1
|
Miller ZA, Mueller A, Kim T, Jolivert JF, Ma RZ, Muthuswami S, Park A, McMahon DB, Nead KT, Carey RM, Lee RJ. Lidocaine induces apoptosis in head and neck squamous cell carcinoma through activation of bitter taste receptor T2R14. Cell Rep 2023; 42:113437. [PMID: 37995679 PMCID: PMC10842818 DOI: 10.1016/j.celrep.2023.113437] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/22/2023] [Accepted: 10/29/2023] [Indexed: 11/25/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) have high mortality and significant treatment-related morbidity. It is vital to discover effective, minimally invasive therapies that improve survival and quality of life. Bitter taste receptors (T2Rs) are expressed in HNSCCs, and T2R activation can induce apoptosis. Lidocaine is a local anesthetic that also activates bitter taste receptor 14 (T2R14). Lidocaine has some anti-cancer effects, but the mechanisms are unclear. Here, we find that lidocaine causes intracellular Ca2+ mobilization through activation of T2R14 in HNSCC cells. T2R14 activation with lidocaine depolarizes mitochondria, inhibits proliferation, and induces apoptosis. Concomitant with mitochondrial Ca2+ influx, ROS production causes T2R14-dependent accumulation of poly-ubiquitinated proteins, suggesting that proteasome inhibition contributes to T2R14-induced apoptosis. Lidocaine may have therapeutic potential in HNSCCs as a topical gel or intratumor injection. In addition, we find that HPV-associated (HPV+) HNSCCs are associated with increased TAS2R14 expression. Lidocaine treatment may benefit these patients, warranting future clinical studies.
Collapse
Affiliation(s)
- Zoey A Miller
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Arielle Mueller
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - TaeBeom Kim
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer F Jolivert
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ray Z Ma
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sahil Muthuswami
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - April Park
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Derek B McMahon
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kevin T Nead
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ryan M Carey
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Robert J Lee
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Jiang W, Li X, Xu H, Gu X, Li S, Zhu L, Lu J, Duan X, Li W, Fang M. UBL7 enhances antiviral innate immunity by promoting Lys27-linked polyubiquitination of MAVS. Cell Rep 2023; 42:112272. [PMID: 36943869 DOI: 10.1016/j.celrep.2023.112272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/20/2023] [Accepted: 03/02/2023] [Indexed: 03/22/2023] Open
Abstract
RNA virus infection usually triggers a range of host immune responses, including the induction of proinflammatory cytokines, interferons, and interferon-stimulated genes (ISGs). Here, we report that UBL7, a ubiquitin-like protein, is upregulated during RNA virus infection and induced by type I interferon as an ISG. UBL7-deficient mice exhibit increased susceptibility to viral infection due to attenuated antiviral innate immunity. UBL7 enhances innate immune response to viral infection by promoting the K27-linked polyubiquitination of MAVS. UBL7 interacts with TRIM21, an E3 ubiquitin ligase of MAVS, and promotes the combination of TRIM21 with MAVS in a dose-dependent manner, facilitating the K27-linked polyubiquitination of MAVS and recruiting of TBK1 to enhance the IFN signaling pathway. Moreover, UBL7 has a broad-spectrum antiviral function as an immunomodulatory adaptor protein. Therefore, UBL7 positively regulates innate antiviral signaling and promotes positive feedback to enhance and amplify the antiviral response.
Collapse
Affiliation(s)
- Wei Jiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinyu Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Henan Xu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuling Gu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiao Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuefeng Duan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Li
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; International College, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Wang M, Wang Y, Yao W, Du X, Li Q. Lnc2300 is a cis-acting long noncoding RNA of CYP11A1 in ovarian granulosa cells. J Cell Physiol 2022; 237:4238-4250. [PMID: 36074900 DOI: 10.1002/jcp.30872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/10/2022]
Abstract
The high level of progesterone and 17β-estradiol ratio (P4/E2) in follicular fluid has been considered as a biomarker of follicular atresia. CYP11A1, the crucial gene encoding the rate-limiting enzyme for steroid hormone synthesis, has been reported differently expressed in the ovary during follicular atresia. However, the regulation mechanism of CYP11A1 expression during follicular atresia still remains unclear. Here, we have demonstrated that lnc2300, a novel pig ovary-specific highly expressed cis-acting long noncoding RNA (lncRNA) transcribed from chromosome 7, has the ability to induce the expression of CYP11A1 and inhibit the apoptosis of porcine granulosa cells (GCs). Mechanistically, lnc2300, mainly located in the cytoplasm of porcine GCs, sponges and suppresses the expression of miR-365-3p through acting as a competing endogenous RNA (ceRNA), which further relieves the inhibitory effects of miR-365-3p on the expression of CYP11A1. Besides, CYP11A1 is validated as a direct functional target of miR-365-3p in porcine GCs. Functionally, lnc2300 is an antiapoptotic lncRNA that reduces porcine GC apoptosis by inhibiting the proapoptotic function of miR-365-3p. In summary, our findings reveal a cis-acting regulation mechanism of CYP11A1 through lncRNA, and define a novel signaling pathway, lnc2300/miR-365-3p/CYP11A1 axis, which is involved in the regulation of GC apoptosis and follicular atresia.
