1
|
Jonnalagadda SK, Duan L, Dow LF, Boligala GP, Kosmacek E, McCoy K, Oberley-Deegan R, Chhonker YS, Murry DJ, Reynolds CP, Maurer BJ, Penning TM, Trippier PC. Coumarin-Based Aldo-Keto Reductase Family 1C (AKR1C) 2 and 3 Inhibitors. ChemMedChem 2024; 19:e202400081. [PMID: 38976686 PMCID: PMC11537819 DOI: 10.1002/cmdc.202400081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
A series of 7-substituted coumarin derivatives have been characterized as pan-aldo-keto reductase family 1C (AKR1C) inhibitors. The AKR1C family of enzymes are overexpressed in numerous cancers where they are involved in drug resistance development. 7-hydroxy coumarin ethyl esters and their corresponding amides have high potency for AKR1C3 and AKR1C2 inhibition. Coumarin amide 3 a possessed IC50 values of 50 nM and 90 nM for AKR1C3 and AKR1C2, respectively, and exhibits 'drug-like' metabolic stability and half-life in human and mouse liver microsomes and plasma. Compound 3 a was employed as a chemical tool to determine pan-AKR1C2/3 inhibition effects both as a radiation sensitizer and as a potentiator of chemotherapy cytotoxicity. In contrast to previously reported pan-AKR1C inhibitors, 3 a demonstrated no radiation sensitization effect in a radiation-resistant prostate cancer cell line model. Pan-AKR1C inhibition also did not potentiate the in vitro cytotoxicity of ABT-737, daunorubicin or dexamethasone, in two patient-derived T-cell ALL and pre-B-cell ALL cell lines. In contrast, a highly selective AKR1C3 inhibitor, compound K90, enhanced the cytotoxicity of both ABT-737 and daunorubicin in the T-cell ALL cell line model. Thus, the inhibitory profile required to enhance chemotherapeutic cytotoxicity in leukemia may be AKR1C isoform and drug specific.
Collapse
Affiliation(s)
- Sravan K. Jonnalagadda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Ling Duan
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Louise F. Dow
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Geetha P Boligala
- School of Medicine Cancer Center, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, United States
| | - Elizabeth Kosmacek
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Kristyn McCoy
- School of Medicine Cancer Center, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, United States
| | - Rebecca Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Yashpal Singh Chhonker
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68106, USA
| | - Darryl J. Murry
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68106, USA
- UNMC Center for Drug Design and Innovation, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - C. Patrick Reynolds
- School of Medicine Cancer Center, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, United States
| | - Barry J. Maurer
- School of Medicine Cancer Center, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, United States
| | - Trevor M. Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Paul C. Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
- UNMC Center for Drug Design and Innovation, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| |
Collapse
|
2
|
Pippione A, Vigato C, Tucciarello C, Hussain S, Salladini E, Truong HH, Henriksen NM, Vanzetti G, Giordano G, Zonari D, Mirza OA, Frydenvang K, Pignochino Y, Oliaro-Bosso S, Boschi D, Lolli ML. AI Based Discovery of a New AKR1C3 Inhibitor for Anticancer Applications. ACS Med Chem Lett 2024; 15:1269-1278. [PMID: 39140045 PMCID: PMC11318022 DOI: 10.1021/acsmedchemlett.4c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 08/15/2024] Open
Abstract
AKR1C3 is an upregulated enzyme in prostate and other cancers; in addition to regulating hormone synthesis, this enzyme is thought to play a role in the aggressiveness of tumors and in the defense against drugs. We here used an unbiased method to discover new potent AKR1C3 inhibitors: through an AI-based virtual drug screen, compound 4 was identified as a potent and selective enzymatic inhibitor able to translate this activity into a pronounced antiproliferative effect in the 22RV1 prostate cancer cell model. As other known AKR1C3 inhibitors, compound 4 determined a significantly increased activity of abiraterone, a drug approved for advanced prostate cancer. Compound 4 also showed a synergic effect with doxorubicin in osteosarcoma cell lines; specifically, the effect is correlated with AKR1C3 expression. In this research work, therefore, the use of AI allowed the identification of a new structure as an AKR1C3 inhibitor and its potential to enhance the effect of chemotherapeutics.
