1
|
Tkachuk M, Matiytsiv N. Tricresylphosphate isomers: A review of toxicity pathways. Neurotoxicol Teratol 2025; 108:107432. [PMID: 39921116 DOI: 10.1016/j.ntt.2025.107432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 02/10/2025]
Abstract
Synthetiс organophosphates are a large group of chemicals, annually produced by an industry with their further application as oil additives, flame retardants, plasticizers, warfare agents and insecticides for domestic use and in the control of vector-borne diseases. Consequently, organophosphates are often detected in the environment and human samples, which can have adverse effects on ecosystems and human health. This review aimed to summarize recent findings about different aspects of tricresyl phosphate mixture and separate isomers toxicity, including their impact on nervous, endocrine, and reproductive systems studied in animal models or in vitro. We also discuss the underlying molecular and cellular mechanisms involved in these processes, which comprise inhibition of neuropathy target esterase (NTE), overactivation of neuregulin1/ErbB and MAPK signaling pathways, impairment of glutamate signaling as well as interaction with nuclear hormone. Finally, we outline potential therapeutic targets and promising agents as important directions for future research.
Collapse
Affiliation(s)
- Marta Tkachuk
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4/ Hrushevskoho St., Lviv 79005, Ukraine
| | - Nataliya Matiytsiv
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4/ Hrushevskoho St., Lviv 79005, Ukraine.
| |
Collapse
|
2
|
Jokanović M, Oleksak P, Kuca K. Multiple neurological effects associated with exposure to organophosphorus pesticides in man. Toxicology 2023; 484:153407. [PMID: 36543276 DOI: 10.1016/j.tox.2022.153407] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/02/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
This article reviews available data regarding the possible association of organophosphorus (OP) pesticides with neurological disorders such as dementia, attention deficit hyperactivity disorder, neurodevelopment, autism, cognitive development, Parkinson's disease and chronic organophosphate-induced neuropsychiatric disorder. These effects mainly develop after repeated (chronic) human exposure to low doses of OP. In addition, three well defined neurotoxic effects in humans caused by single doses of OP compounds are discussed. Those effects are the cholinergic syndrome, the intermediate syndrome and organophosphate-induced delayed polyneuropathy. Usually, the poisoning can be avoided by an improved administrative control, limited access to OP pesticides, efficient measures of personal protection and education of OP pesticide applicators and medical staff.
Collapse
Affiliation(s)
- Milan Jokanović
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech republic
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech republic; Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech republic.
| |
Collapse
|
3
|
Wang Y, Zhang C, Shen Z, Kou R, Xie K, Song F. Activation of PINK1-Parkin-dependent mitophagy in Tri-ortho-cresyl phosphate-treated Neuro2a cells. Chem Biol Interact 2019; 308:70-79. [DOI: 10.1016/j.cbi.2019.05.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 01/21/2023]
|
4
|
Wang P, Yang M, Jiang L, Wu YJ. A fungicide miconazole ameliorates tri-o-cresyl phosphate-induced demyelination through inhibition of ErbB/Akt pathway. Neuropharmacology 2018; 148:31-39. [PMID: 30553827 DOI: 10.1016/j.neuropharm.2018.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/21/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022]
Abstract
Organophosphorus compound (OP)-induced delayed neuropathy (OPIDN) is characterized by distal axonal degeneration and demyelination of the central and peripheral axons, which leads to progressive muscle weakness, ataxia and paralysis in several days after OP intoxication. This study aimed to investigate the possible use of an imidazole fungicide miconazole as a novel therapy for OPIDN. Adult hens, the most commonly used animal models in OPIDN studies, were orally given tri-o-cresyl phosphate (TOCP). We showed that miconazole, which was administered daily to hens beginning on the 7th day after TOCP exposure, drastically ameliorated the neurotoxic symptoms and histopathological damages in spinal cord and sciatic nerves. Mechanistically, miconazole inhibited the TOCP-induced activation of ErbB/Akt signaling, and enhanced the myelin basic protein (MBP) expression. In a glial cell model sNF96.2 cells, miconazole restored the TOCP-inhibited MBP expression, and promoted cell differentiation as well as cell migration by inhibiting the activation of ErbB/Akt signaling pathway. In sum, miconazole, a synthetic imidazole fungicide, could ameliorate the symptoms and histopathological changes of OPIDN, probably by promoting glial cell differentiation and migration to enhance myelination via inhibiting the activation of ErbB/Akt. Thus, miconazole is a promising candidate therapy for the clinical treatment of OPIDN.
