1
|
Mamczarz J, Lane M, Merchenthaler I. Letrozole delays acquisition of water maze task in female BALB/c mice: Possible involvement of anxiety. Horm Behav 2024; 162:105524. [PMID: 38513526 PMCID: PMC11155665 DOI: 10.1016/j.yhbeh.2024.105524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
Letrozole, an aromatase inhibitor preventing estrogen synthesis from testosterone, is used as an adjuvant therapy in estrogen receptor-positive breast cancer patients. However, like other aromatase inhibitors, it induces many side effects, including impaired cognition. Despite its negative effect in humans, results from animal models are inconsistent and suggest that letrozole can either impair or improve cognition. Here, we studied the effects of chronic letrozole treatment on cognitive behavior of adult female BALB/c mice, a relevant animal model for breast cancer studies, to develop an appropriate animal model aimed at testing therapies to mitigate side effects of letrozole. In Morris water maze, letrozole 0.1 mg/kg impaired reference learning and memory. Interestingly, most of the letrozole 0.1 mg/kg-treated mice were able to learn the new platform position in reversal training and performed similar to control mice in a reversal probe test. Results of the reversal test suggest that letrozole did not completely disrupt spatial navigation, but rather delayed acquisition of spatial information. The delay might be related to increased anxiety as suggested by increased thigmotactic behavior during the reference memory training. The learning impairment was water maze-specific since we did not observe impairment in other spatial tasks such as in Y-maze or object location test. In contrast, the dose of 0.3 mg/kg did not have effect on water maze learning and facilitated locomotor habituation and recognition in novel object recognition test. The current study shows that letrozole dose-dependently modulates behavioral response and that its effects are task-dependent.
Collapse
Affiliation(s)
- Jacek Mamczarz
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America.
| | - Malcolm Lane
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Istvan Merchenthaler
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America; Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| |
Collapse
|
2
|
Chao LL, Sullivan K, Krengel MH, Killiany RJ, Steele L, Klimas NG, Koo BB. The prevalence of mild cognitive impairment in Gulf War veterans: a follow-up study. Front Neurosci 2024; 17:1301066. [PMID: 38318196 PMCID: PMC10838998 DOI: 10.3389/fnins.2023.1301066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/18/2023] [Indexed: 02/07/2024] Open
Abstract
Introduction Gulf War Illness (GWI), also called Chronic Multisymptom Illness (CMI), is a multi-faceted condition that plagues an estimated 250,000 Gulf War (GW) veterans. Symptoms of GWI/CMI include fatigue, pain, and cognitive dysfunction. We previously reported that 12% of a convenience sample of middle aged (median age 52 years) GW veterans met criteria for mild cognitive impairment (MCI), a clinical syndrome most prevalent in older adults (e.g., ≥70 years). The current study sought to replicate and extend this finding. Methods We used the actuarial neuropsychological criteria and the Montreal Cognitive Assessment (MoCA) to assess the cognitive status of 952 GW veterans. We also examined regional brain volumes in a subset of GW veterans (n = 368) who had three Tesla magnetic resonance images (MRIs). Results We replicated our previous finding of a greater than 10% rate of MCI in four additional cohorts of GW veterans. In the combined sample of 952 GW veterans (median age 51 years at time of cognitive testing), 17% met criteria for MCI. Veterans classified as MCI were more likely to have CMI, history of depression, and prolonged (≥31 days) deployment-related exposures to smoke from oil well fires and chemical nerve agents compared to veterans with unimpaired and intermediate cognitive status. We also replicated our previous finding of hippocampal atrophy in veterans with MCI, and found significant group differences in lateral ventricle volumes. Discussion Because MCI increases the risk for late-life dementia and impacts quality of life, it may be prudent to counsel GW veterans with cognitive dysfunction, CMI, history of depression, and high levels of exposures to deployment-related toxicants to adopt lifestyle habits that have been associated with lowering dementia risk. With the Food and Drug Administration's recent approval of and the VA's decision to cover the cost for anti-amyloid β (Aβ) therapies, a logical next step for this research is to determine if GW veterans with MCI have elevated Aβ in their brains.