Collapse
Affiliation(s)
- Agnese
C. Pippione
- Department
of Science and Drug Technology, University
of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Chiara Vigato
- Department
of Science and Drug Technology, University
of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Cristina Tucciarello
- Candiolo
Cancer Institute, FPO-IRCCS, str. Prov 142 km 3.95, 10060 Candiolo, Turin, Italy
- Department
of Clinical and Biological Sciences, University
of Turin, Regione Gonzole 10, 10143 Orbassano, Italy
| | - Samrina Hussain
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Jagtvej 162 DK-2100 Copenhagen, Denmark
| | - Edoardo Salladini
- Department
of Science and Drug Technology, University
of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Ha H. Truong
- Atomwise,
Inc, 250 Sutter St, Suite 650, San Francisco, California 94103, United States
| | - Niel M. Henriksen
- Atomwise,
Inc, 250 Sutter St, Suite 650, San Francisco, California 94103, United States
| | - Gaia Vanzetti
- Department
of Science and Drug Technology, University
of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Giorgia Giordano
- Candiolo
Cancer Institute, FPO-IRCCS, str. Prov 142 km 3.95, 10060 Candiolo, Turin, Italy
- Department
of Oncology, University of Turin, str. Prov 142 km 3.95, 10060 Candiolo, Turin, Italy
| | - Daniele Zonari
- Department
of Science and Drug Technology, University
of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Osman Asghar Mirza
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Jagtvej 162 DK-2100 Copenhagen, Denmark
| | - Karla Frydenvang
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Jagtvej 162 DK-2100 Copenhagen, Denmark
| | - Ymera Pignochino
- Candiolo
Cancer Institute, FPO-IRCCS, str. Prov 142 km 3.95, 10060 Candiolo, Turin, Italy
- Department
of Clinical and Biological Sciences, University
of Turin, Regione Gonzole 10, 10143 Orbassano, Italy
| | - Simonetta Oliaro-Bosso
- Department
of Science and Drug Technology, University
of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Donatella Boschi
- Department
of Science and Drug Technology, University
of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Marco L. Lolli
- Department
of Science and Drug Technology, University
of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| |
Collapse
|
3
|
Lin Z, Cheng X, Zheng H. Umbelliferon: a review of its pharmacology, toxicity and pharmacokinetics. Inflammopharmacology 2023:10.1007/s10787-023-01256-3. [PMID: 37308634 DOI: 10.1007/s10787-023-01256-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023]
Abstract
Coumarin, a plant secondary metabolite, has various pharmacological activities, including antioxidant stress and anti-inflammatory effects. Umbelliferone, a common coumarin compound found in almost all higher plants, has been extensively studied for its pharmacological effects in different disease models and doses with complex action mechanisms. This review aims to summarize these studies and provide useful information to relevant scholars. The pharmacological studies demonstrate that umbelliferone has diverse effects such as anti-diabetes, anti-cancer, anti-infection, anti-rheumatoid arthritis, neuroprotection, and improvement of liver, kidney, and myocardial tissue damage. The action mechanisms of umbelliferone include inhibition of oxidative stress, inflammation, and apoptosis, improvement of insulin resistance, myocardial hypertrophy, and tissue fibrosis, in addition to regulation of blood glucose and lipid metabolism. Among the action mechanisms, the inhibition of oxidative stress and inflammation is the most critical. In short, these pharmacological studies disclose that umbelliferone is expected to treat many diseases, and more research should be conducted.
Collapse
Affiliation(s)
- Zhi Lin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People's Republic of China
| | - Xi Cheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People's Republic of China
| | - Hui Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People's Republic of China.
| |
Collapse
|
4
|
Lipid peroxidation in brain tumors. Neurochem Int 2021; 149:105118. [PMID: 34197897 DOI: 10.1016/j.neuint.2021.105118] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/15/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022]
Abstract
There is a lot of evidence showing that lipid peroxidation plays very important role in development of various diseases, including neurodegenerative diseases and brain tumors. Lipid peroxidation is achieved by two main pathways, by enzymatic or by non-enzymatic oxidation, respectively. In this paper, we focus on non-enzymatic, self-catalyzed chain reaction of poly-unsaturated fatty acid (PUFA) peroxidation generating reactive aldehydes, notably 4-hydroxynonenal (4-HNE), which acts as second messenger of free radicals and as growth regulating factor. It might originate from astrocytes as well as from blood vessels, even within the blood-brain barrier (BBB), which is in case of brain tumors transformed into the blood-brain-tumor barrier (BBTB). The functionality of the BBB is strongly affected by 4-HNE because it forms relatively stable protein adducts thus allowing the persistence and the spread of lipid peroxidation, as revealed by immunohistochemical findings. Because 4-HNE can act as a regulator of vital functions of normal and of malignant cells acting in the cell type- and concentration-dependent manners, the bioactivities of this product of lipid peroxidation be should further studied to reveal if it acts as a co-factor of carcinogenesis or as natural factor of defense against primary brain tumors and metastatic cancer.
