1
|
Cong Y, Wu Y, Liu Y, Ai Y, Wang X, Wei C, Ding H, Xu G, Sun W. TCDD inhibits the proliferation of C17.2 cells through the activation of the c-Cbl/β-catenin signaling pathway. Toxicol In Vitro 2025; 104:106014. [PMID: 39880321 DOI: 10.1016/j.tiv.2025.106014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/23/2024] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) belongs to the category of persistent environmental pollutants, and gestational exposure to TCDD can lead to cognitive, memory, and motor deficits, as well as altered neuron development in rodents. However, the molecular mechanisms underlying TCDD's neurotoxicity remain unclear. Neural stem cells (NSCs) possess the capacity for self-renewal and can generate various cell types within the brain, playing fundamental roles in brain development and regeneration. This study investigated the impact of TCDD on the proliferation of mouse NSCs, specifically focusing on the C17.2 cell line. The results demonstrated that TCDD inhibited the proliferation of C17.2 cells in a dose-dependent manner. Even low doses of TCDD (5 nM) significantly reduced C17.2 cell proliferation. Regarding the molecular mechanisms, it was found that TCDD induced the degradation of β-catenin, a key regulator of cell proliferation, through the upregulation of the E3 ubiquitin ligase, casitas B-lineage lymphoma (c-Cbl), which was dependent on the aryl-hydrocarbon Receptor (AhR). Furthermore, knockdown of c-Cbl alleviated the TCDD-induced inhibition of C17.2 proliferation and of the reduction of β-catenin expression. Our research provides foundational data to understand the mechanism of TCDD-induced neurotoxicity through the inhibition of NSCs proliferation, and suggests that the c-cbl/β-catenin pathway may serve as a potential therapeutic target for countering the neurotoxicants of TCDD.
Collapse
Affiliation(s)
- Yewen Cong
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China; Affiliated Matern & Care Hospital, Nantong University, Nantong 226007, Jiangsu, China
| | - Yue Wu
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China
| | - Yue Liu
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China
| | - Yongjun Ai
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China
| | - Xiping Wang
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China
| | - Chunxi Wei
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China
| | - Haoyu Ding
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China
| | - Guangfei Xu
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China.
| | - Wenxing Sun
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China.
| |
Collapse
|
2
|
Khandayataray P, Murthy MK. Dietary interventions in mitigating the impact of environmental pollutants on Alzheimer's disease - A review. Neuroscience 2024; 563:148-166. [PMID: 39542342 DOI: 10.1016/j.neuroscience.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/23/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Numerous studies linking environmental pollutants to oxidative stress, inflammation, and neurotoxicity have assigned pollutants to several neurodegenerative disorders, including Alzheimer's disease (AD). Heavy metals, pesticides, air pollutants, and endocrine disruptor chemicals have been shown to play important roles in AD development, with some traditional functions in amyloid-β formation, tau kinase action, and neuronal degeneration. However, pharmacological management and supplementation have resulted in limited improvement. This raises the interesting possibility that activities usually considered preventive, including diet, exercise, or mental activity, might be more similar to treatment or therapy for AD. This review focuses on the effects of diet on the effects of environmental pollutants on AD. One of the primary issues addressed in this review is a group of specific diets, including the Mediterranean diet (MeDi), Dietary Approaches to Stop Hypertension (DASH), and Mediterranean-DASH intervention for Neurodegenerative Delay (MIND), which prevent exposure to these toxins. Such diets have been proven to decrease oxidative stress and inflammation, which are unfavorable for neuronal growth. Furthermore, they contribute to positive changes in the composition of the human gut microbiota and thus encourage interactions in the Gut-Brain Axis, reducing inflammation caused by pollutants. This review emphasizes a multi-professional approach with reference to nutritional activities that would lower the neurotoxic load in populations with a high level of exposure to pollutants. Future studies focusing on diet and environment association plans may help identify preventive measures aimed at enhancing current disease deceleration.
Collapse
Affiliation(s)
- Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, Odisha 752057, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
3
|
Zhao Y, Chen Y, Liu Z, Zhou L, Huang J, Luo X, Luo Y, Li J, Lin Y, Lai J, Liu J. TXNIP knockdown protects rats against bupivacaine-induced spinal neurotoxicity via the inhibition of oxidative stress and apoptosis. Free Radic Biol Med 2024; 219:1-16. [PMID: 38614227 DOI: 10.1016/j.freeradbiomed.2024.04.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Bupivacaine (BUP) is an anesthetic commonly used in clinical practice that when used for spinal anesthesia, might exert neurotoxic effects. Thioredoxin-interacting protein (TXNIP) is a member of the α-arrestin protein superfamily that binds covalently to thioredoxin (TRX) to inhibit its function, leading to increased oxidative stress and activation of apoptosis. The role of TXNIP in BUP-induced oxidative stress and apoptosis remains to be elucidated. In this context, the present study aimed to explore the effects of TXNIP knockdown on BUP-induced oxidative stress and apoptosis in the spinal cord of rats and in PC12 cells through the transfection of adeno-associated virus-TXNIP short hairpin RNA (AAV-TXNIP shRNA) and siRNA-TXNIP, respectively. In vivo, a rat model of spinal neurotoxicity was established by intrathecally injecting rats with BUP. The BUP + TXNIP shRNA and the BUP + Control shRNA groups of rats were injected with an AAV carrying the TXNIP shRNA and the Control shRNA, respectively, into the subarachnoid space four weeks prior to BUP treatment. The Basso, Beattie & Bresnahan (BBB) locomotor rating score, % MPE of TFL, H&E staining, and Nissl staining analyses were conducted. In vitro, 0.8 mM BUP was determined by CCK-8 assay to establish a cytotoxicity model in PC12 cells. Transfection with siRNA-TXNIP was carried out to suppress TXNIP expression prior to exposing PC12 cells to BUP. The results revealed that BUP effectively induced neurological behavioral dysfunction and neuronal damage and death in the spinal cord of the rats. Similarly, BUP triggered cytotoxicity and apoptosis in PC12 cells. In addition, treated with BUP both in vitro and in vivo exhibited upregulated TXNIP expression and increased oxidative stress and apoptosis. Interestingly, TXNIP knockdown in the spinal cord of rats through transfection of AAV-TXNIP shRNA exerted a protective effect against BUP-induced spinal neurotoxicity by ameliorating behavioral and histological outcomes and promoting the survival of spinal cord neurons. Similarly, transfection with siRNA-TXNIP mitigated BUP-induced cytotoxicity in PC12 cells. In addition, TXNIP knockdown mitigated the upregulation of ROS, MDA, Bax, and cleaved caspase-3 and restored the downregulation of GSH, SOD, CAT, GPX4, and Bcl2 induced upon BUP exposure. These findings suggested that TXNIP knockdown protected against BUP-induced spinal neurotoxicity by suppressing oxidative stress and apoptosis. In summary, TXNIP could be a central signaling hub that positively regulates oxidative stress and apoptosis during neuronal damage, which renders TXNIP a promising target for treatment strategies against BUP-induced spinal neurotoxicity.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China; Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, No.1 Maoyuan South Road, Nanchong, 637000, Sichuan, China
| | - Yuanyuan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Ziru Liu
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Lei Zhou
- Department of Anesthesiology, Meishan People's Hospital, No. 288 South Fourth Section of Dongpo Avenue, 620020, Sichuan, China
| | - Jiao Huang
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xi Luo
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Yunpeng Luo
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, 557300, Guizhou, China
| | - Jia Li
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China; Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Yunan Lin
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Jian Lai
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China.
| | - Jingchen Liu
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
4
|
Yang Y, Tao Y, Yi X, Zhong G, Gu Y, Cui Y, Zhang Y. Crosstalk between aryl hydrocarbon receptor and Wnt/β-catenin signaling pathway: Possible culprit of di (2-ethylhexyl) phthalate-mediated cardiotoxicity in zebrafish larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167907. [PMID: 37866606 DOI: 10.1016/j.scitotenv.2023.167907] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Typical plasticizer di (2-ethylhexyl) phthalate (DEHP) has been demonstrated to induce cardiotoxicity in zebrafish, but the potential molecular mechanisms involved have not been fully elucidated. Aryl hydrocarbon receptor (AhR), an essential protein for inducing developmental abnormalities, has been demonstrated to be activated by DEHP in other species, but whether the AhR signaling pathway also contributes to DEHP-mediated cardiac developmental toxicity in zebrafish remains unclear. Firstly, molecular docking simulations initially confirmed the possibility that DEHP has AhR agonistic activity. To further confirm this conjecture, this work analyzed the changes of cardiac-related indexes in zebrafish stressed by DEHP at individual, protein, and gene levels. The results showed that DEHP mediated cardiac phenotypic developmental defects, increased CYP1A1 activity, and oxidative stress as well as significant changes in the expression levels of key proteins and genes of AhR, Wnt/β-catenin, and Nrf2-Keap1 signaling pathways. Notably, the addition of AhR inhibitors effectively alleviated the above negative effects, indicating that the AhR signaling pathway and its crosstalk with the Wnt/β-catenin signaling pathway is an essential pathway for DEHP-mediated cardiac developmental toxicity. Overall, this work enriches the molecular mechanism of DEHP-mediated cardiac developmental defects in zebrafish and provides a reliable biomarker for future environmental risk assessment of DEHP.
