1
|
Kajiya R, Miyawaki H, Nakahara H, Mizuseki K. Firing Activities of REM- and NREM-Preferring Neurons Are Differently Modulated by Fast Network Oscillations and Behavior in the Hippocampus, Prelimbic Cortex, and Amygdala. eNeuro 2025; 12:ENEURO.0575-24.2025. [PMID: 40374559 PMCID: PMC12118951 DOI: 10.1523/eneuro.0575-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/20/2025] [Accepted: 05/08/2025] [Indexed: 05/17/2025] Open
Abstract
Sleep consists of two alternating states-rapid eye movement (REM) and non-REM (NREM) sleep. Neurons adjust their firing activity based on brain state, however, the extent to which this modulation varies across neurons and brain regions remains poorly understood. This study analyzed previously acquired 17-h continuous recordings of single-unit activity and local field potentials in the ventral hippocampal CA1 region, prelimbic cortex layer 5, and basolateral nucleus of the amygdala of fear-conditioned rats. The findings indicate that more than half of the neurons fired faster during REM sleep than during NREM sleep, although a notable subset of neurons exhibited the opposite preference, firing preferentially during NREM sleep. During sleep, the overall firing activity of both REM- and NREM-preferring neurons decreased. However, fast network oscillations, including hippocampal sharp-wave ripples (SWRs), amygdalar high-frequency oscillations, cortical ripples, and cortical spindles, differentially modulated REM- versus NREM-preferring neurons. During wakefulness, REM-preferring neurons fired more slowly but were more intensely activated by SWRs and shock presentations than NREM-preferring neurons. Moreover, during fast network oscillations in sleep, neurons with similar REM/NREM preferences exhibited stronger within- and cross-regional coactivation than those with differing preferences. Conversely, during awake SWRs in fear conditioning sessions, neurons with different REM/NREM preferences showed stronger interregional coactivation than those with similar preferences. These findings suggest that the distinct activity patterns of REM- and NREM-preferring neurons, potentially reflecting different roles in memory, affect local and global networks differently, thereby balancing experience-dependent network modifications with sleep-dependent homeostatic regulation of neuronal excitability.
Collapse
Affiliation(s)
- Risa Kajiya
- Department of Physiology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
- Department of Oral and Maxillofacial Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
- Department of Oral and Maxillofacial Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Hiroyuki Miyawaki
- Department of Physiology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Hirokazu Nakahara
- Department of Oral and Maxillofacial Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
- Department of Oral and Maxillofacial Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Kenji Mizuseki
- Department of Physiology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| |
Collapse
|
2
|
E Said S, Miyamoto D. Multi-region processing during sleep for memory and cognition. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2025; 101:107-128. [PMID: 40074337 DOI: 10.2183/pjab.101.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Over the past decades, the understanding of sleep has evolved to be a fundamental physiological mechanism integral to the processing of different types of memory rather than just being a passive brain state. The cyclic sleep substates, namely, rapid eye movement (REM) sleep and non-REM (NREM) sleep, exhibit distinct yet complementary oscillatory patterns that form inter-regional networks between different brain regions crucial to learning, memory consolidation, and memory retrieval. Technical advancements in imaging and manipulation approaches have provided deeper understanding of memory formation processes on multi-scales including brain-wide, synaptic, and molecular levels. The present review provides a short background and outlines the current state of research and future perspectives in understanding the role of sleep and its substates in memory processing from both humans and rodents, with a focus on cross-regional brain communication, oscillation coupling, offline reactivations, and engram studies. Moreover, we briefly discuss how sleep contributes to other higher-order cognitive functions.