Collapse
|
5
|
Nischitha R, Shivanna MB. Antimicrobial activity and metabolite profiling of endophytic fungi in Digitaria bicornis (Lam) Roem. and Schult. and Paspalidium flavidum (Retz.) A. Camus. 3 Biotech 2021; 11:53. [PMID: 33489672 DOI: 10.1007/s13205-020-02590-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/03/2020] [Indexed: 11/29/2022] Open
Abstract
Endophytic fungal occurrences were studied in aerial regions of Digitaria bicornis and Paspalidium flavidum by three isolation methods: potato dextrose agar (PDA), malt extract agar (MEA), and moist blotters. Seventy species of 29 genera of endophytic fungi in D. bicornis and 71 species of 30 genera in P. flavidum were documented. Endophytic fungal communities were grouped into 40 and 43 anamorphic ascomycetes (21 and 23 genera) and 20 teleomorphic ascomycetes (6 and 7 genera) in D. bicornis and P. flavidum, respectively. PDA supported the expression of larger number of fungal communities than MEA and MB; and P. flavidum hosted more number of endophytic fungi than D. bicornis. Seasons played an important role in supporting the assemblage of fungal endophytes. Endophytic fungal species richness and assemblages in plant regions were determined for alpha, beta, and gamma diversities. The ethyl acetate followed by methanolic extracts of certain fungal species showed good antagonistic and antibacterial activities. Among fungal endophytes, Curvularia protuberata and Penicillium citrinum exhibited high antagonistic and antibacterial activities. The high-resolution orbitrap liquid chromatography-mass spectrometry of ethyl acetate crude extracts of C. protuberata and P. citrinum revealed the presence of antifungal and antimicrobial, besides a host of compounds in the extracts. The present study indicated that grass endophytes are the sources of compounds with antimicrobial and other pharmacological activities.
Collapse
Affiliation(s)
- R Nischitha
- Department of PG Studies and Research in Applied Botany, School of Biosciences, Kuvempu University, Jnana Sahyadri 577 451, Shimoga, Shankaraghatta India
| | - M B Shivanna
- Department of PG Studies and Research in Applied Botany, School of Biosciences, Kuvempu University, Jnana Sahyadri 577 451, Shimoga, Shankaraghatta India
| |
Collapse
|
6
|
Sumorek-Wiadro J, Zając A, Bądziul D, Langner E, Skalicka-Woźniak K, Maciejczyk A, Wertel I, Rzeski W, Jakubowicz-Gil J. Coumarins modulate the anti-glioma properties of temozolomide. Eur J Pharmacol 2020; 881:173207. [PMID: 32446712 DOI: 10.1016/j.ejphar.2020.173207] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
Abstract
In the recent years, coumarin bioactive compounds have been identified to posess anticancer properties. Therefore, the aim of the present study was to investigate for the first time the efficacy of osthole, umbelliferone, esculin, and 4-hydroxycoumarin, alone and in combination with Temozolomide, in the elimination of deadly brain tumors, anaplastic astrocytoma (AA) and glioblastoma multiforme (GBM) cells via programmed death. Our results indicated that osthole, umbelliferone, esculin, and 4-hydroxycoumarin initiated mainly apoptosis in the T98G and MOGGCCM cells. Osthole was the most effective. It also initiated autophagy in a small percentage of the cell population. The co-incubation with Temozolomide did not increase the pro-apoptotic potential of natural compounds but decreased the level of autophagy in the T98G cells. Apoptosis was associated with reduced mitochondrial membrane potential, activation of caspase 3, inhibition of Bcl-2 expression and the presence of a Bcl-2/Beclin 1. Blocking of Bcl-2 expression resulted in promotion of apoptosis, but not autophagy, in the MOGGCCM and T98G lines. It also sensitized astrocytoma cells, but not GBM, to the combined osthole and TMZ treatment, which was correlated with a reduced level of Beclin 1 and increased expression of caspase 3. Osthole and TMZ, alone and in combination, inhibited the migratory phenotype of the GBM and AA cells. In summary, our results indicated that osthole effectively eliminated glioma cells via apoptosis, what was correlated with Bcl-2/Beclin 1 complex formation. Considering the anti-migratory effect, osthole and Temozolomide display antiglioma potential but it needs further extensive studies.