Collapse
Affiliation(s)
- Yang Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaodong Yi
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Guanyu Zhong
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yanyan Gu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yunhe Cui
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
5
|
Gao J, Xu Y, Zhong T, Yu X, Wang L, Xiao Y, Peng Y, Sun Q. A review of food contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin and its toxicity associated with metabolic disorders. Curr Res Food Sci 2023; 7:100617. [PMID: 37881334 PMCID: PMC10594546 DOI: 10.1016/j.crfs.2023.100617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/18/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023] Open
Abstract
Dioxins are a group of chemicals not only regarded as highly toxic trace environmental contaminants, but also considered typical contaminants in food. Dioxins spread across the ecosystem after factory manufacture, contaminate the soil and vegetation before either directly or indirectly entering the food chain through meat products, dairy products, and aquatic products. The compound in question poses a challenge for metabolic processes within the human body, due to its intricate mechanism for inducing diseases. Therefore, it presents a significant risk and is largely undisclosed. Dioxins are mainly exposed to humans by water, food, and air, as well as inducing organ failure and metabolic disorders through but not limited to the activation of aryl hydrocarbon receptors (AhR). As a notorious compound in the family of dioxins, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exhibits long-term toxic effects on diverse organs, which induces continuous metabolic disorders. This review discussed the mechanisms of TCDD-associated metabolic syndrome. The expression of the cytochrome P450 subfamily transfers TCDD into liver, promotes its accumulation in fat tissue, and affects cholesterol metabolism. This process also alters the glucose tolerance of the human organism, disrupting glucose metabolism. It can also elicit cardiovascular pathogenesis, exacerbate liver fibrosis and neuronal death. The long-term metabolic impact of this effect is found to be sex-related. This review summarized the toxicity of TCDD on the human metabolism system and discussed the plausible correlation between TCDD and five metabolic disorders, which helped offer novel insights for future research and therapeutic interventions for these ailments.
Collapse
Affiliation(s)
- Jiuhe Gao
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, 999078, China
| | - Yuqing Xu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, 999078, China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, 999078, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, 999078, China
| | - Ling Wang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, 999078, China
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, 999078, China
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, 999078, China
| | - Quancai Sun
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, USA
| |
Collapse
|
6
|
Tsamou M, Roggen EL. Building a Network of Adverse Outcome Pathways (AOPs) Incorporating the Tau-Driven AOP Toward Memory Loss (AOP429). J Alzheimers Dis Rep 2022; 6:271-296. [PMID: 35891639 PMCID: PMC9277675 DOI: 10.3233/adr-220015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/15/2022] [Indexed: 11/15/2022] Open
Abstract
The adverse outcome pathway (AOP) concept was first proposed as a tool for chemical hazard assessment facilitating the regulatory decision-making in toxicology and was more recently recommended during the BioMed21 workshops as a tool for the characterization of crucial endpoints in the human disease development. This AOP framework represents mechanistically based approaches using existing data, more realistic and relevant to human biological systems. In principle, AOPs are described by molecular initiating events (MIEs) which induce key events (KEs) leading to adverse outcomes (AOs). In addition to the individual AOPs, the network of AOPs has been also suggested to beneficially support the understanding and prediction of adverse effects in risk assessment. The AOP-based networks can capture the complexity of biological systems described by different AOPs, in which multiple AOs diverge from a single MIE or multiple MIEs trigger a cascade of KEs that converge to a single AO. Here, an AOP network incorporating a recently proposed tau-driven AOP toward memory loss (AOP429) related to sporadic (late-onset) Alzheimer’s disease is constructed. This proposed AOP network is an attempt to extract useful information for better comprehending the interactions among existing mechanistic data linked to memory loss as an early phase of sporadic Alzheimer’s disease pathology.
Collapse
Affiliation(s)
- Maria Tsamou
- ToxGenSolutions (TGS), Maastricht, The Netherlands
| | | |
Collapse
|
7
|
Rajendran R, Ragavan RP, Al-Sehemi AG, Uddin MS, Aleya L, Mathew B. Current understandings and perspectives of petroleum hydrocarbons in Alzheimer's disease and Parkinson's disease: a global concern. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:10928-10949. [PMID: 35000177 DOI: 10.1007/s11356-021-17931-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Over the last few decades, the global prevalence of neurodevelopmental and neurodegenerative illnesses has risen rapidly. Although the aetiology remains unclear, evidence is mounting that exposure to persistent hydrocarbon pollutants is a substantial risk factor, predisposing a person to neurological diseases later in life. Epidemiological studies correlate environmental hydrocarbon exposure to brain disorders including neuropathies, cognitive, motor and sensory impairments; neurodevelopmental disorders like autism spectrum disorder (ASD); and neurodegenerative disorders like Alzheimer's disease (AD) and Parkinson's disease (PD). Particulate matter, benzene, toluene, ethylbenzene, xylenes, polycyclic aromatic hydrocarbons and endocrine-disrupting chemicals have all been linked to neurodevelopmental problems in all class of people. There is mounting evidence that supports the prevalence of petroleum hydrocarbon becoming neurotoxic and being involved in the pathogenesis of AD and PD. More study is needed to fully comprehend the scope of these problems in the context of unconventional oil and natural gas. This review summarises in vitro, animal and epidemiological research on the genesis of neurodegenerative disorders, highlighting evidence that supports inexorable role of hazardous hydrocarbon exposure in the pathophysiology of AD and PD. In this review, we offer a summary of the existing evidence gathered through a Medline literature search of systematic reviews and meta-analyses of the most important epidemiological studies published so far.
Collapse
Affiliation(s)
- Rajalakshmi Rajendran
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Roshni Pushpa Ragavan
- Research Center for Advanced Materials Science, King Khalid University, Abha, 61413, Saudi Arabia.
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science, King Khalid University, Abha, 61413, Saudi Arabia
- Department of Chemistry, King Khalid University, Abha, 61413, Saudi Arabia
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Lotfi Aleya
- Laboratoire Chrono-Environment, CNRS6249, Universite de Bourgogne Franche-Comte, Besancon, France
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, India.
| |
Collapse
|
8
|
Mir RH, Sawhney G, Pottoo FH, Mohi-Ud-Din R, Madishetti S, Jachak SM, Ahmed Z, Masoodi MH. Role of environmental pollutants in Alzheimer's disease: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44724-44742. [PMID: 32715424 DOI: 10.1007/s11356-020-09964-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Neurodegenerative disorders are commonly erratic influenced by various factors including lifestyle, environmental, and genetic factors. In recent observations, it has been hypothesized that exposure to various environmental factors enhances the risk of Alzheimer's disease (AD). The exact etiology of Alzheimer's disease is still unclear; however, the contribution of environmental factors in the pathology of AD is widely acknowledged. Based on the available literature, the review aims to culminate in the prospective correlation between the various environmental factors and AD. The prolonged exposure to the various well-known environmental factors including heavy metals, air pollutants (particulate matter), pesticides, nanoparticles containing metals, industrial chemicals results in accelerating the progression of AD. Common mechanisms have been documented in the field of environmental contaminants for enhancing amyloid-β (Aβ) peptide along with tau phosphorylation, resulting in the initiation of senile plaques and neurofibrillary tangles, which results in the death of neurons. This review offers a compilation of available data to support the long-suspected correlation between environmental risk factors and AD pathology. Graphical abstract .