Collapse
Affiliation(s)
- Linda L. Chao
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States
| | - Kimberly Sullivan
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States
| | - Maxine H. Krengel
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
| | - Ronald J. Killiany
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Lea Steele
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Nancy G. Klimas
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
- Geriatric Research Education and Clinical Center (GRECC), Miami VA Medical Center, Miami, FL, United States
| | - Bang-Bong Koo
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
3
|
Aroniadou-Anderjaska V, Apland JP, Figueiredo TH, De Araujo Furtado M, Braga MF. Acetylcholinesterase inhibitors (nerve agents) as weapons of mass destruction: History, mechanisms of action, and medical countermeasures. Neuropharmacology 2020; 181:108298. [DOI: 10.1016/j.neuropharm.2020.108298] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
|
4
|
Lane M, Carter D, Pescrille JD, Aracava Y, Fawcett WP, Basinger GW, Pereira EFR, Albuquerque EX. Oral Pretreatment with Galantamine Effectively Mitigates the Acute Toxicity of a Supralethal Dose of Soman in Cynomolgus Monkeys Posttreated with Conventional Antidotes. J Pharmacol Exp Ther 2020; 375:115-126. [PMID: 32759369 PMCID: PMC7495338 DOI: 10.1124/jpet.120.265843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/28/2020] [Indexed: 11/22/2022] Open
Abstract
Earlier reports suggested that galantamine, a drug approved to treat mild-to-moderate Alzheimer's disease (AD), and other centrally acting reversible acetylcholinesterase (AChE) inhibitors can serve as adjunct pretreatments against poisoning by organophosphorus compounds, including the nerve agent soman. The present study was designed to determine whether pretreatment with a clinically relevant oral dose of galantamine HBr mitigates the acute toxicity of 4.0×LD50 soman (15.08 µg/kg) in Macaca fascicularis posttreated intramuscularly with the conventional antidotes atropine (0.4 mg/kg), 2-pyridine aldoxime methyl chloride (30 mg/kg), and midazolam (0.32 mg/kg). The pharmacokinetic profile and maximal degree of blood AChE inhibition (∼25%-40%) revealed that the oral doses of 1.5 and 3.0 mg/kg galantamine HBr in these nonhuman primates (NHPs) translate to human-equivalent doses that are within the range used for AD treatment. Subsequent experiments demonstrated that 100% of NHPs pretreated with either dose of galantamine, challenged with soman, and posttreated with conventional antidotes survived 24 hours. By contrast, given the same posttreatments, 0% and 40% of the NHPs pretreated, respectively, with vehicle and pyridostigmine bromide (1.2 mg/kg, oral), a peripherally acting reversible AChE inhibitor approved as pretreatment for military personnel at risk of exposure to soman, survived 24 hours after the challenge. In addition, soman caused extensive neurodegeneration in the hippocampi of saline- or pyridostigmine-pretreated NHPs, but not in the hippocampi of galantamine-pretreated animals. To our knowledge, this is the first study to demonstrate the effectiveness of clinically relevant oral doses of galantamine to prevent the acute toxicity of supralethal doses of soman in NHPs. SIGNIFICANCE STATEMENT: This is the first study to demonstrate that a clinically relevant oral dose of galantamine effectively prevents lethality and neuropathology induced by a supralethal dose of the nerve agent soman in Cynomolgus monkeys posttreated with conventional antidotes. These findings are of major significance for the continued development of galantamine as an adjunct pretreatment against nerve agent poisoning.