Collapse
Affiliation(s)
- Joanna Sumorek-Wiadro
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Adrian Zając
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Dorota Bądziul
- Department of Biology, Institute of Medical Sciences, Medical College of Rzeszow University, Rejtana 16 C, 35-959, Rzeszów, Poland.
| | - Ewa Langner
- Department of Medical Biology, Institute of Agricultural Medicine, Jaczewskiego 2, 20-950, Lublin, Poland.
| | - Krystyna Skalicka-Woźniak
- Independent Laboratory of Natural Products Chemistry, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland.
| | - Aleksandra Maciejczyk
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Iwona Wertel
- Independent Laboratory of Cancer Diagnostics and Immunology, 1st Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Staszica 16, 20-081, Lublin, Poland.
| | - Wojciech Rzeski
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland; Department of Medical Biology, Institute of Agricultural Medicine, Jaczewskiego 2, 20-950, Lublin, Poland.
| | - Joanna Jakubowicz-Gil
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland.
| |
Collapse
|
7
|
Hajeyah AA, Griffiths WJ, Wang Y, Finch AJ, O’Donnell VB. The Biosynthesis of Enzymatically Oxidized Lipids. Front Endocrinol (Lausanne) 2020; 11:591819. [PMID: 33329396 PMCID: PMC7711093 DOI: 10.3389/fendo.2020.591819] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Enzymatically oxidized lipids are a specific group of biomolecules that function as key signaling mediators and hormones, regulating various cellular and physiological processes from metabolism and cell death to inflammation and the immune response. They are broadly categorized as either polyunsaturated fatty acid (PUFA) containing (free acid oxygenated PUFA "oxylipins", endocannabinoids, oxidized phospholipids) or cholesterol derivatives (oxysterols, steroid hormones, and bile acids). Their biosynthesis is accomplished by families of enzymes that include lipoxygenases (LOX), cyclooxygenases (COX), cytochrome P450s (CYP), and aldo-keto reductases (AKR). In contrast, non-enzymatically oxidized lipids are produced by uncontrolled oxidation and are broadly considered to be harmful. Here, we provide an overview of the biochemistry and enzymology of LOXs, COXs, CYPs, and AKRs in humans. Next, we present biosynthetic pathways for oxylipins, oxidized phospholipids, oxysterols, bile acids and steroid hormones. Last, we address gaps in knowledge and suggest directions for future work.
Collapse
Affiliation(s)
- Ali A. Hajeyah
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
- *Correspondence: Ali A. Hajeyah,
| | - William J. Griffiths
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Yuqin Wang
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Andrew J. Finch
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Valerie B. O’Donnell
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
8
|
Rajib SA, Sharif Siam MK. Characterization and Analysis of Mammalian AKR7A Gene Promoters: Implications for Transcriptional Regulation. Biochem Genet 2019; 58:171-188. [PMID: 31529389 DOI: 10.1007/s10528-019-09936-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 09/03/2019] [Indexed: 01/14/2023]
Abstract
Aldo-keto reductase (AKR) superfamily is responsible for preventing mammalian cells from the toxic and carcinogenic effect of different genotoxic and non-genotoxic chemicals by reducing them, though the inducibility of these genes are different in different species. The aim of this paper is to compare the gene regulation mechanisms of AKR superfamily genes in different species and to identify the conserved areas, which are responsible for gene regulations in the presence of antioxidant, toxicants, and non-genotoxic carcinogens. At the beginning of the analysis AKR genes found in different species were divided into two groups based on their amino acid sequence similarities. Comparison of AKR7A gene clusters between different species revealed that Human AKR7A2 has orthologues in mammalians like rat, mouse, pigs, and other primates. On the other hand, AKR7A3 has orthologues only in rat and AKR7L is present only in primates. All the genes of AKR superfamily have a trend to stay in clusters in mammalian chromosomes having repeated sequences in between them. Transcription start site analysis revealed that genes like human AKR7A2 and rat Akr7a4 do not have conventional promoter regions such as TATA box, CAAT box and have several GC-rich regions, whereas gene like Akr7a1 contains a TATA box 25 bp upstream of transcription start site instead of having CpG islands. Putative orthologous genes i.e., rat AKR7A4, human AKR7A2, and mouse AKR7A5 share more common features such as common transcription factor binding site for specificity protein 1 (SP1), GATA binding factor family, Selenocysteine tRNA gene transcription activating factor (STAF) zinc finger protein, Krüppel-like C2H2 zinc finger (HICF) protein, negative glucocorticoid response element (NGRE) etc. Similarly, genes like rat AKR7A1, human AKR7A3, and human AKR7L share common sequence and transcription factor binding sites. Among those, Nuclear factor erythroid 2-related factor 2 (Nrf2) is thought to be responsible for the inducibility of these genes in the presence of antioxidants. Our analysis revealed that AKR7A gene family consists of genes having a large number of variations in them. Some of these, such as AKR7A2 are housekeeping genes, on the other hand, genes like AKR7A3 are highly inducible in the presence of antioxidants because of the presence of Nrf2 binding site in their promoter. AKR7A1 has a different promoter than others and function of AKR7L gene is still unknown.