Collapse
Affiliation(s)
- Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, Kashmir, 190006, India.
| | - Gifty Sawhney
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu, 180001, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O.BOX 1982, Dammam, 31441, Saudi Arabia
| | - Roohi Mohi-Ud-Din
- Pharmacognosy Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, Kashmir, 190006, India
| | - Sreedhar Madishetti
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu, 180001, India
| | - Sanjay M Jachak
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab, 160062, India
| | - Zabeer Ahmed
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu, 180001, India
| | - Mubashir Hussain Masoodi
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, Kashmir, 190006, India.
| |
Collapse
|
9
|
Hexachloronaphthalene Induces Mitochondrial-Dependent Neurotoxicity via a Mechanism of Enhanced Production of Reactive Oxygen Species. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2479234. [PMID: 32685088 PMCID: PMC7335409 DOI: 10.1155/2020/2479234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022]
Abstract
Hexachloronaphthalene (PCN67) is one of the most toxic among polychlorinated naphthalenes. Despite the known high bioaccumulation and persistence of PCN67 in the environment, it is still unclear to what extent exposure to these substances may interfere with normal neuronal physiology and lead to neurotoxicity. Therefore, the primary goal of this study was to assess the effect of PCN67 in neuronal in vitro models. Neuronal death was assessed upon PCN67 treatment using differentiated PC12 cells and primary hippocampal neurons. At 72 h postexposure, cell viability assays showed an IC50 value of 0.35 μg/ml and dose-dependent damage of neurites and concomitant downregulation of neurofilaments L and M. Moreover, we found that younger primary neurons (DIV4) were much more sensitive to PCN67 toxicity than mature cultures (DIV14). Our comprehensive analysis indicated that the application of PCN67 at the IC50 concentration caused necrosis, which was reflected by an increase in LDH release, HMGB1 protein export to the cytosol, nuclear swelling, and loss of homeostatic control of energy balance. The blockage of mitochondrial calcium uniporter partially rescued the cell viability, loss of mitochondrial membrane potential (ΔΨm), and the overproduction of reactive oxygen species, suggesting that the underlying mechanism of neurotoxicity involved mitochondrial calcium accumulation. Increased lipid peroxidation as a consequence of oxidative stress was additionally seen for 0.1 μg/ml of PCN67, while this concentration did not affect ΔΨm and plasma membrane permeability. Our results show for the first time that neuronal mitochondria act as a target for PCN67 and indicate that exposure to this drug may result in neuron loss via mitochondrial-dependent mechanisms.
Collapse
|
10
|
Üstündağ ÜV, Emekli-Alturfan E. Wnt pathway: A mechanism worth considering in endocrine disrupting chemical action. Toxicol Ind Health 2020; 36:41-53. [DOI: 10.1177/0748233719898989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are defined as exogenous substances that can alter the development and functioning of the endocrine system. The Wnt signaling pathway is an evolutionarily conserved pathway consisting of proteins that transmit cell-to-cell receptors through cell surface receptors, regulating important aspects of cell migration, polarity, neural formation, and organogenesis, which determines the fate of the cell during embryonic development. Although the effects of EDCs have been studied in terms of many molecular mechanisms; because of its critical role in embryogenesis, the Wnt pathway is of special interest in EDC exposure. This review provides information about the effects of EDC exposure on the Wnt/β-catenin pathway focusing on studies on bisphenol A, di-(2-ethylhexyl) phthalate, diethylstilbestrol, cadmium, and 2,3,7,8-tetrachlorodibenzo-p-dioxin.
Collapse
Affiliation(s)
- Ünsal Veli Üstündağ
- Department of Biochemistry, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- Department of Biochemistry, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| |
Collapse
|
11
|
Li S, You M, Chai W, Xu Y, Wang Y. Developmental exposure to nonylphenol induced rat axonal injury in vivo and in vitro. Arch Toxicol 2019; 93:2673-2687. [PMID: 31456014 DOI: 10.1007/s00204-019-02536-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/14/2019] [Indexed: 01/20/2023]
Abstract
Increasing evidence indicates that developmental exposure to nonylphenol (NP) causes damage to the central nervous system (CNS). As the most unique and primary component of neuron, axon is an essential structure for the CNS function. Here, we investigated whether developmental exposure to NP affected rat axonal development in vivo and in vitro. Our results showed that developmental exposure to NP 10, 50, and 100 mg/(kg day) caused an obvious decrease in axonal length and density in the hippocampus. Developmental exposure to NP also altered the expression of CRMP-2 and p-CRMP-2, and activated Wnt-Dvl-GSK-3β cascade in the hippocampus, the crucial signaling that regulates axonal development. Even months after the exposure, impairment of axonal growth and alteration of this cascade were not fully restored. In the primary cultured neurons, 30, 50, and 70 μM NP treatment decreased axonal length and impaired axonal function. Similar to in vivo results, it also activated Wnt-Dvl-GSK-3β cascade in cultured neurons. SB-216763, a specific GSK-3β inhibitor, recovered the shortening of axon and the impairment of axonal function induced by NP. Taken together, our results support the idea that exposure to NP induces axonal injury in the developing neurons. Furthermore, the activation of Wnt-Dvl-GSK-3β cascade contributes to the axonal injury induced by NP.
Collapse
Affiliation(s)
- Siyao Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning, People's Republic of China
| | - Mingdan You
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning, People's Republic of China
| | - Wenjie Chai
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning, People's Republic of China
| | - Yuanyuan Xu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning, People's Republic of China.
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
12
|
Jiao M, Yin K, Zhang T, Wu C, Zhang Y, Zhao X, Wu Q. Effect of the SSeCKS-TRAF6 interaction on gastrodin-mediated protection against 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced astrocyte activation and neuronal death. CHEMOSPHERE 2019; 226:678-686. [PMID: 30959452 DOI: 10.1016/j.chemosphere.2019.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
The ubiquitous environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been shown to trigger neurotoxicity. In this study, we investigated the protective effects of gastrodin on TCDD-induced neurotoxicity and the underlying molecular mechanisms. The results show that gastrodin decreased cell viability, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) release, and inducible nitrix oxide synthase (iNOS) and glial fibrillary acidic protein (GFAP) expression in TCDD-treated C6 cells. TCDD stimulated NF-κB signalling activation, demonstrated by increased p-NF-κB expression and translocation of nuclear Factor kappa B (NF-κB) to the nucleus. TCDD did not affect TRAF6 protein expression but enhanced the attenuated the Src-suppressed-C Kinase Substrate (SSeCKS)-tumor necrosis factor receptor-associated factor 6 (TRAF6) interaction, thereby triggering NF-κB signalling activation. Gastrodin inhibited TCDD-induced NF-κB signalling activation by lessening the SSeCKS-TRAF6 interaction in vitro. Gastrodin attenuated SSeCKS-TRAF6 interaction in vivo and protected mice from NF-κB signalling activation following TCDD exposure. Finally, gastrodin blocked the apoptosis of PC12 neuronal cells induced by medium conditioned with TCDD-treated astrocytes. In summary, gastrodin inhibited TCDD-induced NF-κB signalling activation by lessening the SSeCKS-TRAF6 interaction, resulting in attenuated astrocyte activation and subsequent neuronal apoptosis. These findings will contribute to an improved understanding of TCDD-induced neurotoxicity and strategies to antagonise it using gastrodin.
