1
|
Corli G, De Luca F, Bilel S, Bassi M, Roda E, Rossi P, Fattore L, Locatelli CA, Marti M. Repeated treatment with JWH-018 progressively increases motor activity and aggressiveness in male mice: involvement of CB 1 cannabinoid and D 1/D 2 dopaminergic receptors. Eur J Pharmacol 2025; 998:177633. [PMID: 40254068 DOI: 10.1016/j.ejphar.2025.177633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/21/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
RATIONALE To date, the exposure to Synthetic Cannabinoids (SCs) has been linked to unanticipated psychiatric symptoms such as agitation, psychosis, and aggressive behavior. In line with this, preclinical studies have shown that acute and long-term exposure to these compounds can result in psychostimulant effects that may be related to CB1-mediated and dopamine-dependent mechanisms. OBJECTIVES This study focuses on the progressive effects induced by repeated injection of 1-pentyl-3-(1-naphthoyl)indole JWH-018 (6 mg/kg, i.p.) on the locomotor activity and aggressive behavior in adult male ICR-CD1® mice. Thus, the interaction with the cannabinoid CB1 receptor-preferring antagonist/inverse agonist AM-251 (6 mg/kg, i.p.), the dopamine D1/5 receptor antagonist SCH23390 (0.1 mg/kg, i.p.), and the dopamine D2/3 receptor antagonist haloperidol (0.05 mg/kg, i.p.) have been evaluated. Expression and distribution of D1 and D2 receptors and tyrosine hydroxylase (TH) have been also investigated by immunohistochemistry on brain and cerebellar samples to explore potential neuroplastic events. RESULTS The repeated treatment with JWH-018 lead to the exacerbation of unanticipated psychomotor agitation, progressively increasing spontaneous locomotion and aggressiveness. Pre-treatment with AM-251 prevents the effects induced by the SC first, third and seventh injection. SCH23390 and haloperidol significantly attenuate and fully prevent the effects induced by JWH-018 seventh injection when pre-administered, respectively, alone and in combination. Behavioral changes observed in JWH-018-treated mice are accompanied by alterations in cortical, hippocampal, striatal and cerebellar D1, D2 and TH gene expression levels. CONCLUSION The present results demonstrated that repeated treatment with high dosage of JWH-018 induces psycho-stimulants effects via both CB1 receptor-mediated and dopamine-dependent mechanisms.
Collapse
MESH Headings
- Animals
- Male
- Indoles/pharmacology
- Indoles/administration & dosage
- Naphthalenes/pharmacology
- Naphthalenes/administration & dosage
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/agonists
- Mice
- Aggression/drug effects
- Motor Activity/drug effects
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D1/antagonists & inhibitors
- Receptors, Dopamine D2/metabolism
- Mice, Inbred ICR
- Behavior, Animal/drug effects
- Brain/drug effects
- Brain/metabolism
Collapse
Affiliation(s)
- Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Fabrizio De Luca
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Marta Bassi
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Elisa Roda
- Laboratory of Clinical and Experimental Toxicology, and Poison Control Centre and National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy
| | - Paola Rossi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Liana Fattore
- National Research Council, CNR Institute of Neuroscience-Cagliari, Cagliari, Italy
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical and Experimental Toxicology, and Poison Control Centre and National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy; Collaborative Center for the Italian National Early Warning System on Drugs (NEWS-D), Department of Anti-Drug Policies, Presidency of the Council of Ministers, Italy.
| |
Collapse
|
2
|
Furukawa K, Ikoma Y, Niino Y, Hiraoka Y, Tanaka K, Miyawaki A, Hirrlinger J, Matsui K. Dynamics of Neuronal and Astrocytic Energy Molecules in Epilepsy. J Neurochem 2025; 169:e70044. [PMID: 40108970 PMCID: PMC11923518 DOI: 10.1111/jnc.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/22/2025]
Abstract
The dynamics of energy molecules in the mouse brain during metabolic challenges induced by epileptic seizures were examined. A transgenic mouse line expressing a fluorescence resonance energy transfer (FRET)-based adenosine triphosphate (ATP) sensor, selectively expressed in the cytosol of neurons, was used. An optical fiber was inserted into the hippocampus, and changes in cytosolic ATP concentration were estimated using the fiber photometry method. To induce epileptic neuronal hyperactivity, a train of electrical stimuli was delivered to a bipolar electrode placed alongside the optical fiber. Although maintaining a steady cytosolic ATP concentration is crucial for cell survival, a single episode of epileptic neuronal hyperactivity drastically reduced neuronal ATP levels. Interestingly, the magnitude of ATP reduction did not increase with the exacerbation of epilepsy, but rather decreased. This suggests that the primary consumption of ATP during epileptic neuronal hyperactivity may not be solely directed toward restoring the Na+ and K+ ionic imbalance caused by action potential bursts. Cytosolic ATP concentration reflects the balance between supply and consumption. To investigate the metabolic flux leading to neuronal ATP production, a new FRET-based pyruvate sensor was developed and selectively expressed in the cytosol of astrocytes in transgenic mice. Upon epileptic neuronal hyperactivity, an increase in astrocytic pyruvate concentration was observed. Changes in the supply of energy molecules, such as glucose and oxygen, due to blood vessel constriction or dilation, as well as metabolic alterations in astrocyte function, may contribute to cytosolic ATP dynamics in neurons.