Collapse
Affiliation(s)
- Pan Wang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Road, Beijing, 100101, China
| | - Min Yang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Road, Beijing, 100101, China
| | - Lu Jiang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Road, Beijing, 100101, China
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Road, Beijing, 100101, China.
| |
Collapse
|
5
|
Xu HY, Wang P, Sun YJ, Jiang L, Xu MY, Wu YJ. Autophagy in Tri-o-cresyl Phosphate-Induced Delayed Neurotoxicity. J Neuropathol Exp Neurol 2017; 76:52-60. [PMID: 28040792 DOI: 10.1093/jnen/nlw108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The widely used organophosphorus compound tri-o-cresyl phosphate (TOCP) elicits delayed neurotoxicity characterized by progressive axonal degeneration in the spinal cord and peripheral nerves. However, the precise mechanisms of TOCP-induced delayed neurotoxicity are not clear. Because autophagy has been linked to the pathogenesis of neurodegenerative diseases, we aimed to characterize autophagy in the progression of TOCP-induced delayed neurotoxicity. In vivo experiments using the adult hen animal model showed that autophagy in spinal cord axons and in sciatic nerves was markedly induced at the early preclinical stage of TOCP-induced delayed neurotoxicity; it was decreased as the delayed neurotoxicity progressed to the overt neuropathy stage. In cultured human neuroblastoma SH-SY5Y cells, TOCP reduced cell growth, and induced prominent autophagy. The autophagy inhibitor 3-methyladenine could attenuate TOCP-induced cytotoxicity, indicating that the autophagy is accountable for TOCP-induced neurotoxicity. In addition, we found that TOCP-induced Parkin translocation to mitochondria in SH-SY5Y cells, suggesting that autophagy may function to degrade mitochondria after TOCP exposure. These results suggest that autophagy may play an important role in the initiation and progression of axonal damage during TOCP-induced neurotoxicity.
Collapse
Affiliation(s)
- Hai-Yang Xu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Pan Wang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ying-Jian Sun
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,Department of Veterinary Medicine and Animal Science, Beijing University of Agriculture, Beijing, People's Republic of China
| | - Lu Jiang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ming-Yuan Xu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
6
|
Lorke DE, Stegmeier-Petroianu A, Petroianu GA. Biologic activity of cyclic and caged phosphates: a review. J Appl Toxicol 2016; 37:13-22. [DOI: 10.1002/jat.3369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Dietrich E. Lorke
- Department of Cellular Biology & Pharmacology, Herbert Wertheim College of Medicine; Florida International University; Miami Florida USA
| | - Anka Stegmeier-Petroianu
- Mannheim Institute of Public Health, Social and Preventive Medicine; Medical Faculty Mannheim, Heidelberg University; D-68167 Mannheim Germany
| | - Georg A. Petroianu
- Department of Cellular Biology & Pharmacology, Herbert Wertheim College of Medicine; Florida International University; Miami Florida USA
| |
Collapse
|
7
|
Abstract
Toxic neuropathy, although rare, is an important consideration in the setting of a known or suspected toxic exposure in the workplace or other environment. This chapter discusses the clinical and electrodiagnostic evaluation of peripheral neuropathies, highlighting findings that direct further workup and may point to specific toxins as etiology. The difficulty of establishing causality of a toxin in relation to peripheral neuropathy is discussed; guidelines for establishing causality are presented. Examples of common industrial toxins are listed, including their typical industrial uses and their mechanisms of action in producing neuropathy. Characteristic clinical presentations of specific toxic neuropathies are highlighted with selected case studies.