Collapse
Affiliation(s)
- Salma E Said
- Laboratory for Sleeping-Brain Dynamics, Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Daisuke Miyamoto
- Laboratory for Sleeping-Brain Dynamics, Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
3
|
Miraglia F, Cacciotti A, Vecchio F, Scarpelli S, Gorgoni M, De Gennaro L, Rossini PM. EEG brain networks modulation during sleep onset: the effects of aging. GeroScience 2024:10.1007/s11357-024-01473-w. [PMID: 39714568 DOI: 10.1007/s11357-024-01473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024] Open
Abstract
The aim of the present study is to investigate differences in brain networks modulation during the pre- and post-sleep onset period, both within and between two groups of young and older individuals. Thirty-six healthy elderly and 40 young subjects participated. EEG signals were recorded during pre- and post-sleep onset periods and functional connectivity analysis, specifically focusing on the small world (SW) index, applied to EEG data (i.e., frequency bands) was examined. Significant differences in SW values were found between the pre-sleep and post-sleep onset phases in both young and older groups, with a reduction in the SW index in the theta band common to both groups. Additionally, an increase in the SW index in the beta band was exclusive to the elderly group during the post-sleep onset period, while an increase in the sigma band was exclusive to the young group. Furthermore, differences between the young and elderly groups were found during both phases, including a decrease in the SW index within the delta band, an increment in the sigma and beta bands in the elderly compared to the young group during the pre-sleep onset period, and a notable absence of sigma band modulation in the elderly group during the post-sleep onset condition. These findings provide insights into age-related changes in sleep-related brain network dynamics and their potential impact on sleep quality and cognitive functions, prompting interventions aimed at supporting healthy aging and addressing age-related cognitive decline.
Collapse
Affiliation(s)
- Francesca Miraglia
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele, Via Val Cannuta, 247, 00166, Rome, Italy.
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy.
| | - Alessia Cacciotti
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele, Via Val Cannuta, 247, 00166, Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Fabrizio Vecchio
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele, Via Val Cannuta, 247, 00166, Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | | | | | | | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele, Via Val Cannuta, 247, 00166, Rome, Italy
| |
Collapse
|
4
|
Li T, Fili M, Mohammadiarvejeh P, Dawson A, Hu G, Willette AA. Associations of Coffee and Tea Consumption on Neural Network Connectivity: Unveiling the Role of Genetic Factors in Alzheimer's Disease Risk. Nutrients 2024; 16:4303. [PMID: 39770924 PMCID: PMC11677865 DOI: 10.3390/nu16244303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/02/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Coffee and tea are widely consumed beverages, but their long-term effects on cognitive function and aging remain largely unexplored. Lifestyle interventions, particularly dietary habits, offer promising strategies for enhancing cognitive performance and preventing cognitive decline. METHODS This study utilized data from the UK Biobank cohort (n = 12,025) to examine the associations between filtered coffee, green tea, and standard tea consumption and neural network functional connectivity across seven resting-state networks. We focused on networks spanning prefrontal and occipital areas that are linked to complex cognitive and behavioral functions. Linear mixed models were used to assess the main effects of coffee and tea consumption, as well as their interactions with Apolipoprotein E (APOE) genetic risk-the strongest genetic risk factor for Alzheimer's disease (AD). RESULTS Higher filtered coffee consumption was associated with increased functional connectivity in several networks, including Motor Execution, Sensorimotor, Fronto-Cingular, and a Prefrontal + 'What' Pathway Network. Similarly, greater green tea intake was associated with enhanced connectivity in the Extrastriate Visual and Primary Visual Networks. In contrast, higher standard tea consumption was linked to reduced connectivity in networks such as Memory Consolidation, Motor Execution, Fronto-Cingular, and the "What" Pathway + Prefrontal Network. The APOE4 genotype and family history of AD influenced the relationship between coffee intake and connectivity in the Memory Consolidation Network. Additionally, the APOE4 genotype modified the association between standard tea consumption and connectivity in the Sensorimotor Network. CONCLUSIONS The distinct patterns of association between coffee, green tea, and standard tea consumption and resting-state brain activity may provide insights into AD-related brain changes. The APOE4 genotype, in particular, appears to play a significant role in modulating these relationships. These findings enhance our knowledge of how commonly consumed beverages may influence cognitive function and potentially AD risk among older adults.
Collapse
Affiliation(s)
- Tianqi Li
- Genetics and Genomics Program, Iowa State University, Ames, IA 50011, USA;
| | - Mohammad Fili
- School of Industrial Engineering and Management, Oklahoma State University, Stillwater, OK 74078, USA; (M.F.); (P.M.); (G.H.)
| | - Parvin Mohammadiarvejeh
- School of Industrial Engineering and Management, Oklahoma State University, Stillwater, OK 74078, USA; (M.F.); (P.M.); (G.H.)
- Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA 50011, USA
| | - Alice Dawson
- Chestnut Health Systems, Lighthouse Institute, Chicago, IL 60610, USA;
| | - Guiping Hu
- School of Industrial Engineering and Management, Oklahoma State University, Stillwater, OK 74078, USA; (M.F.); (P.M.); (G.H.)
| | - Auriel A. Willette
- Department of Neurology, Rutgers University, New Brunswick, NJ 08854, USA
| |
Collapse
|
5
|
Wu J, Kwok SC, Wang H, Wang Z. Effects of post-learning nap in the recognition memory for faces in habitual nappers. Neurobiol Learn Mem 2024; 213:107957. [PMID: 38964599 DOI: 10.1016/j.nlm.2024.107957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/14/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
This study investigated the effects of diurnal nap in the recognition memory for faces in habitual nappers. Thirty volunteers with habitual midday napping (assigned as the sleep group) and 28 non-nappers (assigned as the wake group) participated in this study. Participants were instructed to memorize faces, and subsequently to perform two recognition tasks before and after nap/wakefulness, i.e., an immediate recognition and a delayed recognition. There were three experimental conditions: same faces with the same view angle (S-S condition); same faces with a different view angle (22.5°) (S-D condition); and novel faces (NF condition). A mixed repeated-measures ANOVA revealed that the sleep group exhibited significantly longer reaction times (RT) following their nap compared to those of the wake group; no significant between-group differences were observed in accuracy or sensitivity (d'). Furthermore, both groups were more conservative in the delayed recognition task compared to the immediate recognition task, but the sleep group was more conservative after their nap (vs pre-nap), reflected by the criterion (β, Ohit/Ofalse alarm). Further stepwise regression analysis revealed a positive relationship between duration of stage N3 sleep and normalized RT difference before/after nap on the S-S condition. These findings suggest that an immediate nap following face learning is associated with memory reorganization during N3 sleep in habitual nappers, rendering the memories not readily accessible.
Collapse
Affiliation(s)
- Jue Wu
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics (Ministry of Education), Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Center for Psychological Health Education of College Students, Wuhan University, Wuhan, Hubei Province, China
| | - Sze Chai Kwok
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics (Ministry of Education), Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Shanghai Changning Mental Health Center, Shanghai, China; Phylo-Cognition Laboratory, Division of Natural and Applied Sciences, Data Science Research Center, Duke Kunshan University, Duke Institute for Brain Sciences, Kunshan, Jiangsu, China; Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Huimin Wang
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics (Ministry of Education), Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Shanghai Changning Mental Health Center, Shanghai, China.
| | - Zhaoxin Wang
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics (Ministry of Education), Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Shanghai Changning Mental Health Center, Shanghai, China; Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China.
| |
Collapse
|
6
|
Iwase M, Diba K, Pastalkova E, Mizuseki K. Dynamics of spike transmission and suppression between principal cells and interneurons in the hippocampus and entorhinal cortex. Hippocampus 2024; 34:393-421. [PMID: 38874439 DOI: 10.1002/hipo.23612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/29/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024]
Abstract
Synaptic excitation and inhibition are essential for neuronal communication. However, the variables that regulate synaptic excitation and inhibition in the intact brain remain largely unknown. Here, we examined how spike transmission and suppression between principal cells (PCs) and interneurons (INTs) are modulated by activity history, brain state, cell type, and somatic distance between presynaptic and postsynaptic neurons by applying cross-correlogram analyses to datasets recorded from the dorsal hippocampus and medial entorhinal cortex (MEC) of 11 male behaving and sleeping Long Evans rats. The strength, temporal delay, and brain-state dependency of the spike transmission and suppression depended on the subregions/layers. The spike transmission probability of PC-INT excitatory pairs that showed short-term depression versus short-term facilitation was higher in CA1 and lower in CA3. Likewise, the intersomatic distance affected the proportion of PC-INT excitatory pairs that showed short-term depression and facilitation in the opposite manner in CA1 compared with CA3. The time constant of depression was longer, while that of facilitation was shorter in MEC than in CA1 and CA3. During sharp-wave ripples, spike transmission showed a larger gain in the MEC than in CA1 and CA3. The intersomatic distance affected the spike transmission gain during sharp-wave ripples differently in CA1 versus CA3. A subgroup of MEC layer 3 (EC3) INTs preferentially received excitatory inputs from and inhibited MEC layer 2 (EC2) PCs. The EC2 PC-EC3 INT excitatory pairs, most of which showed short-term depression, exhibited higher spike transmission probabilities than the EC2 PC-EC2 INT and EC3 PC-EC3 INT excitatory pairs. EC2 putative stellate cells exhibited stronger spike transmission to and received weaker spike suppression from EC3 INTs than EC2 putative pyramidal cells. This study provides detailed comparisons of monosynaptic interaction dynamics in the hippocampal-entorhinal loop, which may help to elucidate circuit operations.