Collapse
Affiliation(s)
- Man Jiao
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Kaizhi Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Tao Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Changyue Wu
- Clinical Medicine, School of Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Yan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226001, People's Republic of China.
| | - Qiyun Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China.
| |
Collapse
|
13
|
Iqbal F, Thompson AJ, Riaz S, Pehar M, Rice T, Syed NI. Anesthetics: from modes of action to unconsciousness and neurotoxicity. J Neurophysiol 2019; 122:760-787. [PMID: 31242059 DOI: 10.1152/jn.00210.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Modern anesthetic compounds and advanced monitoring tools have revolutionized the field of medicine, allowing for complex surgical procedures to occur safely and effectively. Faster induction times and quicker recovery periods of current anesthetic agents have also helped reduce health care costs significantly. Moreover, extensive research has allowed for a better understanding of anesthetic modes of action, thus facilitating the development of more effective and safer compounds. Notwithstanding the realization that anesthetics are a prerequisite to all surgical procedures, evidence is emerging to support the notion that exposure of the developing brain to certain anesthetics may impact future brain development and function. Whereas the data in support of this postulate from human studies is equivocal, the vast majority of animal research strongly suggests that anesthetics are indeed cytotoxic at multiple brain structure and function levels. In this review, we first highlight various modes of anesthetic action and then debate the evidence of harm from both basic science and clinical studies perspectives. We present evidence from animal and human studies vis-à-vis the possible detrimental effects of anesthetic agents on both the young developing and the elderly aging brain while discussing potential ways to mitigate these effects. We hope that this review will, on the one hand, invoke debate vis-à-vis the evidence of anesthetic harm in young children and the elderly, and on the other hand, incentivize the search for better and less toxic anesthetic compounds.
Collapse
Affiliation(s)
- Fahad Iqbal
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrew J Thompson
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Neuroscience, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Saba Riaz
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marcus Pehar
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tiffany Rice
- Department of Anesthesiology, Perioperative and Pain Medicine, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Naweed I Syed
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
14
|
Rasinger J, Carroll T, Maranghi F, Tassinari R, Moracci G, Altieri I, Mantovani A, Lundebye AK, Hogstrand C. Low dose exposure to HBCD, CB-153 or TCDD induces histopathological and hormonal effects and changes in brain protein and gene expression in juvenile female BALB/c mice. Reprod Toxicol 2018; 80:105-116. [DOI: 10.1016/j.reprotox.2018.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 11/16/2022]
|
15
|
The Aryl Hydrocarbon Receptor and the Nervous System. Int J Mol Sci 2018; 19:ijms19092504. [PMID: 30149528 PMCID: PMC6163841 DOI: 10.3390/ijms19092504] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022] Open
Abstract
The aryl hydrocarbon receptor (or AhR) is a cytoplasmic receptor of pollutants. It translocates into the nucleus upon binding to its ligands, and forms a heterodimer with ARNT (AhR nuclear translocator). The heterodimer is a transcription factor, which regulates the transcription of xenobiotic metabolizing enzymes. Expressed in many cells in vertebrates, it is mostly present in neuronal cell types in invertebrates, where it regulates dendritic morphology or feeding behavior. Surprisingly, few investigations have been conducted to unravel the function of the AhR in the central or peripheral nervous systems of vertebrates. In this review, we will present how the AhR regulates neural functions in both invertebrates and vertebrates as deduced mainly from the effects of xenobiotics. We will introduce some of the molecular mechanisms triggered by the well-known AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which impact on neuronal proliferation, differentiation, and survival. Finally, we will point out the common features found in mice that are exposed to pollutants, and in AhR knockout mice.
Collapse
|
16
|
Massarsky A, Prasad G, Di Giulio RT. Total particulate matter from cigarette smoke disrupts vascular development in zebrafish brain (Danio rerio). Toxicol Appl Pharmacol 2018; 339:85-96. [DOI: 10.1016/j.taap.2017.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/09/2017] [Accepted: 12/04/2017] [Indexed: 12/17/2022]
|
17
|
't Mannetje A, Eng A, Walls C, Dryson E, Douwes J, Bertazzi P, Ryder-Lewis S, Scott D, Brooks C, McLean D, Cheng S, Pearce N. Morbidity in New Zealand pesticide producers exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). ENVIRONMENT INTERNATIONAL 2018; 110:22-31. [PMID: 29031942 DOI: 10.1016/j.envint.2017.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVES To conduct a cross-sectional morbidity survey among 245 former employees of a pesticide production plant exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in New Zealand. METHODS Demographic factors and health information were collected in face-to-face interviews. TCDD, lipids, thyroid hormones, glucose and immunoglobulin G (IgG) were determined in non-fasting blood. For 111 participants, a neurological examination was conducted. Associations between health outcomes and working in a TCDD exposed job (prevalence 49%) and serum TCDD concentration≥10pg/g lipid (18%) were assessed using logistic regression whilst controlling for age, gender, smoking, body mass index and ethnicity. RESULTS Diabetes was more common in those who had worked in TCDD exposed jobs (OR 4.0, 95%CI 1.0-15.4) and in those with serum TCDD ≥10pg/g (OR 3.1, 95%CI 0.9-10.7). Non-fasting glucose levels >6.6mmol/l were more common in those with TCDD exposed jobs (OR 3.6, 95%CI 1.0-12.9), as were serum free thyroxine 4<12.8pmol/l (OR 4.5, 95%CI 1.4-14.4), triglycerides >1.7mmol/l (OR 2.5, 95%CI 1.1-5.7) and high density lipoprotein cholesterol (HDL) <1mmol/l (OR 4.0, 95%CI 1.2-13.2). IgG was negatively associated with TCDD (linear regression p=0.05). The neurological examination revealed a higher frequency of abnormal reflexes in those with serum TCDD ≥10pg/g (OR 4.8, 95%CI 1.1-21.0). CONCLUSIONS In this occupationally exposed population, TCDD was associated with an increased risk of diabetes and a range of subclinical responses in multiple systems (peripheral nervous system, immune system, thyroid hormones and lipid metabolism), several decades after last exposure. These results need to be interpreted with caution due to the small study size and the cross-sectional nature of the study.
Collapse
Affiliation(s)
- Andrea 't Mannetje
- Centre for Public Health Research, Massey University, PO Box 756, Wellington 6021, New Zealand.
| | - Amanda Eng
- Centre for Public Health Research, Massey University, PO Box 756, Wellington 6021, New Zealand
| | - Chris Walls
- Occupational Medicine, Auckland, New Zealand
| | - Evan Dryson
- Occupational Medicine, Auckland, New Zealand
| | - Jeroen Douwes
- Centre for Public Health Research, Massey University, PO Box 756, Wellington 6021, New Zealand
| | - Pier Bertazzi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | | | | - Collin Brooks
- Centre for Public Health Research, Massey University, PO Box 756, Wellington 6021, New Zealand
| | - Dave McLean
- Centre for Public Health Research, Massey University, PO Box 756, Wellington 6021, New Zealand
| | - Soo Cheng
- Centre for Public Health Research, Massey University, PO Box 756, Wellington 6021, New Zealand
| | - Neil Pearce
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
18
|
Choi EM, Suh KS, Jung WW, Park SY, Chin SO, Rhee SY, Pak YK, Chon S. Actein alleviates 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated cellular dysfunction in osteoblastic MC3T3-E1 cells. ENVIRONMENTAL TOXICOLOGY 2017; 32:2455-2470. [PMID: 28836330 DOI: 10.1002/tox.22459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/30/2017] [Accepted: 08/06/2017] [Indexed: 06/07/2023]
Abstract
The environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is known to affect bone metabolism. We evaluated the protective effects of the triterpene glycoside actein from the herb black cohosh against TCDD-induced toxicity in MC3T3-E1 osteoblastic cells. We found that TCDD significantly reduced cell viability and increased apoptosis and autophagy in MC3T3-E1 osteoblastic cells (P < .05). In addition, TCDD treatment resulted in a significant increase in intracellular calcium concentration, mitochondrial membrane potential collapse, reactive oxygen species (ROS) production, and cardiolipin peroxidation, whereas pretreatment with actein significantly mitigated these effects (P < .05). The effects of TCDD on extracellular signal-related kinase (ERK), aryl hydrocarbon receptor, aryl hydrocarbon receptor repressor, and cytochrome P450 1A1 levels in MC3T3-E1 cells were significantly inhibited by actein. The levels of superoxide dismutase, ERK1, and nuclear factor kappa B mRNA were also effectively restored by pretreatment with actein. Furthermore, actein treatment resulted in a significant increase in alkaline phosphatase (ALP) activity and collagen content, as well as in the expression of genes associated with osteoblastic differentiation (ALP, type I collagen, osteoprotegerin, bone sialoprotein, and osterix). This study demonstrates the underlying molecular mechanisms of cytoprotection exerted by actein against TCDD-induced oxidative stress and osteoblast damage.