Collapse
Affiliation(s)
- Ann A Little
- Department of Neurology, University of Michigan Health System, Ann Arbor, MI, USA
| | - James W Albers
- Department of Neurology, University of Michigan Health System, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Organophosphate-induced changes in the PKA regulatory function of Swiss Cheese/NTE lead to behavioral deficits and neurodegeneration. PLoS One 2014; 9:e87526. [PMID: 24558370 PMCID: PMC3928115 DOI: 10.1371/journal.pone.0087526] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 12/31/2013] [Indexed: 12/02/2022] Open
Abstract
Organophosphate-induced delayed neuropathy (OPIDN) is a Wallerian-type axonopathy that occurs weeks after exposure to certain organophosphates (OPs). OPs have been shown to bind to Neuropathy Target Esterase (NTE), thereby inhibiting its enzymatic activity. However, only OPs that also induce the so-called aging reaction cause OPIDN. This reaction results in the release and possible transfer of a side group from the bound OP to NTE and it has been suggested that this induces an unknown toxic function of NTE. To further investigate the mechanisms of aging OPs, we used Drosophila, which expresses a functionally conserved orthologue of NTE named Swiss Cheese (SWS). Treating flies with the organophosporous compound tri-ortho-cresyl phosphate (TOCP) resulted in behavioral deficits and neurodegeneration two weeks after exposure, symptoms similar to the delayed effects observed in other models. In addition, we found that primary neurons showed signs of axonal degeneration within an hour after treatment. Surprisingly, increasing the levels of SWS, and thereby its enzymatic activity after exposure, did not ameliorate these phenotypes. In contrast, reducing SWS levels protected from TOCP-induced degeneration and behavioral deficits but did not affect the axonopathy observed in cell culture. Besides its enzymatic activity as a phospholipase, SWS also acts as regulatory PKA subunit, binding and inhibiting the C3 catalytic subunit. Measuring PKA activity in TOCP treated flies revealed a significant decrease that was also confirmed in treated rat hippocampal neurons. Flies expressing additional PKA-C3 were protected from the behavioral and degenerative phenotypes caused by TOCP exposure whereas primary neurons were not. In addition, knocking-down PKA-C3 caused similar behavioral and degenerative phenotypes as TOCP treatment. We therefore propose a model in which OP-modified SWS cannot release PKA-C3 and that the resulting loss of PKA-C3 activity plays a crucial role in developing the delayed symptoms of OPIDN but not in the acute toxicity.
Collapse
|
9
|
Karami-Mohajeri S, Nikfar S, Abdollahi M. A systematic review on the nerve–muscle electrophysiology in human organophosphorus pesticide exposure. Hum Exp Toxicol 2013; 33:92-102. [DOI: 10.1177/0960327113489047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This article presents a systematic review of the recent literature on the scientific support of electromyography (EMG) and nerve conduction velocity (NCV) in diagnosing the exposure and toxicity of organophosphorus pesticides (OP). Specifically, this review focused on changes in EMG, NCV, occurrence of intermediate syndrome (IMS), and OP-induced delayed polyneuropathy (OPIDN) in human. All relevant bibliographic databases were searched for human studies using the key words “OP poisoning”, “electromyography”, “nerve conduction study,” and “muscles disorders”. IMS usually occurs after an acute cholinergic crisis, while OPIDN occurs after both acute and chronic exposures. Collection of these studies supports that IMS is a neuromuscular junction disorder and can be recorded upon the onset of respiratory failure. Due to heterogeneity of reports on outcomes of interest such as motor NCV and EMG amplitude in acute cases and inability to achieve precise estimation of effect in chronic cases meta-analysis was not helpful to this review. The OPIDN after both acute and low-level prolonged exposures develops peripheral neuropathy without preceding cholinergic toxicity and the progress of changes in EMG and NCV is parallel with the development of IMS and OPIDN. Persistent inhibition of acetylcholinesterase (AChE) is responsible for muscle weakness, but this is not the only factor involved in the incidence of this weakness in IMS or OPIDN suggestive of AChE assay not useful as an index of nerve and muscle impairment. Although several mechanisms for induction of this neurodegenerative disorder have been proposed as were reviewed for this article, among them oxidative stress and resulting apoptosis can be emphasized. Nevertheless, there is little synchronized evidence on subclinical electrophysiological findings that limit us to reach a strong conclusion on the diagnostic or prognostic use of EMG and NCV for acute and occupational exposures to OPs.
Collapse
Affiliation(s)
- S Karami-Mohajeri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - S Nikfar
- Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
- Food and Drug Laboratory Research Center, Food and Drug Organization, Tehran, Islamic Republic of Iran
| | - M Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
- Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|
10
|
Darchini-Maragheh E, Nemati-Karimooy H, Hasanabadi H, Balali-Mood M. Delayed Neurological Complications of Sulphur Mustard and Tabun Poisoning in 43 Iranian Veterans. Basic Clin Pharmacol Toxicol 2012; 111:426-32. [DOI: 10.1111/j.1742-7843.2012.00922.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 06/15/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Emadodin Darchini-Maragheh
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences; Mashhad Iran
- Students Research Committee, Mashhad University of Medical Sciences; Mashhad Iran
| | - Habibollah Nemati-Karimooy
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences; Mashhad Iran
| | - Hosein Hasanabadi
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences; Mashhad Iran
| | - Mahdi Balali-Mood
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
11
|
Jokanović M, Kosanović M, Brkić D, Vukomanović P. Organophosphate induced delayed polyneuropathy in man: An overview. Clin Neurol Neurosurg 2011; 113:7-10. [DOI: 10.1016/j.clineuro.2010.08.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 08/22/2010] [Accepted: 08/28/2010] [Indexed: 10/19/2022]
|