Collapse
Affiliation(s)
- Motosada Iwase
- Department of Physiology, Graduate School of Medicine, Osaka City University, Osaka, Japan
- Department of Physiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kamran Diba
- Department of Anesthesiology, Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Eva Pastalkova
- The William Alanson White Institute of Psychiatry, Psychoanalysis & Psychology, New York, New York, USA
| | - Kenji Mizuseki
- Department of Physiology, Graduate School of Medicine, Osaka City University, Osaka, Japan
- Department of Physiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
7
|
Zhuravlev M, Agaltsov M, Kiselev A, Simonyan M, Novikov M, Selskii A, Ukolov R, Drapkina O, Orlova A, Penzel T, Runnova A. Compensatory mechanisms of reduced interhemispheric EEG connectivity during sleep in patients with apnea. Sci Rep 2023; 13:8444. [PMID: 37231107 PMCID: PMC10213009 DOI: 10.1038/s41598-023-35376-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
We performed a mathematical analysis of functional connectivity in electroencephalography (EEG) of patients with obstructive sleep apnea (OSA) (N = 10; age: 52.8 ± 13 years; median age: 49 years; male/female ratio: 7/3), compared with a group of apparently healthy participants (N = 15; age: 51.5 ± 29.5 years; median age: 42 years; male/female ratio: 8/7), based on the calculation of wavelet bicoherence from nighttime polysomnograms. Having observed the previously known phenomenon of interhemispheric synchronization deterioration, we demonstrated a compensatory increase in intrahemispheric connectivity, as well as a slight increase in the connectivity of the central and occipital areas for high-frequency EEG activity. Significant changes in functional connectivity were extremely stable in groups of apparently healthy participants and OSA patients, maintaining the overall pattern when comparing different recording nights and various sleep stages. The maximum variability of the connectivity was observed at fast oscillatory processes during REM sleep. The possibility of observing some changes in functional connectivity of brain activity in OSA patients in a state of passive wakefulness opens up prospects for further research. Developing the methods of hypnogram evaluation that are independent of functional connectivity may be useful for implementing a medical decision support system.
Collapse
Affiliation(s)
- Maksim Zhuravlev
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
- Institute of Physics, Saratov State University, Saratov, Russia
| | - Mikhail Agaltsov
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Anton Kiselev
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Margarita Simonyan
- Institute of Physics, Saratov State University, Saratov, Russia
- Institute of Cardiology Research, Saratov State Medical University, Saratov, Russia
| | - Mikhail Novikov
- Institute of Cardiology Research, Saratov State Medical University, Saratov, Russia
| | - Anton Selskii
- Institute of Physics, Saratov State University, Saratov, Russia
| | - Rodion Ukolov
- Institute of Physics, Saratov State University, Saratov, Russia
| | - Oksana Drapkina
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Anna Orlova
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Thomas Penzel
- Interdisciplinary Sleep Medicine Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anastasiya Runnova
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia.
- Institute of Physics, Saratov State University, Saratov, Russia.
- Institute of Cardiology Research, Saratov State Medical University, Saratov, Russia.
| |
Collapse
|