Collapse
Affiliation(s)
- Malcolm Lane
- Division of Translational Toxicology, Department of Epidemiology and Public Health (M.L., D.C., J.D.P., Y.A., W.P.F., E.F.R.P., E.X.A.) and Department of Pharmacology (E.F.R.P., E.X.A.), University of Maryland School of Medicine, Baltimore, Maryland; and Countervail Corp., Charlotte, North Carolina (G.W.B.)
| | - D'Arice Carter
- Division of Translational Toxicology, Department of Epidemiology and Public Health (M.L., D.C., J.D.P., Y.A., W.P.F., E.F.R.P., E.X.A.) and Department of Pharmacology (E.F.R.P., E.X.A.), University of Maryland School of Medicine, Baltimore, Maryland; and Countervail Corp., Charlotte, North Carolina (G.W.B.)
| | - Joseph D Pescrille
- Division of Translational Toxicology, Department of Epidemiology and Public Health (M.L., D.C., J.D.P., Y.A., W.P.F., E.F.R.P., E.X.A.) and Department of Pharmacology (E.F.R.P., E.X.A.), University of Maryland School of Medicine, Baltimore, Maryland; and Countervail Corp., Charlotte, North Carolina (G.W.B.)
| | - Yasco Aracava
- Division of Translational Toxicology, Department of Epidemiology and Public Health (M.L., D.C., J.D.P., Y.A., W.P.F., E.F.R.P., E.X.A.) and Department of Pharmacology (E.F.R.P., E.X.A.), University of Maryland School of Medicine, Baltimore, Maryland; and Countervail Corp., Charlotte, North Carolina (G.W.B.)
| | - William P Fawcett
- Division of Translational Toxicology, Department of Epidemiology and Public Health (M.L., D.C., J.D.P., Y.A., W.P.F., E.F.R.P., E.X.A.) and Department of Pharmacology (E.F.R.P., E.X.A.), University of Maryland School of Medicine, Baltimore, Maryland; and Countervail Corp., Charlotte, North Carolina (G.W.B.)
| | - G William Basinger
- Division of Translational Toxicology, Department of Epidemiology and Public Health (M.L., D.C., J.D.P., Y.A., W.P.F., E.F.R.P., E.X.A.) and Department of Pharmacology (E.F.R.P., E.X.A.), University of Maryland School of Medicine, Baltimore, Maryland; and Countervail Corp., Charlotte, North Carolina (G.W.B.)
| | - Edna F R Pereira
- Division of Translational Toxicology, Department of Epidemiology and Public Health (M.L., D.C., J.D.P., Y.A., W.P.F., E.F.R.P., E.X.A.) and Department of Pharmacology (E.F.R.P., E.X.A.), University of Maryland School of Medicine, Baltimore, Maryland; and Countervail Corp., Charlotte, North Carolina (G.W.B.)
| | - Edson X Albuquerque
- Division of Translational Toxicology, Department of Epidemiology and Public Health (M.L., D.C., J.D.P., Y.A., W.P.F., E.F.R.P., E.X.A.) and Department of Pharmacology (E.F.R.P., E.X.A.), University of Maryland School of Medicine, Baltimore, Maryland; and Countervail Corp., Charlotte, North Carolina (G.W.B.)
| |
Collapse
|
5
|
Prophylactic potential of memantine against soman poisoning in rats. Toxicology 2019; 416:62-74. [DOI: 10.1016/j.tox.2019.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 11/19/2022]
|
6
|
Niessen K, Seeger T, Rappenglück S, Wein T, Höfner G, Wanner K, Thiermann H, Worek F. In vitro pharmacological characterization of the bispyridinium non-oxime compound MB327 and its 2- and 3-regioisomers. Toxicol Lett 2018; 293:190-197. [DOI: 10.1016/j.toxlet.2017.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/29/2017] [Accepted: 10/08/2017] [Indexed: 11/27/2022]
|
7
|
Mamczarz J, Pescrille JD, Gavrushenko L, Burke RD, Fawcett WP, DeTolla LJ, Chen H, Pereira EFR, Albuquerque EX. Spatial learning impairment in prepubertal guinea pigs prenatally exposed to the organophosphorus pesticide chlorpyrifos: Toxicological implications. Neurotoxicology 2016; 56:17-28. [PMID: 27296654 DOI: 10.1016/j.neuro.2016.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/09/2016] [Accepted: 06/09/2016] [Indexed: 11/17/2022]
Abstract
