleweed Road, Toronto, OntarioM2J 2N2, Canada
| |
Collapse
|
27
|
Cox R, Rüber T, Staresina BP, Fell J. Heterogeneous profiles of coupled sleep oscillations in human hippocampus. Neuroimage 2019; 202:116178. [PMID: 31505272 PMCID: PMC6853182 DOI: 10.1016/j.neuroimage.2019.116178] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 11/24/2022] Open
Abstract
Cross-frequency coupling of sleep oscillations is thought to mediate memory consolidation. While the hippocampus is deemed central to this process, detailed knowledge of which oscillatory rhythms interact in the sleeping human hippocampus is lacking. Combining intracranial hippocampal and non-invasive electroencephalography from twelve neurosurgical patients, we characterized spectral power and coupling during non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Hippocampal coupling was extensive, with the majority of channels expressing spectral interactions. NREM consistently showed delta–ripple coupling, but ripples were also modulated by slow oscillations (SOs) and sleep spindles. SO–delta and SO–theta coupling, as well as interactions between delta/theta and spindle/beta frequencies also occurred. During REM, limited interactions between delta/theta and beta frequencies emerged. Moreover, oscillatory organization differed substantially between i) hippocampus and scalp, ii) sites along the anterior-posterior hippocampal axis, and iii) individuals. Overall, these results extend and refine our understanding of hippocampal sleep oscillations. Sleep oscillations in human hippocampus exhibit cross-frequency coupling during non-rapid eye movement sleep Coupling occurs between various frequency pairs, including slow oscillation, delta, theta, spindle, beta, and ripple bands Oscillatory organization varies between hippocampus and scalp, sites along the hippocampal axis, and individuals
Collapse
Affiliation(s)
- Roy Cox
- Department of Epileptology, University of Bonn, Bonn, Germany.
| | - Theodor Rüber
- Department of Epileptology, University of Bonn, Bonn, Germany; Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany; Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Juergen Fell
- Department of Epileptology, University of Bonn, Bonn, Germany
| |
Collapse
|
28
|
Bolin DJ. Sleep Deprivation and Its Contribution to Mood and Performance Deterioration in College Athletes. Curr Sports Med Rep 2019; 18:305-310. [DOI: 10.1249/jsr.0000000000000621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Matsumoto N, Kitanishi T, Mizuseki K. The subiculum: Unique hippocampal hub and more. Neurosci Res 2019; 143:1-12. [DOI: 10.1016/j.neures.2018.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/10/2018] [Accepted: 08/03/2018] [Indexed: 01/09/2023]
|
30
|
Munro Krull E, Sakata S, Toyoizumi T. Theta Oscillations Alternate With High Amplitude Neocortical Population Within Synchronized States. Front Neurosci 2019; 13:316. [PMID: 31037053 PMCID: PMC6476345 DOI: 10.3389/fnins.2019.00316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/20/2019] [Indexed: 12/16/2022] Open
Abstract
Synchronized states are marked by large-amplitude low-frequency oscillations in the cortex. These states can be seen during quiet waking or slow-wave sleep. Within synchronized states, previous studies have noted a plethora of different types of activity, including delta oscillations (0.5-4 Hz) and slow oscillations (<1 Hz) in the neocortex and large- and small- irregular activity in the hippocampus. However, it is not still fully characterized how neural populations contribute to the synchronized state. Here we apply independent component analysis to parse which populations are involved in different kinds of neocortical activity, and find two populations that alternate throughout synchronized states. One population broadly affects neocortical deep layers, and is associated with larger amplitude slower neocortical oscillations. The other population exhibits theta-frequency oscillations that are not easily observed in raw field potential recordings. These theta oscillations apparently come from below the neocortex, suggesting hippocampal origin, and are associated with smaller amplitude faster neocortical oscillations. Relative involvement of these two alternating populations may indicate different modes of operation within synchronized states.