Collapse
Affiliation(s)
- Samiul Alam Rajib
- Department of Pharmacy, Brac University, 41, Pacific Tower, Mohakhali, Dhaka, 1212, Bangladesh.
| | - Mohammad Kawsar Sharif Siam
- Department of Pharmacy, Brac University, 41, Pacific Tower, Mohakhali, Dhaka, 1212, Bangladesh.,Darwin College, University of Cambridge, Silver Street, Cambridge, CB3 9EU, UK
| |
Collapse
|
9
|
Li D, Gu Z, Zhang J, Ma S. Protective effect of inducible aldo-keto reductases on 4-hydroxynonenal- induced hepatotoxicity. Chem Biol Interact 2019; 304:124-130. [PMID: 30849339 DOI: 10.1016/j.cbi.2019.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/17/2019] [Accepted: 02/14/2019] [Indexed: 12/30/2022]
Abstract
4-Hydroxynonenal (HNE), an end-product of lipid peroxidation generated in response to oxidative stress, has been implicated in the pathophysiology of chronic liver diseases. HNE is very reactive that forms Michael adducts with nucleophilic sites in DNA, lipids and proteins. At high concentrations, HNE causes rapid cell death associated with depletion of sulfhydryl groups and inhibition of key metabolic enzymes. At low concentrations, HNE stimulates expression of genes that are part of an adaptive response. In this study, we show that sub-lethal concentrations of HNE induce mRNA expression levels of heme oxygenase-1 (HO-1) (2.5-fold), NADPH:quinone oxidoreductase (NQO1) (4.5-fold), AKR1C3 (2-fold) and AKR7A2 (3-fold) enzymes. Protein expression levels of AKR1C and AKR7A2 are induced by 2- and 1.5-fold following exposure to HNE. The role of AKR1C3 and AKR7A2 in protecting HepG2 cells against HNE toxicity was investigated through using RNAi. Results show that AKR7A2, but not AKR1C3 contributes to the protection against HNE toxicity in HepG2 cells. Moreover, transcriptional factor nuclear factor erythroid 2 p45-related factor 2 (Nrf2) is activated by HNE through translocation to the nucleus. Overexpressing AKR7A2 could rescue the effect of knocking down Nrf2 on HNE-induced cytotoxicity. Furthermore, a natural compound 7-hydroxycoumain, an AKR7A2 inducer, shows hepatoprotection against HNE via AKR7A2 induction. Hence, the inducible AKR7A2 has provided a new therapeutic target to treat chronic liver disease.
Collapse
Affiliation(s)
- Dan Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Zhuoliang Gu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jingdong Zhang
- Department of Medical Oncology, Cancer Hospital of China Medical University, China Medical University, Shenyang, 110001, China
| | - Shuren Ma
- Department of Endoscope, The General Hospital of Shenyang Military Region, Shenyang, 110016, China
| |
Collapse
|
10
|
Abstract
Background Despite chemotherapy intensification, a subgroup of high-risk paediatric T-cell acute lymphoblastic leukemia (T-ALL) patients still experience treatment failure. In this context, we hypothesised that therapy resistance in T-ALL might involve aldo-keto reductase 1C (AKR1C) enzymes as previously reported for solid tumors. Methods Expression of NRF2-AKR1C signaling components has been analysed in paediatric T-ALL samples endowed with different treatment outcomes as well as in patient-derived xenografts of T-ALL. The effects of AKR1C enzyme modulation has been investigated in T-ALL cell lines and primary cultures by combining AKR1C inhibition, overexpression, and gene silencing approaches. Results We show that T-ALL cells overexpress AKR1C1-3 enzymes in therapy-resistant patients. We report that AKR1C1-3 enzymes play a role in the response to vincristine (VCR) treatment, also ex vivo in patient-derived xenografts. Moreover, we demonstrate that the modulation of AKR1C1-3 levels is sufficient to sensitise T-ALL cells to VCR. Finally, we show that T-ALL chemotherapeutics induce overactivation of AKR1C enzymes independent of therapy resistance, thus establishing a potential resistance loop during T-ALL combination treatment. Conclusions Here, we demonstrate that expression and activity of AKR1C enzymes correlate with response to chemotherapeutics in T-ALL, posing AKR1C1-3 as potential targets for combination treatments during T-ALL therapy.