Collapse
Affiliation(s)
- Eun Mi Choi
- Department of Endocrinology & Metabolism, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kwang Sik Suh
- Department of Endocrinology & Metabolism, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Woon-Won Jung
- Department of Biomedical Laboratory Science, College of Health Sciences, Cheongju University, Cheongju, Chungbuk, 28503, Republic of Korea
| | - So Young Park
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sang Ouk Chin
- Department of Endocrinology & Metabolism, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sang Youl Rhee
- Department of Endocrinology & Metabolism, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Youngmi Kim Pak
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Suk Chon
- Department of Endocrinology & Metabolism, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| |
Collapse
|
19
|
Yu Y, Liu Q, Guo S, Zhang Q, Tang J, Liu G, Kong D, Li J, Yan S, Wang R, Wang P, Su X, Yu Y. 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin promotes endothelial cell apoptosis through activation of EP3/p38MAPK/Bcl-2 pathway. J Cell Mol Med 2017; 21:3540-3551. [PMID: 28699682 PMCID: PMC5706494 DOI: 10.1111/jcmm.13265] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 05/02/2017] [Indexed: 12/18/2022] Open
Abstract
Endothelial injury or dysfunction is an early event in the pathogenesis of atherosclerosis. Epidemiological and animal studies have shown that 2, 3, 7, 8‐tetrachlorodibenzo‐p‐dioxin (TCDD) exposure increases morbidity and mortality from chronic cardiovascular diseases, including atherosclerosis. However, whether or how TCDD exposure causes endothelial injury or dysfunction remains largely unknown. Cultured human umbilical vein endothelial cells (HUVECs) were exposed to different doses of TCDD, and cell apoptosis was examined. We found that TCDD treatment increased caspase 3 activity and apoptosis in HUVECs in a dose‐dependent manner,at doses from 10 to 40 nM. TCDD increased cyclooxygenase enzymes (COX)‐2 expression and its downstream prostaglandin (PG) production (mainly PGE2 and 6‐keto‐PGF1α) in HUVECs. Interestingly, inhibition of COX‐2, but not COX‐1, markedly attenuated TCDD‐triggered apoptosis in HUVECs. Pharmacological inhibition or gene silencing of the PGE2 receptor subtype 3 (EP3) suppressed the augmented apoptosis in TCDD‐treated HUVECs. Activation of the EP3 receptor enhanced p38 MAPK phosphorylation and decreased Bcl‐2 expression following TCDD treatment. Both p38 MAPK suppression and Bcl‐2 overexpression attenuated the apoptosis in TCDD‐treated HUVECs. TCDD increased EP3‐dependent Rho activity and subsequently promoted p38MAPK/Bcl‐2 pathway‐mediated apoptosis in HUVECs. In addition, TCDD promoted apoptosis in vascular endothelium and delayed re‐endothelialization after femoral artery injury in wild‐type (WT) mice, but not in EP3−/− mice. In summary, TCDD promotes endothelial apoptosis through the COX‐2/PGE2/EP3/p38MAPK/Bcl‐2 pathway. Given the cardiovascular hazard of a COX‐2 inhibitor, our findings indicate that the EP3 receptor and its downstream pathways may be potential targets for prevention of TCDD‐associated cardiovascular diseases.
Collapse
Affiliation(s)
- Yu Yu
- Department of Pharmacology, Tianjin Medical University, Tianjin, China.,Department of Pediatric Cardiology, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Liu
- Department of Pharmacology, Tianjin Medical University, Tianjin, China.,Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shumin Guo
- Department of Pharmacology, Tianjin Medical University, Tianjin, China.,Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qianqian Zhang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Juan Tang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guizhu Liu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Deping Kong
- Department of Pharmacology, Tianjin Medical University, Tianjin, China.,Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Juanjuan Li
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shuai Yan
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ruiguo Wang
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Peilong Wang
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoou Su
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Yu
- Department of Pharmacology, Tianjin Medical University, Tianjin, China.,Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
20
|
Rainey NE, Saric A, Leberre A, Dewailly E, Slomianny C, Vial G, Zeliger HI, Petit PX. Synergistic cellular effects including mitochondrial destabilization, autophagy and apoptosis following low-level exposure to a mixture of lipophilic persistent organic pollutants. Sci Rep 2017; 7:4728. [PMID: 28680151 PMCID: PMC5498599 DOI: 10.1038/s41598-017-04654-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 05/25/2017] [Indexed: 12/13/2022] Open
Abstract
Humans are exposed to multiple exogenous environmental pollutants. Many of these compounds are parts of mixtures that can exacerbate harmful effects of the individual mixture components. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is primarily produced via industrial processes including incineration and the manufacture of herbicides. Both endosulfan and TCDD are persistent organic pollutants which elicit cytotoxic effects by inducing reactive oxygen species generation. Sublethal concentrations of mixtures of TCDD and endosulfan increase oxidative stress, as well as mitochondrial homeostasis disruption, which is preceded by a calcium rise and, in fine, induce cell death. TCDD+Endosulfan elicit a complex signaling sequence involving reticulum endoplasmic destalilization which leads to Ca2+ rise, superoxide anion production, ATP drop and late NADP(H) depletion associated with a mitochondrial induced apoptosis concomitant early autophagic processes. The ROS scavenger, N-acetyl-cysteine, blocks both the mixture-induced autophagy and death. Calcium chelators act similarly and mitochondrially targeted anti-oxidants also abrogate these effects. Inhibition of the autophagic fluxes with 3-methyladenine, increases mixture-induced cell death. These findings show that subchronic doses of pollutants may act synergistically. They also reveal that the onset of autophagy might serve as a protective mechanism against ROS-triggered cytotoxic effects of a cocktail of pollutants in Caco-2 cells and increase their tumorigenicity.
Collapse
Affiliation(s)
- Nathan E Rainey
- Laboratoire de Toxicologie, Pharmacologie et Signalisation Cellulaire, INSERM S-1124, Université Paris-Descartes, Centre Universitaire des Saints-Pères, 45 Rue des Saints-Pères, F-75270, Paris, Cedex 06, France
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, X. Bichat Hospital, Université Paris 13, UFR SMBH Sorbonne Paris Cité, 75018, Paris, France
| | - Ana Saric
- Laboratoire de Toxicologie, Pharmacologie et Signalisation Cellulaire, INSERM S-1124, Université Paris-Descartes, Centre Universitaire des Saints-Pères, 45 Rue des Saints-Pères, F-75270, Paris, Cedex 06, France
- Division of Molecular Medicine, Rudger Boskovic Institute, Zagreb, Croatia
| | - Alexandre Leberre
- Laboratoire de Toxicologie, Pharmacologie et Signalisation Cellulaire, INSERM S-1124, Université Paris-Descartes, Centre Universitaire des Saints-Pères, 45 Rue des Saints-Pères, F-75270, Paris, Cedex 06, France
| | - Etienne Dewailly
- Laboratoire de Physiologie cellulaire, INSERM U800, Université des Sciences et Techniques de Lille 1, F-59655, Villeneuve d'Ascq, Cedex, France
| | - Christian Slomianny
- Laboratoire de Physiologie cellulaire, INSERM U800, Université des Sciences et Techniques de Lille 1, F-59655, Villeneuve d'Ascq, Cedex, France
| | - Guillaume Vial
- Unité 1060 INSERM CarMen/Univ.Lyon1/INRA 1235, INSA, Bât. IMBL, La Doua 11 Avenue Jean Capelle, 69100, Villeurbanne, France
| | - Harold I Zeliger
- Zeliger Chemical, Toxicological and Environmental Research, 41 Wildwood Drive, Cape Elizabeth, Maine, 04107, USA
| | - Patrice X Petit
- Laboratoire de Toxicologie, Pharmacologie et Signalisation Cellulaire, INSERM S-1124, Université Paris-Descartes, Centre Universitaire des Saints-Pères, 45 Rue des Saints-Pères, F-75270, Paris, Cedex 06, France.