Collapse
Affiliation(s)
- Erin Munro Krull
- RIKEN Center for Brain Science, Tokyo, Japan
- Beloit College, Beloit, WI, United States
| | - Shuzo Sakata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | | |
Collapse
|
31
|
Moxon KA, Shahlaie K, Girgis F, Saez I, Kennedy J, Gurkoff GG. From adagio to allegretto: The changing tempo of theta frequencies in epilepsy and its relation to interneuron function. Neurobiol Dis 2019; 129:169-181. [PMID: 30798003 DOI: 10.1016/j.nbd.2019.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/06/2019] [Accepted: 02/20/2019] [Indexed: 12/29/2022] Open
Abstract
Despite decades of research, our understanding of epilepsy, including how seizures are generated and propagate, is incomplete. However, there is growing recognition that epilepsy is more than just the occurrence of seizures, with patients often experiencing comorbid deficits in cognition that are poorly understood. In addition, the available therapies for treatment of epilepsy, from pharmaceutical treatment to surgical resection and seizure prevention devices, often exacerbate deficits in cognitive function. In this review, we discuss the hypothesis that seizure generation and cognitive deficits have a similar pathological source characterized by, but not limited to, deficits in theta oscillations and their influence on interneurons. We present a new framework that describes oscillatory states in epilepsy as alternating between hyper- and hypo-synchrony rather than solely the spontaneous transition to hyper-excitability characterized by the seizures. This framework suggests that as neural oscillations, specifically in the theta range, vary their tempo from a slowed almost adagio tempo during interictal periods to faster, more rhythmic allegretto tempo preictally, they impact the function of interneurons, modulating their ability to control seizures and their role in cognitive processing. This slow wave oscillatory framework may help explain why current therapies that work to reduce hyper-excitability do not completely eliminate seizures and often lead to exacerbated cognitive deficits.
Collapse
Affiliation(s)
- Karen A Moxon
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America.
| | - Kiarash Shahlaie
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, United States of America; Center for Neuroscience, University of California Davis, Davis, CA 95618, United States of America
| | - Fady Girgis
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, United States of America
| | - Ignacio Saez
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, United States of America; Center for Neuroscience, University of California Davis, Davis, CA 95618, United States of America
| | - Jeffrey Kennedy
- Department of Neurology, University of California Davis, Sacramento, CA 95817, United States of America
| | - Gene G Gurkoff
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, United States of America; Center for Neuroscience, University of California Davis, Davis, CA 95618, United States of America
| |
Collapse
|
32
|
Almeida-Filho DG, Queiroz CM, Ribeiro S. Memory corticalization triggered by REM sleep: mechanisms of cellular and systems consolidation. Cell Mol Life Sci 2018; 75:3715-3740. [PMID: 30054638 PMCID: PMC11105475 DOI: 10.1007/s00018-018-2886-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 06/27/2018] [Accepted: 07/19/2018] [Indexed: 01/29/2023]
Abstract
Once viewed as a passive physiological state, sleep is a heterogeneous and complex sequence of brain states with essential effects on synaptic plasticity and neuronal functioning. Rapid-eye-movement (REM) sleep has been shown to promote calcium-dependent plasticity in principal neurons of the cerebral cortex, both during memory consolidation in adults and during post-natal development. This article reviews the plasticity mechanisms triggered by REM sleep, with a focus on the emerging role of kinases and immediate-early genes for the progressive corticalization of hippocampus-dependent memories. The body of evidence suggests that memory corticalization triggered by REM sleep is a systemic phenomenon with cellular and molecular causes.
Collapse
Affiliation(s)
- Daniel G Almeida-Filho
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, 59056-450, Brazil
| | - Claudio M Queiroz
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, 59056-450, Brazil
| | - Sidarta Ribeiro
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, 59056-450, Brazil.
| |
Collapse
|
33
|
BDNF effects on dendritic spine morphology and hippocampal function. Cell Tissue Res 2018; 373:729-741. [DOI: 10.1007/s00441-017-2782-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022]
|
34
|
Tang W, Jadhav SP. Sharp-wave ripples as a signature of hippocampal-prefrontal reactivation for memory during sleep and waking states. Neurobiol Learn Mem 2018; 160:11-20. [PMID: 29331447 DOI: 10.1016/j.nlm.2018.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/31/2017] [Accepted: 01/09/2018] [Indexed: 11/25/2022]
Abstract
It is widely believed that memories that are encoded and retrieved during waking behavior are consolidated during sleep. Recent studies on the interactions between the hippocampus and the prefrontal cortex have greatly advanced our understanding of the physiological bases of these memory processes. Although hippocampal-prefrontal network activity differs in many aspects during waking and sleep states, here we review evidence that hippocampal sharp-wave ripples (SWRs) emerge as a common neurophysiological pattern in both states, facilitating communication between these two regions via coordinated reactivation of stored memory information. We further consider whether sleep and awake reactivation mediate similar memory processes or have different mnemonic functions, and the mechanistic role of this cross-regional dialogue in learning and memory. Finally, we provide an integrated view of how these two forms of reactivation might work together to support spatial learning and memory.