Collapse
|
11
|
Li D, Wang N, Zhang J, Ma S, Zhao Z, Ellis EM. Hepatoprotective effect of 7-Hydroxycoumarin against Methyl glyoxal toxicity via activation of Nrf2. Chem Biol Interact 2017; 276:203-209. [DOI: 10.1016/j.cbi.2017.02.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 01/11/2023]
|
12
|
Singh M, Kapoor A, Bhatnagar A. Oxidative and reductive metabolism of lipid-peroxidation derived carbonyls. Chem Biol Interact 2015; 234:261-73. [PMID: 25559856 DOI: 10.1016/j.cbi.2014.12.028] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/16/2014] [Accepted: 12/19/2014] [Indexed: 12/13/2022]
Abstract
Extensive research has shown that increased production of reactive oxygen species (ROS) results in tissue injury under a variety of pathological conditions and chronic degenerative diseases. While ROS are highly reactive and can incite significant injury, polyunsaturated lipids in membranes and lipoproteins are their main targets. ROS-triggered lipid-peroxidation reactions generate a range of reactive carbonyl species (RCS), and these RCS spread and amplify ROS-related injury. Several RCS generated in oxidizing lipids, such as 4-hydroxy trans-2-nonenal (HNE), 4-oxo-2-(E)-nonenal (ONE), acrolein, malondialdehyde (MDA) and phospholipid aldehydes have been shown to be produced under conditions of oxidative stress and contribute to tissue injury and dysfunction by depleting glutathione and other reductants leading to the modification of proteins, lipids, and DNA. To prevent tissue injury, these RCS are metabolized by several oxidoreductases, including members of the aldo-keto reductase (AKR) superfamily, aldehyde dehydrogenases (ALDHs), and alcohol dehydrogenases (ADHs). Metabolism via these enzymes results in RCS inactivation and detoxification, although under some conditions, it can also lead to the generation of signaling molecules that trigger adaptive responses. Metabolic transformation and detoxification of RCS by oxidoreductases prevent indiscriminate ROS toxicity, while at the same time, preserving ROS signaling. A better understanding of RCS metabolism by oxidoreductases could lead to the development of novel therapeutic interventions to decrease oxidative injury in several disease states and to enhance resistance to ROS-induced toxicity.
Collapse
Affiliation(s)
- Mahavir Singh
- Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Aniruddh Kapoor
- Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Aruni Bhatnagar
- Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
13
|
Kim MJ, Sim MO, Lee HI, Ham JR, Seo KI, Lee MK. Dietary umbelliferone attenuates alcohol-induced fatty liver via regulation of PPARα and SREBP-1c in rats. Alcohol 2014; 48:707-715. [PMID: 25262573 DOI: 10.1016/j.alcohol.2014.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study investigated the effects of umbelliferone (UF) on alcoholic fatty liver and its underlying mechanism. Rats were fed a Lieber-DeCarli liquid diet with 36% of calories as alcohol with or without UF (0.05 g/L) for 8 weeks. Pair-fed rats received an isocaloric carbohydrate liquid diet. UF significantly reduced the severity of alcohol-induced body weight loss, hepatic lipid accumulation and droplet formation, and dyslipidemia. UF decreased plasma AST, ALT, and γGTP activity. UF significantly reduced hepatic cytochrome P450 2E1 activities and increased alcohol dehydrogenase and aldehyde dehydrogenase 2 activities compared to the alcohol control group, which resulted in a lower plasma acetaldehyde level in the rats that received UF. Chronic alcohol exposure inhibited hepatic AMPK activation compared to the pair-fed rats, which was reversed by UF supplementation. UF also significantly suppressed the lipogenic gene expression (SREBP-1c, SREBP-2, FAS, CIDEA, and PPARγ) and elevated the fatty acid oxidation gene expression (PPARα, Acsl1, CPT, Acox, and Acaa1a) compared to the alcohol control group, which could lead to inhibition of FAS activity and stimulation of CPT and fatty acid β-oxidation activities in the liver of chronic alcohol-fed rats. These results indicated that UF attenuated alcoholic steatosis through down-regulation of SREBP-1c-mediated lipogenesis and up-regulation of PPARα-mediated fatty acid oxidation. Therefore, UF may provide a promising natural therapeutic strategy against alcoholic fatty liver.