| |
Collapse
|
21
|
Tong Y, Niu M, Du Y, Mei W, Cao W, Dou Y, Yu H, Du X, Yuan H, Zhao W. Aryl hydrocarbon receptor suppresses the osteogenesis of mesenchymal stem cells in collagen-induced arthritic mice through the inhibition of β-catenin. Exp Cell Res 2016; 350:349-357. [PMID: 28007558 DOI: 10.1016/j.yexcr.2016.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/17/2016] [Accepted: 12/18/2016] [Indexed: 12/13/2022]
Abstract
The contributions of aryl hydrocarbon receptor (Ahr) to the pathogenesis of rheumatoid arthritis (RA), particularly bone loss, have not been clearly explored. The imbalance between osteoblasts and osteoclasts is a major reason for bone loss. The dysfunction of osteoblasts, which are derived from mesenchymal stem cells (MSCs), induced bone erosion occurs earlier and is characterized as more insidious. Here, we showed that the nuclear expression and translocation of Ahr were both significantly increased in MSCs from collagen-induced arthritis (CIA) mice. The enhanced Ahr suppressed the mRNA levels of osteoblastic markers including Alkaline phosphatase (Alp) and Runt-related transcription factor 2 (Runx2) in the differentiation of MSCs to osteoblasts in CIA. The 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated activation of Ahr dose-dependently suppressed the expression of osteoblastic markers. In addition, the expression of β-catenin was reduced in CIA MSCs compared with control, and the TCDD-mediated activation of the Ahr significantly inhibited β-catenin expression. The Wnt3a-induced the activation of Wnt/β-catenin pathway partly rescued the osteogenesis decline induced by TCDD. Taken together, these results indicate that activated Ahr plays a negative role in CIA MSCs osteogenesis, possibly by suppressing the expression of β-catenin.
Collapse
Affiliation(s)
- Yulong Tong
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, PR China
| | - Menglin Niu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, PR China; Department of Blood Transfusion, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd., Beijing 100142, PR China
| | - Yuxuan Du
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, PR China
| | - Wentong Mei
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, PR China
| | - Wei Cao
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, PR China
| | - Yunpeng Dou
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, PR China
| | - Haitao Yu
- Department of Clinical Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu Province 730000, PR China
| | - Xiaonan Du
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, PR China
| | - Huihui Yuan
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, PR China.
| | - Wenming Zhao
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, PR China.
| |
Collapse
|
22
|
Bavithra S, Selvakumar K, Sundareswaran L, Arunakaran J. Neuroprotective Effect of Melatonin Against PCBs Induced Behavioural, Molecular and Histological Changes in Cerebral Cortex of Adult Male Wistar Rats. Neurochem Res 2016; 42:428-438. [DOI: 10.1007/s11064-016-2087-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/30/2016] [Accepted: 10/20/2016] [Indexed: 12/01/2022]
|
23
|
Environmental Ligands of the Aryl Hydrocarbon Receptor and Their Effects in Models of Adult Liver Progenitor Cells. Stem Cells Int 2016; 2016:4326194. [PMID: 27274734 PMCID: PMC4870370 DOI: 10.1155/2016/4326194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/07/2016] [Indexed: 12/20/2022] Open
Abstract
The toxicity of environmental and dietary ligands of the aryl hydrocarbon receptor (AhR) in mature liver parenchymal cells is well appreciated, while considerably less attention has been paid to their impact on cell populations exhibiting phenotypic features of liver progenitor cells. Here, we discuss the results suggesting that the consequences of the AhR activation in the cellular models derived from bipotent liver progenitors could markedly differ from those in hepatocytes. In contact-inhibited liver progenitor cells, the AhR agonists induce a range of effects potentially linked with tumor promotion. They can stimulate cell cycle progression/proliferation and deregulate cell-to-cell communication, which is associated with downregulation of proteins forming gap junctions, adherens junctions, and desmosomes (such as connexin 43, E-cadherin, β-catenin, and plakoglobin), as well as with reduced cell adhesion and inhibition of intercellular communication. At the same time, toxic AhR ligands may affect the activity of the signaling pathways contributing to regulation of liver progenitor cell activation and/or differentiation, such as downregulation of Wnt/β-catenin and TGF-β signaling, or upregulation of transcriptional targets of YAP/TAZ, the effectors of Hippo signaling pathway. These data illustrate the need to better understand the potential role of liver progenitors in the AhR-mediated liver carcinogenesis and tumor promotion.
Collapse
|
24
|
Enhancing Beta-Catenin Activity via GSK3beta Inhibition Protects PC12 Cells against Rotenone Toxicity through Nurr1 Induction. PLoS One 2016; 11:e0152931. [PMID: 27045591 PMCID: PMC4821554 DOI: 10.1371/journal.pone.0152931] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 03/20/2016] [Indexed: 12/22/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by progressive degeneration of dopaminergic (DA) neurons in the substantial nigra pars compacta. Increasing evidence showed that Wnt/β-catenin pathway and the orphan nuclear receptor Nurr1 play crucial roles in the survival and functional maintenance of DA neurons in the midbrain and GSK-3β antagonists LiCl and SB216763 were used to activate Wnt/β-catenin pathway experimentally. However, the detail mechanism underlying the neuroprotection against apoptosis on DA neuron is still unclear and the interaction between Wnt/β-catenin and Nurr1 remains undisclosed. In this study, using cell biological assay we investigated the function of Wnt/β-catenin and its crosstalk with Nurr1 on the course of PC12 cell degeneration in vitro. Our data showed that PC12 cell viability was inhibited by rotenone, but attenuated by GSK-3β antagonists LiCl or SB216763. The activity of Wnt/β-catenin pathway was deregulated on exposure of rotenone in a concentration-dependent manner. After the interference of β-catenin with siRNA, LiCl or SB216763 failed to protect PC12 cells from apoptosis by the rotenone toxicity. Our data confirmed that Wnt/β-catenin signaling activated by LiCl or SB216763 enhanced Nurr1 expression to 2.75 ± 0.55 and 4.06 ± 0.41 folds respectively compared with control detected by real-time PCR and the interaction of β-catenin with Nurr1 was identified by co-immunoprecipitate analysis. In conclusion, the data suggested that Wnt/β-catenin and Nurr1 are crucial factors in the survival of DA neurons, and the activation of Wnt/β-catenin pathway exerts protective effects on DA neurons partly by mean of a co-active pattern with Nurr1. This finding may shed a light on the potential treatment of Parkinson disease.
Collapse
|
25
|
Zhao J, Zhang Y, Zhao J, Wang C, Mao J, Li T, Wang X, Nie X, Jiang S, Wu Q. 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure influence the expression of glutamate transporter GLT-1 in C6 glioma cells via the Ca(2+) /protein kinase C pathway. J Appl Toxicol 2016; 36:1409-17. [PMID: 26988466 DOI: 10.1002/jat.3294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/16/2015] [Accepted: 12/29/2015] [Indexed: 12/20/2022]
Abstract
The widespread environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is considered one of the most toxic dioxin-like compounds. Although epidemiological studies have shown that TCDD exposure is linked to some neurological and neurophysiological disorders, the underlying mechanism of TCDD-mediated neurotoxicity has remained unclear. Astrocytes are the most abundant cells in the nervous systems, and are recognized as the important mediators of normal brain functions as well as neurological, neurodevelopmental and neurodegenerative brain diseases. In this study, we investigated the role of TCDD in regulating the expression of glutamate transporter GLT-1 in astrocytes. TCDD, at concentrations of 0.1-100 nm, had no significantly harmful effect on the viability of C6 glioma cells. However, the expression of GLT-1 in C6 glioma cells was downregulated in a dose- and time-dependent manner. TCDD also caused activation of protein kinase C (PKC), as TCDD induced translocation of the PKC from the cytoplasm or perinuclear to the membrane. The translocation of PKC was inhibited by one Ca(2+) blocker, nifedipine, suggesting that the effects are triggered by the initial elevated intracellular concentration of free Ca(2+) . Finally, we showed that inhibition of the PKC activity reverses the TCDD-triggered reduction of GLT-1. In summary, our results suggested that TCDD exposure could downregulate the expression of GLT-1 in C6 via Ca(2+) /PKC pathway. The downregulation of GLT-1 might participate in TCDD-mediated neurotoxicity. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jianya Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Yan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Jianmei Zhao
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Cheng Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Jiamin Mao
- Department of Labor and Environmental Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Ting Li
- Department of Labor and Environmental Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Xiaoke Wang
- Department of Labor and Environmental Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Xiaoke Nie
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Shengyang Jiang
- Department of Labor and Environmental Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Qiyun Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China.