Collapse
Affiliation(s)
- Wenbo Tang
- Graduate Program in Neuroscience, Brandeis University, Waltham, MA 02453, USA
| | - Shantanu P Jadhav
- Graduate Program in Neuroscience, Brandeis University, Waltham, MA 02453, USA; Neuroscience Program, Department of Psychology and Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA.
| |
Collapse
|
35
|
Gratton G. Brain reflections: A circuit‐based framework for understanding information processing and cognitive control. Psychophysiology 2017; 55. [DOI: 10.1111/psyp.13038] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Gabriele Gratton
- Psychology Department and Beckman InstituteUniversity of Illinois at Urbana‐ChampaignUrbana Illinois USA
| |
Collapse
|
36
|
Sampaio LRL, Borges LT, Silva JM, de Andrade FRO, Barbosa TM, Oliveira TQ, Macedo D, Lima RF, Dantas LP, Patrocinio MCA, do Vale OC, Vasconcelos SM. Average spectral power changes at the hippocampal electroencephalogram in schizophrenia model induced by ketamine. Fundam Clin Pharmacol 2017; 32:60-68. [DOI: 10.1111/fcp.12319] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/13/2017] [Accepted: 08/23/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Luis Rafael L. Sampaio
- Department of Physiology and Pharmacology; School of Medicine; Federal University of Ceará; Fortaleza Brazil
- Health Science Center; School of Nursing; University of Fortaleza; Fortaleza Brazil
| | - Lucas T.N. Borges
- Department of Physiology and Pharmacology; School of Medicine; Federal University of Ceará; Fortaleza Brazil
| | - Joyse M.F. Silva
- Health Science Center; School of Nursing; University of Fortaleza; Fortaleza Brazil
| | | | - Talita M. Barbosa
- Department of Physiology and Pharmacology; School of Medicine; Federal University of Ceará; Fortaleza Brazil
| | - Tatiana Q. Oliveira
- Department of Physiology and Pharmacology; School of Medicine; Federal University of Ceará; Fortaleza Brazil
| | - Danielle Macedo
- Department of Physiology and Pharmacology; School of Medicine; Federal University of Ceará; Fortaleza Brazil
| | - Ricardo F. Lima
- Department of Physiology and Pharmacology; School of Medicine; Federal University of Ceará; Fortaleza Brazil
| | - Leonardo P. Dantas
- Department of Physiology and Pharmacology; School of Medicine; Federal University of Ceará; Fortaleza Brazil
| | - Manoel Cláudio A. Patrocinio
- Health Science Center; School of Medicine; University Centre Christus; Fortaleza Brazil
- Department of Anesthesiology; Dr. Jose Frota Institute Hospital; Fortaleza Brazil
| | - Otoni C. do Vale
- Department of Physiology and Pharmacology; School of Medicine; Federal University of Ceará; Fortaleza Brazil
| | - Silvânia M.M. Vasconcelos
- Department of Physiology and Pharmacology; School of Medicine; Federal University of Ceará; Fortaleza Brazil
| |
Collapse
|
37
|
Fattinger S, Kurth S, Ringli M, Jenni OG, Huber R. Theta waves in children's waking electroencephalogram resemble local aspects of sleep during wakefulness. Sci Rep 2017; 7:11187. [PMID: 28894254 PMCID: PMC5593855 DOI: 10.1038/s41598-017-11577-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/25/2017] [Indexed: 02/04/2023] Open
Abstract
Vyazovskiy and colleagues found in rats’ multi-unit recordings brief periods of silence (off-states) in local populations of cortical neurons during wakefulness which closely resembled the characteristic off-states during sleep. These off-states became more global and frequent with increasing sleep pressure and were associated with the well-known increase of theta activity under sleep deprivation in the surface EEG. Moreover, the occurrence of such off-states was related to impaired performance. While these animal experiments were based on intracranial recordings, we aimed to explore whether the human surface EEG may also provide evidence for such a local sleep-like intrusion during wakefulness. Thus, we analysed high-density wake EEG recordings during an auditory attention task in the morning and evening in 12 children. We found that, theta waves became more widespread in the evening and the occurrence of widespread theta waves was associated with slower reaction times in the attention task. These results indicate that widespread theta events measured on the scalp might be markers of local sleep in humans. Moreover, such markers of local sleep, seem to be related to the well described performance decline under high sleep pressure.
Collapse
Affiliation(s)
- Sara Fattinger
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, Zurich, Switzerland
| | - Salome Kurth
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, Zurich, Switzerland.,Pulmonary Clinic, Division of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - Maya Ringli
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, Zurich, Switzerland
| | - Oskar G Jenni
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, Zurich, Switzerland
| | - Reto Huber
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland. .,Neuroscience Center Zurich, Zurich, Switzerland. .,Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
38
|
Hayashi Y, Itohara S. Cutting-edge approaches to unwrapping the mysteries of sleep. Neurosci Res 2017. [DOI: 10.1016/j.neures.2017.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|