Collapse
Affiliation(s)
- Myung-Joo Kim
- Department of Hotel Cuisine, Suseong College, Daegu, 706-022, Republic of Korea
| | - Mi-Ok Sim
- Jeollanamdo Development Institute of Korean Traditional Medicine, Jangheung, 529-851, Republic of Korea
| | - Hae-In Lee
- Department of Food and Nutrition, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam, 540-950, Republic of Korea
| | - Ju Ri Ham
- Department of Food and Nutrition, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam, 540-950, Republic of Korea
| | - Kwon-Il Seo
- Department of Food and Nutrition, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam, 540-950, Republic of Korea
| | - Mi-Kyung Lee
- Department of Food and Nutrition, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam, 540-950, Republic of Korea.
| |
Collapse
|
14
|
Li D, Ma S, Ellis EM. Nrf2-mediated adaptive response to methyl glyoxal in HepG2 cells involves the induction of AKR7A2. Chem Biol Interact 2014; 234:366-71. [PMID: 25451587 DOI: 10.1016/j.cbi.2014.10.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/08/2014] [Accepted: 10/14/2014] [Indexed: 11/29/2022]
Abstract
Methyl glyoxal (MG), a highly reactive dicarbonyl metabolite, causes a range of changes within the cell. It forms adducts with DNA and protein and contributes to the progression of several diseases as well as causing hepatic damage. In this study, we have used human hepatoma (HepG2) cells as a model to investigate the induction of protective enzymes in response to MG exposure. We have shown that treating HepG2 cells with sub-lethal concentrations of MG increases the level of NADPH:quinone oxidoreductase (NQO1) mRNA by 4.5-fold, AKR1C3 mRNA by 14-fold and AKR7A2 mRNA by 4-fold. Levels of AKR7A2 protein are increased by 2.1- and 1.8-fold following 9h and 24h exposure of cells to 50 μM MG. The role of AKR7A2 in protecting HepG2 cells against MG toxicity was further investigated using specific siRNAs against AKR7A2 and Nrf2. Knockdown of AKR7A2 in HepG2 shows that AKR7A2 is responsible for up to 50% of the protection against MG toxicity in HepG2 cells. We have also shown that MG was able to induce the translocation of the transcription factor Nrf2 to the nucleus. HepG2 cells in which Nrf2 had been knocked down exhibited decreased NQO1 and AKR7A2 mRNA levels compared to control cells. In conclusion, these findings indicate that protective enzymes are significantly up-regulated in response to low concentrations of MG in HepG2 cells and that AKR7A2 contributes to protection against MG-induced toxicity. Nrf2 is critical in mediating MG induced expression of protective genes.
Collapse
Affiliation(s)
- Dan Li
- Department of Biopharmaceuticals, School of Pharmacy, China Medical University, Heping District, Shenyang 110001, China.
| | - Shuren Ma
- Department of Endoscope, The General Hospital of Shenyang Military Region, Shenyang 110016, China
| | - Elizabeth M Ellis
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| |
Collapse
|
15
|
Li D, Ellis EM. Aldo-keto reductase 7A5 (AKR7A5) attenuates oxidative stress and reactive aldehyde toxicity in V79-4 cells. Toxicol In Vitro 2014; 28:707-14. [PMID: 24590062 DOI: 10.1016/j.tiv.2014.02.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/27/2014] [Accepted: 02/19/2014] [Indexed: 12/18/2022]
Abstract
Aldo-keto reductase (AKR) enzymes are critical in the detoxification of endogenous and exogenous aldehydes. In previous studies, we have shown that AKR7A5 enzyme is catalytically active towards aldehydes arising from lipid peroxidation (LPO) and that it can significantly protect against 4-hydroxynonenal-induced apoptosis, suggesting a protective role against the consequences of oxidative stress. The aim of this study was to elucidate the cytoprotective effect of AKR7A5 against oxidative stress using a transgenic mammalian cell line expressing AKR7A5. Results show that expression of AKR7A5 in V79-4 cells provides significant protection against the cytotoxicity of H2O2 and menadione, with its expression altering the IC50 of H2O2 from 1.1 to 2.3 mM and the IC50 of menadione from 8.6 to 9.6 μM, thus providing direct evidence for its anti-oxidant activity. Cells expressing AKR7A5 were also found to be more resistant to several LPO-derived aldehydes--trans-2-nonenal, hexanal and methylglyoxal. In addition the ability of AKR7A5 to enable the cells to cope with ROS accumulation and glutathione depletion was assessed. V79-4 cells overexpressing AKR7A5 were able to lower cellular ROS levels following treatment with H2O2 and menadione. AKR7A5 was also able to maintain cellular glutathione homeostasis in the presence of H2O2 and menadione. These findings indicate the importance of AKR7A5 in protecting cells from the damaging effects of oxidative stress, and that this cytoprotective function is carried out through multiple pathways.