Exposure of the developing brain to chlorpyrifos (CPF), an organophosphorus (OP) pesticide used extensively in agriculture worldwide, has been associated with increased prevalence of cognitive deficits in children, particularly boys. The present study was designed to test the hypothesis that cognitive deficits induced by prenatal exposure to sub-acute doses of CPF can be reproduced in precocial small species. To address this hypothesis, pregnant guinea pigs were injected daily with CPF (25mg/kg,s.c.) or vehicle (peanut oil) for 10days starting on presumed gestation day (GD) 53-55. Offspring were born around GD 65, weaned on postnatal day (PND) 20, and subjected to behavioral tests starting around PND 30. On the day of birth, butyrylcholinesterase (BuChE), an OP bioscavenger used as a biomarker of OP exposures, and acetylcholinesterase (AChE), a major molecular target of OP compounds, were significantly inhibited in the blood of CPF-exposed offspring. In their brains, BuChE, but not AChE, was significantly inhibited. Prenatal CPF exposure had no significant effect on locomotor activity or on locomotor habituation, a form of non-associative memory assessed in open fields. Spatial navigation in the Morris water maze (MWM) was found to be sexually dimorphic among guinea pigs, with males outperforming females. Prenatal CPF exposure impaired spatial learning more significantly among male than female guinea pigs and, consequently, reduced the sexual dimorphism of the task. The results presented here, which strongly support the test hypothesis, reveal that the guinea pig is a valuable animal model for preclinical assessment of the developmental neurotoxicity of OP pesticides. These findings are far reaching as they lay the groundwork for future studies aimed at identifying therapeutic interventions to treat and/or prevent the neurotoxic effects of CPF in the developing brain.
Collapse
Affiliation(s)
- Jacek Mamczarz
- Division of Translational Toxicology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Joseph D Pescrille
- Division of Translational Toxicology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Lisa Gavrushenko
- Division of Translational Toxicology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Richard D Burke
- Division of Translational Toxicology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - William P Fawcett
- Division of Translational Toxicology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Louis J DeTolla
- Program of Comparative Medicine and Departments of Pathology and Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Hegang Chen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Edna F R Pereira
- Division of Translational Toxicology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Edson X Albuquerque
- Division of Translational Toxicology, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| |
Collapse
|
8
|
Aroniadou-Anderjaska V, Figueiredo TH, Apland JP, Prager EM, Pidoplichko VI, Miller SL, Braga MFM. Long-term neuropathological and behavioral impairments after exposure to nerve agents. Ann N Y Acad Sci 2016; 1374:17-28. [PMID: 27002925 DOI: 10.1111/nyas.13028] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/15/2016] [Accepted: 01/25/2016] [Indexed: 01/11/2023]
Abstract
One of the deleterious effects of acute nerve agent exposure is the induction of status epilepticus (SE). If SE is not controlled effectively, it causes extensive brain damage. Here, we review the neuropathology observed after nerve agent-induced SE, as well as the ensuing pathophysiological, neurological, and behavioral alterations, with an emphasis on their time course and longevity. Limbic structures are particularly vulnerable to damage by nerve agent exposure. The basolateral amygdala (BLA), which appears to be a key site for seizure initiation upon exposure, suffers severe neuronal loss; however, GABAergic BLA interneurons display a delayed death, perhaps providing a window of opportunity for rescuing intervention. The end result is a long-term reduction of GABAergic activity in the BLA, with a concomitant increase in spontaneous excitatory activity; such pathophysiological alterations are not observed in the CA1 hippocampal area, despite the extensive neuronal loss. Hyperexcitability in the BLA may be at least in part responsible for the development of recurrent seizures and increased anxiety, while hippocampal damage may underlie the long-term memory impairments. Effective control of SE after nerve agent exposure, such that brain damage is also minimized, is paramount for preventing lasting neurological and behavioral deficits.