Collapse
Affiliation(s)
- Kota Furukawa
- Super‐network Brain PhysiologyGraduate School of Life Sciences, Tohoku UniversitySendaiJapan
| | - Yoko Ikoma
- Super‐network Brain PhysiologyGraduate School of Life Sciences, Tohoku UniversitySendaiJapan
| | - Yusuke Niino
- Laboratory for Cell Function DynamicsRIKEN Center for Brain ScienceWako‐CityJapan
| | - Yuichi Hiraoka
- Laboratory of Molecular NeuroscienceMedical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo Institute of TechnologyTokyoJapan
- Laboratory of Genome Editing for Biomedical ResearchMedical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo Institute of TechnologyTokyoJapan
| | - Kohichi Tanaka
- Laboratory of Genome Editing for Biomedical ResearchMedical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo Institute of TechnologyTokyoJapan
| | - Atsushi Miyawaki
- Laboratory for Cell Function DynamicsRIKEN Center for Brain ScienceWako‐CityJapan
- Biotechnological Optics Research TeamRIKEN Center for Advanced PhotonicsWako‐CityJapan
| | - Johannes Hirrlinger
- Carl‐Ludwig‐Institute for Physiology, Faculty of MedicineLeipzig UniversityLeipzigGermany
- Department of NeurogeneticsMax‐Planck‐Institute for Multidisciplinary SciencesGöttingenGermany
| | - Ko Matsui
- Super‐network Brain PhysiologyGraduate School of Life Sciences, Tohoku UniversitySendaiJapan
- Super‐network Brain Physiology, Graduate School of MedicineTohoku UniversitySendaiJapan
| |
Collapse
|
3
|
Yamao H, Matsui K. Astrocytic determinant of the fate of long-term memory. Glia 2025; 73:309-329. [PMID: 39495149 DOI: 10.1002/glia.24636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Abstract
While some vivid memories are unyielding and unforgettable, others fade with time. Astrocytes are recognized for their role in modulating the brain's environment and have recently been considered integral to the brain's information processing and memory formation. This suggests their potential roles in emotional perception and memory formation. In this study, we delve into the impact of amygdala astrocytes on fear behaviors and memory, employing astrocyte-specific optogenetic manipulations in mice. Our findings reveal that astrocytic photoactivation with channelrhodopsin-2 (ChR2) provokes aversive behavioral responses, while archaerhodopsin-T (ArchT) photoactivation diminishes fear perception. ChR2 photoactivation amplifies fear perception and fear memory encoding but obstructs its consolidation. On the other hand, ArchT photoactivation inhibits memory formation during intense aversive stimuli, possibly due to weakened fear perception. However, it prevents the decay of remote fear memory over three weeks. Crucially, these memory effects were observed when optogenetic manipulations coincided with the aversive experience, indicating a deterministic role of astrocytic states at the exact moment of fear experiences in shaping long-term memory. This research underscores the significant and multifaceted role of astrocytes in emotional perception, fear memory formation, and modulation, suggesting a sophisticated astrocyte-neuron communication mechanism underlying basic emotional state transitions of information processing in the brain.
Collapse
Affiliation(s)
- Hiroki Yamao
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Ko Matsui
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Super-network Brain Physiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
4
|
Araki S, Onishi I, Ikoma Y, Matsui K. Astrocyte switch to the hyperactive mode. Glia 2024; 72:1418-1434. [PMID: 38591259 DOI: 10.1002/glia.24537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/10/2024]
Abstract
Increasing pieces of evidence have suggested that astrocyte function has a strong influence on neuronal activity and plasticity, both in physiological and pathophysiological situations. In epilepsy, astrocytes have been shown to respond to epileptic neuronal seizures; however, whether they can act as a trigger for seizures has not been determined. Here, using the copper implantation method, spontaneous neuronal hyperactivity episodes were reliably induced during the week following implantation. With near 24-h continuous recording for over 1 week of the local field potential with in vivo electrophysiology and astrocyte cytosolic Ca2+ with the fiber photometry method, spontaneous occurrences of seizure episodes were captured. Approximately 1 day after the implantation, isolated aberrant astrocyte Ca2+ events were often observed before they were accompanied by neuronal hyperactivity, suggesting the role of astrocytes in epileptogenesis. Within a single developed episode, astrocyte Ca2+ increase preceded the neuronal hyperactivity by ~20 s, suggesting that actions originating from astrocytes could be the trigger for the occurrence of epileptic seizures. Astrocyte-specific stimulation by channelrhodopsin-2 or deep-brain direct current stimulation was capable of inducing neuronal hyperactivity. Injection of an astrocyte-specific metabolic inhibitor, fluorocitrate, was able to significantly reduce the magnitude of spontaneously occurring neuronal hyperactivity. These results suggest that astrocytes have a role in triggering individual seizures and the reciprocal astrocyte-neuron interactions likely amplify and exacerbate seizures. Therefore, future epilepsy treatment could be targeted at astrocytes to achieve epilepsy control.