Collapse
Affiliation(s)
- Dan Li
- Department of Biopharmaceuticals, School of Pharmacy, China Medical University, Heping District, Shenyang 110001, China; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom.
| | - Elizabeth M Ellis
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| |
Collapse
|
16
|
Kabeya LM, Fuzissaki CN, Taleb-Contini SH, da C. Ferreira AM, Naal Z, Santos EO, Figueiredo-Rinhel AS, Azzolini AEC, Vermelho RB, Malvezzi A, -do Amaral AT, Lopes JLC, Lucisano-Valim YM. 7-Hydroxycoumarin modulates the oxidative metabolism, degranulation and microbial killing of human neutrophils. Chem Biol Interact 2013; 206:63-75. [DOI: 10.1016/j.cbi.2013.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/14/2013] [Accepted: 08/17/2013] [Indexed: 11/30/2022]
|
17
|
Subramaniam SR, Ellis EM. Neuroprotective effects of umbelliferone and esculetin in a mouse model of Parkinson's disease. J Neurosci Res 2012. [DOI: 10.1002/jnr.23164] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Lyon RC, Li D, McGarvie G, Ellis EM. Aldo-keto reductases mediate constitutive and inducible protection against aldehyde toxicity in human neuroblastoma SH-SY5Y cells. Neurochem Int 2012; 62:113-21. [PMID: 23084985 DOI: 10.1016/j.neuint.2012.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/30/2012] [Accepted: 10/12/2012] [Indexed: 12/20/2022]
Abstract
Reactive aldehydes including methyl glyoxal, acrolein and 4-hydroxy-2-nonenal (4-HNE) have been implicated in the progression of neurodegenerative diseases. The reduction of aldehydes to alcohols by the aldo-keto reductase (AKR) family of enzymes may represent an important detoxication route within neuronal cells. In this study, the ability of AKR enzymes to protect human neuroblastoma SH-SY5Y cells against reactive aldehydes was assessed. Using gene-specific RNA interference (RNAi), we report that AKR7A2 makes a significant contribution to the reduction of methyl glyoxal in SH-SY5Y cells, with its knockdown altering the IC(50) from 410 to 25.8μM, and that AKR1C3 contributes to 4-HNE reduction, with its knockdown lowering the IC(50) from 1.25 to 0.58μM. In addition, we have shown that pretreatment of cells with sub-lethal concentrations of 4-HNE or methyl glyoxal leads to a significant increase in IC(50) when cells are exposed to higher concentrations of the toxic aldehyde. The IC(50) for methyl glyoxal increased from 410μM to 1.9mM, and the IC(50) for 4-HNE increased from 120 to 690nM. To investigate this protection, we show that pretreatment of cells with the AKR inhibitor sorbinil lead to decreased resistance to aldehydes. We show that AKR1C can be induced 8-fold in SH-SY5Y cells by treatment with sub-lethal concentrations of methyl glyoxal, and 5-fold by 4-HNE treatment. AKR1B is not induced by methyl glyoxal but is induced 10-fold by 4-HNE treatment. Furthermore, we have shown that this adaptive response can also be induced using the chemoprotective agent tert-butyl hydroquinone (t-BHQ), and that this also evokes an increase in the expression and activity of AKR1B and AKR1C. These findings highlight the potential for the interventional upregulation of AKR via non-toxic derivatives or natural compounds as a novel therapeutic approach towards the detoxication of aldehydes, with the aim of halting the progression of aldehyde-dependent neurodegenerative diseases.
Collapse
Affiliation(s)
- Robert C Lyon
- Strathclyde Institute of Pharmacy & Biomedical Sciences, 161 Cathedral Street, University of Strathclyde, Glasgow G4 0RE, Scotland, UK
| | | | | | | |
Collapse
|