| |
Collapse
|
26
|
Isoflurane Is More Deleterious to Developing Brain Than Desflurane: The Role of the Akt/GSK3β Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7919640. [PMID: 27057548 PMCID: PMC4753322 DOI: 10.1155/2016/7919640] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 12/09/2015] [Accepted: 12/14/2015] [Indexed: 02/07/2023]
Abstract
Demand is increasing for safer inhalational anesthetics for use in pediatric anesthesia. In this regard, researchers have debated whether isoflurane is more toxic to the developing brain than desflurane. In the present study, we compared the effects of postnatal exposure to isoflurane with those of desflurane on long-term cognitive performance and investigated the role of the Akt/GSK3β signaling pathway. Postnatal day 6 (P6) mice were exposed to either isoflurane or desflurane, after which the phosphorylation levels of Akt/GSK3β and learning and memory were assessed at P8 or P31. The phosphorylation levels of Akt/GSK3β and learning and memory were examined after intervention with lithium. We found that isoflurane, but not desflurane, impaired spatial learning and memory at P31. Accompanied by behavioral change, only isoflurane decreased p-Akt (ser473) and p-GSK3β (ser9) expressions, which led to GSK3β overactivation. Lithium prevented GSK3β overactivation and alleviated isoflurane-induced cognitive deficits. These results suggest that isoflurane is more likely to induce developmental neurotoxicity than desflurane in context of multiple exposures and that the Akt/GSK3β signaling pathway partly participates in this process. GSK3β inhibition might be an effective way to protect against developmental neurotoxicity.
Collapse
|
27
|
Combination effects of AHR agonists and Wnt/β-catenin modulators in zebrafish embryos: Implications for physiological and toxicological AHR functions. Toxicol Appl Pharmacol 2015; 284:163-79. [PMID: 25711857 DOI: 10.1016/j.taap.2015.02.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 02/13/2015] [Indexed: 12/30/2022]
Abstract
Wnt/β-catenin signaling regulates essential biological functions and acts in developmental toxicity of some chemicals. The aryl hydrocarbon receptor (AHR) is well-known to mediate developmental toxicity of persistent dioxin-like compounds (DLCs). Recent studies indicate a crosstalk between β-catenin and the AHR in some tissues. However the nature of this crosstalk in embryos is poorly known. We observed that zebrafish embryos exposed to the β-catenin inhibitor XAV939 display effects phenocopying those of the dioxin-like 3,3',4,4',5-pentachlorobiphenyl (PCB126). This led us to investigate the AHR interaction with β-catenin during development and ask whether developmental toxicity of DLCs involves antagonism of β-catenin signaling. We examined phenotypes and transcriptional responses in zebrafish embryos exposed to XAV939 or to a β-catenin activator, 1-azakenpaullone, alone or with AHR agonists, either PCB126 or 6-formylindolo[3,2-b]carbazole (FICZ). Alone 1-azakenpaullone and XAV939 both were embryo-toxic, and we found that in the presence of FICZ, the toxicity of 1-azakenpaullone decreased while the toxicity of XAV939 increased. This rescue of 1-azakenpaullone effects occurred in the time window of Ahr2-mediated toxicity and was reversed by morpholino-oligonucleotide knockdown of Ahr2. Regarding PCB126, addition of either 1-azakenpaullone or XAV939 led to lower mortality than with PCB126 alone but surviving embryos showed severe edemas. 1-Azakenpaullone induced transcription of β-catenin-associated genes, while PCB126 and FICZ blocked this induction. The data indicate a stage-dependent antagonism of β-catenin by Ahr2 in zebrafish embryos. We propose that the AHR has a physiological role in regulating β-catenin during development, and that this is one point of intersection linking toxicological and physiological AHR-governed processes.
Collapse
|
28
|
Yegambaram M, Manivannan B, Beach TG, Halden RU. Role of environmental contaminants in the etiology of Alzheimer's disease: a review. Curr Alzheimer Res 2015; 12:116-46. [PMID: 25654508 PMCID: PMC4428475 DOI: 10.2174/1567205012666150204121719] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 12/10/2014] [Accepted: 01/14/2015] [Indexed: 12/11/2022]
Abstract
Alzheimer's dis ease (AD) is a leading cause of mortality in the developed world with 70% risk attributable to genetics. The remaining 30% of AD risk is hypothesized to include environmental factors and human lifestyle patterns. Environmental factors possibly include inorganic and organic hazards, exposure to toxic metals (aluminium, copper), pesticides (organochlorine and organophosphate insecticides), industrial chemicals (flame retardants) and air pollutants (particulate matter). Long term exposures to these environmental contaminants together with bioaccumulation over an individual's life-time are speculated to induce neuroinflammation and neuropathology paving the way for developing AD. Epidemiologic associations between environmental contaminant exposures and AD are still limited. However, many in vitro and animal studies have identified toxic effects of environmental contaminants at the cellular level, revealing alterations of pathways and metabolisms associated with AD that warrant further investigations. This review provides an overview of in vitro, animal and epidemiological studies on the etiology of AD, highlighting available data supportive of the long hypothesized link between toxic environmental exposures and development of AD pathology.
Collapse
Affiliation(s)
| | | | | | - Rolf U Halden
- Center for Environmental Security, The Biodesign Institute, Arizona State University, PO Box 875904 Tempe, AZ 85287, USA.
| |
Collapse
|
29
|
Kędzior M, Seredyński R, Godzik U, Tomczyk D, Gutowicz J, Terlecka E, Całkosiński I, Terlecki G. Inhibition of cathepsin B activity by 2,3,7,8-tetrachlorodibenzo-p-dioxin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:733-737. [PMID: 25163566 DOI: 10.1007/s11356-014-3482-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/18/2014] [Indexed: 06/03/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the most potent toxic isomer in the dioxin-like family. Due to its resistance to metabolic degradation, this ubiquitous environmental pollutant readily accumulates in multiple organs. Cathepsin B is a lysosomal cysteine protease playing an essential role in the intracellular protein turnover. Alterations in its expression, activity, and localization may facilitate the development of many pathologies, including cancer. TCDD, due to its extremely lipophilic nature, may diffuse through biological membranes and affect lysosomal enzymes, including cathepsins. Therefore, in this study we performed two enzymatic assays, spectrofluorimetry and gelatin zymography, in order to evaluate the effect of TCDD on purified bovine cathepsin B. We showed that the dioxin decreases the enzyme's activity in a dose-dependent manner. The reversibility of TCDD-induced inhibition of the protease was also examined, suggesting that TCDD does not bind covalently to the enzyme's active site, acting rather as a reversible inhibitor.
Collapse
Affiliation(s)
- Mateusz Kędzior
- Department of Physical Chemistry of Microorganisms, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Tiwari SK, Agarwal S, Seth B, Yadav A, Ray RS, Mishra VN, Chaturvedi RK. Inhibitory Effects of Bisphenol-A on Neural Stem Cells Proliferation and Differentiation in the Rat Brain Are Dependent on Wnt/β-Catenin Pathway. Mol Neurobiol 2014; 52:1735-1757. [PMID: 25381574 DOI: 10.1007/s12035-014-8940-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/13/2014] [Indexed: 02/07/2023]
Abstract
Neurogenesis, a process of generation of new neurons, occurs throughout the life in the hippocampus and sub-ventricular zone (SVZ). Bisphenol-A (BPA), an endocrine disrupter used as surface coating for packaged food cans, injures the developing and adult brain. However, the effects of BPA on neurogenesis and underlying cellular and molecular mechanism(s) are still unknown. Herein, we studied the effect(s) of prenatal and early postnatal exposure of low dose BPA on Wnt/β-catenin signaling pathway that controls different steps of neurogenesis such as neural stem cell (NSC) proliferation and neuronal differentiation. Pregnant rats were treated with 4, 40, and 400 μg BPA/kg body weight orally daily from gestational day 6 to postnatal day 21. Both in vivo and in vitro studies showed that BPA alters NSC proliferation and differentiation. BPA impaired NSC proliferation (5'-bromo-2'-deoxyuridine (BrdU(+)) and nestin(+) cells) and neuronal differentiation (BrdU/doublecortin(+) and BrdU/neuronal nuclei (NeuN(+)) cells) in the hippocampus and SVZ as compared to control. It significantly altered expression/protein levels of neurogenic genes and the Wnt pathway genes in the hippocampus. BPA reduced cellular β-catenin and p-GSK-3β levels and decreased β-catenin nuclear translocation, and cyclin-D1 and TCF/LEF promoter luciferase activity. Specific activation and blockage of the Wnt pathway suggested involvement of this pathway in BPA-mediated inhibition of neurogenesis. Further, blockage of GSK-3β activity by SB415286 and GSK-3β small interfering RNA (siRNA) attenuated BPA-induced downregulation of neurogenesis. Overall, these results suggest significant inhibitory effects of BPA on NSC proliferation and differentiation in the rat via the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Shashi Kant Tiwari
- Developmental Toxicology Division, Systems Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80-MG Marg, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Swati Agarwal
- Developmental Toxicology Division, Systems Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80-MG Marg, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Brashket Seth
- Developmental Toxicology Division, Systems Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80-MG Marg, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Anuradha Yadav
- Developmental Toxicology Division, Systems Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80-MG Marg, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Ratan Singh Ray
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.,Photobiology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80-MG Marg, Lucknow, Uttar Pradesh, India
| | - Vijay Nath Mishra
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Division, Systems Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80-MG Marg, Lucknow, Uttar Pradesh, India. .,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.