Collapse
Affiliation(s)
- Vassiliki Aroniadou-Anderjaska
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Taiza H Figueiredo
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - James P Apland
- Neurotoxicology Branch, United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland
| | - Eric M Prager
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Volodymyr I Pidoplichko
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Steven L Miller
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Maria F M Braga
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
9
|
Smith C, Lee R, Moran A, Sipos M. Repeated low-dose exposures to sarin, soman, or VX affect acoustic startle in guinea pigs. Neurotoxicol Teratol 2016; 54:36-45. [DOI: 10.1016/j.ntt.2016.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/21/2015] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
|
10
|
Mullins RJ, Xu S, Pereira EFR, Pescrille JD, Todd SW, Mamczarz J, Albuquerque EX, Gullapalli RP. Prenatal exposure of guinea pigs to the organophosphorus pesticide chlorpyrifos disrupts the structural and functional integrity of the brain. Neurotoxicology 2015; 48:9-20. [PMID: 25704171 DOI: 10.1016/j.neuro.2015.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 02/11/2015] [Accepted: 02/11/2015] [Indexed: 11/25/2022]
Abstract
This study was designed to test the hypothesis that prenatal exposure of guinea pigs to the organophosphorus (OP) pesticide chlorpyrifos (CPF) disrupts the structural and functional integrity of the brain. Pregnant guinea pigs were injected with chlorpyrifos (25 mg/kg, s.c.) or vehicle (peanut oil) once per day for 10 consecutive days, starting approximately on the 50th day of gestation. Cognitive behavior of female offspring was examined starting at 40-45 post-natal days (PND) using the Morris water maze (MWM), and brain structural integrity was analyzed at PND 70 using magnetic resonance imaging (MRI) methods, including T2-weighted anatomical scans and diffusion kurtosis imaging (DKI). The offspring of exposed mothers had significantly decreased body weight and brain volume, particularly in the frontal regions of the brain including the striatum. Furthermore, the offspring demonstrated significant spatial learning deficits in MWM recall compared to the vehicle group. Diffusion measures revealed reduced white matter integrity within the striatum and amygdala that correlated with spatial learning performance. These findings reveal the lasting effect of prenatal exposure to CPF as well as the danger of mother to child transmission of CPF in the environment.
Collapse
Affiliation(s)
- Roger J Mullins
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Su Xu
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Core for Translational Research in Imaging, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Edna F R Pereira
- Division of Translational Toxicology, Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Joseph D Pescrille
- Division of Translational Toxicology, Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Spencer W Todd
- Division of Translational Toxicology, Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Jacek Mamczarz
- Division of Translational Toxicology, Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Edson X Albuquerque
- Division of Translational Toxicology, Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Rao P Gullapalli
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Core for Translational Research in Imaging, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| |
Collapse
|
11
|
Pereira EFR, Aracava Y, DeTolla LJ, Beecham EJ, Basinger GW, Wakayama EJ, Albuquerque EX. Animal models that best reproduce the clinical manifestations of human intoxication with organophosphorus compounds. J Pharmacol Exp Ther 2014; 350:313-21. [PMID: 24907067 PMCID: PMC4109493 DOI: 10.1124/jpet.114.214932] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 06/05/2014] [Indexed: 01/14/2023] Open
Abstract
The translational capacity of data generated in preclinical toxicological studies is contingent upon several factors, including the appropriateness of the animal model. The primary objectives of this article are: 1) to analyze the natural history of acute and delayed signs and symptoms that develop following an acute exposure of humans to organophosphorus (OP) compounds, with an emphasis on nerve agents; 2) to identify animal models of the clinical manifestations of human exposure to OPs; and 3) to review the mechanisms that contribute to the immediate and delayed OP neurotoxicity. As discussed in this study, clinical manifestations of an acute exposure of humans to OP compounds can be faithfully reproduced in rodents and nonhuman primates. These manifestations include an acute cholinergic crisis in addition to signs of neurotoxicity that develop long after the OP exposure, particularly chronic neurologic deficits consisting of anxiety-related behavior and cognitive deficits, structural brain damage, and increased slow electroencephalographic frequencies. Because guinea pigs and nonhuman primates, like humans, have low levels of circulating carboxylesterases-the enzymes that metabolize and inactivate OP compounds-they stand out as appropriate animal models for studies of OP intoxication. These are critical points for the development of safe and effective therapeutic interventions against OP poisoning because approval of such therapies by the Food and Drug Administration is likely to rely on the Animal Efficacy Rule, which allows exclusive use of animal data as evidence of the effectiveness of a drug against pathologic conditions that cannot be ethically or feasibly tested in humans.