Collapse
Affiliation(s)
- Shun Araki
- Super-network Brain Physiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Ichinosuke Onishi
- Super-network Brain Physiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yoko Ikoma
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Ko Matsui
- Super-network Brain Physiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
5
|
Tan W, Ikoma Y, Takahashi Y, Konno A, Hirai H, Hirase H, Matsui K. Anxiety control by astrocytes in the lateral habenula. Neurosci Res 2024; 205:1-15. [PMID: 38311032 DOI: 10.1016/j.neures.2024.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 02/06/2024]
Abstract
The potential role of astrocytes in lateral habenula (LHb) in modulating anxiety was explored in this study. The habenula are a pair of small nuclei located above the thalamus, known for their involvement in punishment avoidance and anxiety. Herein, we observed an increase in theta-band oscillations of local field potentials (LFPs) in the LHb when mice were exposed to anxiety-inducing environments. Electrical stimulation of LHb at theta-band frequency promoted anxiety-like behavior. Calcium (Ca2+) levels and pH in the cytosol of astrocytes and local brain blood volume changes were studied in mice expressing either a Ca2+ or a pH sensor protein specifically in astrocytes and mScarlet fluorescent protein in the blood plasma using fiber photometry. An acidification response to anxiety was observed. Photoactivation of archaerhopsin-T (ArchT), an optogenetic tool that acts as an outward proton pump, results in intracellular alkalinization. Photostimulation of LHb in astrocyte-specific ArchT-expressing mice resulted in dissipation of theta-band LFP oscillation in an anxiogenic environment and suppression of anxiety-like behavior. These findings provide evidence that LHb astrocytes modulate anxiety and may offer a new target for treatment of anxiety disorders.
Collapse
Affiliation(s)
- Wanqin Tan
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577 Japan
| | - Yoko Ikoma
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577 Japan
| | - Yusuke Takahashi
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577 Japan; Systems Bioinformatics, Graduate School of Information Sciences, Tohoku University, Sendai 980-8579 Japan
| | - Ayumu Konno
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi 371-8511, Gunma, Japan; Viral Vector Core, Gunma University Initiative for Advanced Research, Maebashi 371-8511, Gunma, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi 371-8511, Gunma, Japan; Viral Vector Core, Gunma University Initiative for Advanced Research, Maebashi 371-8511, Gunma, Japan
| | - Hajime Hirase
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ko Matsui
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577 Japan.
| |
Collapse
|
6
|
Rivera-Villaseñor A, Higinio-Rodríguez F, López-Hidalgo M. Astrocytes in Pain Perception: A Systems Neuroscience Approach. ADVANCES IN NEUROBIOLOGY 2024; 39:193-212. [PMID: 39190076 DOI: 10.1007/978-3-031-64839-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Astrocytes play an active role in the function of the brain integrating neuronal activity and regulating back neuronal dynamic. They have recently emerged as active contributors of brain's emergent properties such as perceptions. Here, we analyzed the role of astrocytes in pain perception from the lens of systems neuroscience, and we do this by analyzing how astrocytes encode nociceptive information within brain processing areas and how they are key regulators of the internal state that determines pain perception. Specifically, we discuss the dynamic interactions between astrocytes and neuromodulators, such as noradrenaline, highlighting their role in shaping the level of activation of the neuronal ensemble, thereby influencing the experience of pain. Also, we will discuss the possible implications of an "Astro-NeuroMatrix" in the integration of pain across sensory, affective, and cognitive dimensions of pain perception.
Collapse
Affiliation(s)
- Angélica Rivera-Villaseñor
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Queretaro, Qro., Mexico
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Qro., Mexico
| | - Frida Higinio-Rodríguez
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Queretaro, Qro., Mexico
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Qro., Mexico
| | - Mónica López-Hidalgo
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Queretaro, Qro., Mexico.
| |
Collapse
|