| |
Collapse
|
31
|
Schneider AJ, Branam AM, Peterson RE. Intersection of AHR and Wnt signaling in development, health, and disease. Int J Mol Sci 2014; 15:17852-85. [PMID: 25286307 PMCID: PMC4227194 DOI: 10.3390/ijms151017852] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/04/2014] [Accepted: 09/18/2014] [Indexed: 12/16/2022] Open
Abstract
The AHR (aryl hydrocarbon receptor) and Wnt (wingless-related MMTV integration site) signaling pathways have been conserved throughout evolution. Appropriately regulated signaling through each pathway is necessary for normal development and health, while dysregulation can lead to developmental defects and disease. Though both pathways have been vigorously studied, there is relatively little research exploring the possibility of crosstalk between these pathways. In this review, we provide a brief background on (1) the roles of both AHR and Wnt signaling in development and disease, and (2) the molecular mechanisms that characterize activation of each pathway. We also discuss the need for careful and complete experimental evaluation of each pathway and describe existing research that explores the intersection of AHR and Wnt signaling. Lastly, to illustrate in detail the intersection of AHR and Wnt signaling, we summarize our recent findings which show that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced disruption of Wnt signaling impairs fetal prostate development.
Collapse
Affiliation(s)
- Andrew J Schneider
- School of Pharmacy and Molecular and Environmental Toxicology Center University of Wisconsin, Madison, WI 53705, USA.
| | - Amanda M Branam
- School of Pharmacy and Molecular and Environmental Toxicology Center University of Wisconsin, Madison, WI 53705, USA.
| | - Richard E Peterson
- School of Pharmacy and Molecular and Environmental Toxicology Center University of Wisconsin, Madison, WI 53705, USA.
| |
Collapse
|
32
|
Rasinger J, Carroll T, Lundebye A, Hogstrand C. Cross-omics gene and protein expression profiling in juvenile female mice highlights disruption of calcium and zinc signalling in the brain following dietary exposure to CB-153, BDE-47, HBCD or TCDD. Toxicology 2014; 321:1-12. [DOI: 10.1016/j.tox.2014.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/18/2014] [Accepted: 03/18/2014] [Indexed: 10/25/2022]
|
33
|
Zhang Y, Nie X, Tao T, Qian W, Jiang S, Jiang J, Li A, Guo A, Xu G, Wu Q. 2,3,7,8-Tetrachlorodibenzo-p-dioxin promotes astrocyte activation and the secretion of tumor necrosis factor-α via PKC/SSeCKS-dependent mechanisms. J Neurochem 2014; 129:839-49. [PMID: 24673440 DOI: 10.1111/jnc.12696] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/17/2014] [Accepted: 02/18/2014] [Indexed: 12/30/2022]
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a ubiquitous environmental pollutant that could induce significant toxic effects in the human nervous system. However, the underlying molecular mechanism has not been entirely elucidated. Reactive astrogliosis has implicated in various neurological diseases via the production of a variety of pro-inflammatory mediators. Herein, we investigated the potential role of TCDD in facilitating astrocyte activation and the underlying molecular mechanisms. We showed that TCDD induced rapid astrocyte activation following TCDD exposure, which was accompanied by significantly elevated expression of Src-Suppressed-C Kinase Substrate (SSeCKS), a protein involved in protein kinase C (PKC)-mediated Nuclear Factor kappa B signaling, suggesting a possible involvement of PKC-induced SSeCKS activation in TCDD-triggered reactive astroglia. In keeping with the finding, we found that the level of phosphorylated Nuclear Factor kappa B p65 was remarkably increased after TCDD treatment. Furthermore, interference of SSeCKS attenuated TCDD-induced inducible nitric oxide synthase, glial fibrillary acidic protein, phospho-p65 expression, and tumor necrosis factor-α secretion in astrocytes. In addition, pre-treatment with PKC inhibitor also attenuated TCDD-induced astrocyte activation, as well as SSeCKS expression. Interestingly, we found that TCDD treatment could lead to SSeCKS perinuclear localization, which could be abolished after treatment with PKC inhibitor. Finally, we showed that inhibition of PKC activity or SSeCKS expression would impair TCDD-triggered tumor necrosis factor-α secretion. Our results suggested that TCDD exposure could lead to astrocyte activation through PKC/SSeCKS-dependent mechanisms, highlighting that astrocytes might be important target of TCDD-induced neurotoxicity. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) elicits neurotoxic effects. Here, we show TCDD induces pro-inflammatory responses in astrocytes. TCDD initiates an increase of [Ca2+]i, followed by the activation of PKC, which then induces the activation of Src-suppressed C-kinase substrate (SSeCKS). SSeCKS promotes NF-κB activation and the secretion of TNF-α and nitric oxide in astrocytes.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Nutrition and Food Hygieney, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wan C, Liu J, Nie X, Zhao J, Zhou S, Duan Z, Tang C, Liang L, Xu G. 2, 3, 7, 8-Tetrachlorodibenzo-P-dioxin (TCDD) induces premature senescence in human and rodent neuronal cells via ROS-dependent mechanisms. PLoS One 2014; 9:e89811. [PMID: 24587053 PMCID: PMC3933666 DOI: 10.1371/journal.pone.0089811] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 01/27/2014] [Indexed: 11/30/2022] Open
Abstract
The widespread environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a potent toxicant that causes significant neurotoxicity. However, the biological events that participate in this process remain largely elusive. In the present study, we demonstrated that TCDD exposure triggered apparent premature senescence in rat pheochromocytoma (PC12) and human neuroblastoma SH-SY5Y cells. Senescence-associated β-galactosidase (SA-β-Gal) assay revealed that TCDD induced senescence in PC12 neuronal cells at doses as low as 10 nM. TCDD led to F-actin reorganization and the appearance of an alternative senescence marker, γ-H2AX foci, both of which are important features of cellular senescence. In addition, TCDD exposure altered the expression of senescence marker proteins, such as p16, p21 and p-Rb, in both dose- and time-dependent manners. Furthermore, we demonstrated that TCDD promotes mitochondrial dysfunction and the accumulation of cellular reactive oxygen species (ROS) in PC12 cells, leading to the activation of signaling pathways that are involved in ROS metabolism and senescence. TCDD-induced ROS generation promoted significant oxidative DNA damage and lipid peroxidation. Notably, treatment with the ROS scavenger N-acetylcysteine (NAC) markedly attenuated TCDD-induced ROS production, cellular oxidative damage and neuronal senescence. Moreover, we found that TCDD induced a similar ROS-mediated senescence response in human neuroblastoma SH-SY5Y cells. In sum, these results demonstrate for the first time that TCDD induces premature senescence in neuronal cells by promoting intracellular ROS production, supporting the idea that accelerating the onset of neuronal senescence may be an important mechanism underlying TCDD-induced neurotoxic effects.
Collapse
Affiliation(s)
- Chunhua Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Jiao Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Xiaoke Nie
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Jianya Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Songlin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Zhiqing Duan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Cuiying Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Lingwei Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Guangfei Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, People's Republic of China
- * E-mail: .
| |
Collapse
|