Collapse
Affiliation(s)
- Edna F R Pereira
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - Yasco Aracava
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - Louis J DeTolla
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - E Jeffrey Beecham
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - G William Basinger
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - Edgar J Wakayama
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - Edson X Albuquerque
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| |
Collapse
|
12
|
Galantamine prevents long-lasting suppression of excitatory synaptic transmission in CA1 pyramidal neurons of soman-challenged guinea pigs. Neurotoxicology 2014; 44:270-8. [PMID: 25064080 DOI: 10.1016/j.neuro.2014.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/08/2014] [Accepted: 07/15/2014] [Indexed: 12/27/2022]
Abstract
Galantamine, a drug currently approved for the treatment of Alzheimer's disease, has recently emerged as an effective pretreatment against the acute toxicity and delayed cognitive deficits induced by organophosphorus (OP) nerve agents, including soman. Since cognitive deficits can result from impaired glutamatergic transmission in the hippocampus, the present study was designed to test the hypothesis that hippocampal glutamatergic transmission declines following an acute exposure to soman and that this effect can be prevented by galantamine. To test this hypothesis, spontaneous excitatory postsynaptic currents (EPSCs) were recorded from CA1 pyramidal neurons in hippocampal slices obtained at 1h, 24h, or 6-9 days after guinea pigs were injected with: (i) 1×LD50 soman (26.3μg/kg, s.c.); (ii) galantamine (8mg/kg, i.m.) followed 30min later by 1×LD50 soman, (iii) galantamine (8mg/kg, i.m.), or (iv) saline (0.5ml/kg, i.m.). In soman-injected guinea pigs that were not pretreated with galantamine, the frequency of EPSCs was significantly lower than that recorded from saline-injected animals. There was no correlation between the severity of soman-induced acute toxicity and the magnitude of soman-induced reduction of EPSC frequency. Pretreatment with galantamine prevented the reduction of EPSC frequency observed at 6-9 days after the soman challenge. Prevention of soman-induced long-lasting reduction of hippocampal glutamatergic synaptic transmission may be an important determinant of the ability of galantamine to counter cognitive deficits that develop long after an acute exposure to the nerve agent.
Collapse
|
13
|
Mullins RJ, Xu S, Pereira EFR, Mamczarz J, Albuquerque EX, Gullapalli RP. Delayed hippocampal effects from a single exposure of prepubertal guinea pigs to sub-lethal dose of chlorpyrifos: a magnetic resonance imaging and spectroscopy study. Neurotoxicology 2013; 36:42-8. [PMID: 23411083 DOI: 10.1016/j.neuro.2013.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 01/29/2013] [Accepted: 02/03/2013] [Indexed: 01/09/2023]
Abstract
This study was designed to test the hypothesis that in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS) can detect in adulthood the neurotoxic effects of a single exposure of prepubertal guinea pigs to the organophosphorus pesticide chlorpyrifos. Twelve female guinea pigs were given either a single dose of chlorpyrifos (0.6×LD50 or 300mg/kg, sc) or peanut oil (vehicle; 0.5ml/kg, sc) at 35-40 days of age. One year after the exposure, the animals were tested in the Morris water maze. Three days after the end of the behavioral testing, the metabolic and structural integrity of the brain of the animals was examined by means of MRI/MRS. In the Morris water maze, the chlorpyrifos-exposed guinea pigs showed significant memory deficit. Although no significant anatomical differences were found between the chlorpyrifos-exposed guinea pigs and the control animals by in vivo MRI, the chlorpyrifos-exposed animals showed significant decreases in hippocampal myo-inositol concentration using MRS. The present results indicate that a single sub-lethal exposure of prepubertal guinea pigs to the organophosphorus pesticide chlorpyrifos can lead to long-term memory deficits that are accompanied by significant reductions in the levels of hippocampal myo-inositol.
Collapse
Affiliation(s)
- Roger J Mullins
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | | | | | | | | | | |
Collapse
|