Collapse
Affiliation(s)
- Miaomiao Wang
- Laboratory of Statistical Genetics and Epigenome, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yang Wang
- Laboratory of Statistical Genetics and Epigenome, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wang Yao
- Laboratory of Statistical Genetics and Epigenome, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xing Du
- Laboratory of Statistical Genetics and Epigenome, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qifa Li
- Laboratory of Statistical Genetics and Epigenome, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Qin X, Yang L, Ma X, Jiang B, Wu S, Wang A, Xu S, Wu W, Song H, Du N, Lv K, Li Y, Liu M. Identification of dihydroquinolizinone derivatives with cyclic ether moieties as new anti-HBV agents. Eur J Med Chem 2022; 238:114518. [DOI: 10.1016/j.ejmech.2022.114518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/28/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022]
|
5
|
He Y, Peng X, Liu Y, Wu Q, Zhou Q, Hu L, Fang Z, Lin Y, Xu S, Feng B, Li J, Zhuo Y, Wu D, Che L. Effects of Maternal Fiber Intake on Intestinal Morphology, Bacterial Profile and Proteome of Newborns Using Pig as Model. Nutrients 2020; 13:E42. [PMID: 33375592 PMCID: PMC7823571 DOI: 10.3390/nu13010042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Dietary fiber intake during pregnancy may improve offspring intestinal development. The aim of this study was to evaluate the effect of maternal high fiber intake during late gestation on intestinal morphology, microbiota, and intestinal proteome of newborn piglets. Sixteen sows were randomly allocated into two groups receiving the control diet (CD) and high-fiber diet (HFD) from day 90 of gestation to farrowing. Newborn piglets were selected from each litter, named as CON and Fiber group, respectively. Maternal high fiber intake did not markedly improve the birth weight, but increased the body length, the ileal crypt depth and colonic acetate level. In addition, maternal high fiber intake increased the -diversity indices (Observed species, Simpson, and ACE), and the abundance of Acidobacteria and Bacteroidetes at phylum level, significantly increased the abundance of Bradyrhizobium and Phyllobacterium at genus level in the colon of newborn piglets. Moreover, maternal high fiber intake markedly altered the ileal proteome, increasing the abundances of proteins associated with oxidative status, energy metabolism, and immune and inflammatory responses, and decreasing abundances of proteins related to cellular apoptosis, cell structure, and motility. These findings indicated that maternal high fiber intake could alter intestinal morphology, along with the altered intestinal microbiota composition and proteome of offspring.
Collapse
Affiliation(s)
- Ying He
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| | - Xie Peng
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| | - Yang Liu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| | - Qing Wu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| | - Qiang Zhou
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| | - Liang Hu
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China;
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| | - Jian Li
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| | - De Wu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| |
Collapse
|
6
|
Zhang H, Chen X, Zheng T, Lin M, Chen P, Liao Y, Gong C, Gao F, Zheng X. Amitriptyline Protects Against Lidocaine-induced Neurotoxicity in SH-SY5Y Cells via Inhibition of BDNF-mediated Autophagy. Neurotox Res 2020; 39:133-145. [PMID: 33156513 DOI: 10.1007/s12640-020-00299-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/27/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
Amitriptyline (AMI) is a traditional tricyclic antidepressant that has been proven to exhibit neuroprotective effects in various neurological disorders. However, the underlying mechanism by which AMI attenuates lidocaine-induced neurotoxicity remains poorly understood. Brain-derived neurotrophic factor (BDNF) is an essential neurotrophin to neuronal development and survival in the brain, and recent studies have suggested that BDNF plays an important role in mediating lidocaine-induced neurotoxicity. The present study was performed to evaluate the protective effect of AMI against the neurotoxicity induced by lidocaine and to explore the role of BDNF-dependent autophagy in this process. The data showed that AMI pretreatment alleviated lidocaine-induced neurotoxicity, as evidenced by the restoration of cell viability, normalization of cell morphology, and reduction in the cell apoptosis index. In addition, autophagy inhibitor 3-methyladenine (3-MA) had a protective effect similar to that of AMI, but autophagy activator rapamycin eliminated the protective effect of AMI by suppressing mTOR activation. Moreover, at the molecular level, we found that AMI-mediated autophagy was involved in the expression of BDNF. The overexpression of BDNF or application of exogenous recombinant BDNF significantly suppressed autophagy and protected SH-SY5Y cells from apoptosis induced by Lido, whereas the neuroprotection of AMI was abolished by either knockdown of BDNF or use of a tropomyosin-related kinase B (TrkB) inhibitor ANA-12 in SH-SY5Y cells. Overall, our findings demonstrated that the protective effect of AMI against lidocaine-induced neurotoxicity correlated with inhibition of autophagy activity through upregulation of BDNF expression.
Collapse
Affiliation(s)
- Honghong Zhang
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People's Republic of China
| | - Xiaohui Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People's Republic of China
| | - Ting Zheng
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People's Republic of China
| | - Mingxue Lin
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People's Republic of China
| | - Pinzhong Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People's Republic of China
| | - Yanling Liao
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People's Republic of China
| | - Cansheng Gong
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People's Republic of China
| | - Fei Gao
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People's Republic of China
| | - Xiaochun Zheng
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People's Republic of China. .,Fujian Provincial Institute of Emergency Medicine, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, People's Republic of China.
| |
Collapse
|
7
|
Lin D, Lin J, Li X, Zhang J, Lai P, Mao Z, Zhang L, Zhu Y, Liu Y. The Identification of Differentially Expressed Genes Showing Aberrant Methylation Patterns in Pheochromocytoma by Integrated Bioinformatics Analysis. Front Genet 2019; 10:1181. [PMID: 31803246 PMCID: PMC6873930 DOI: 10.3389/fgene.2019.01181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/24/2019] [Indexed: 11/18/2022] Open
Abstract
Malignant pheochromocytoma (PHEO) can only be fully diagnosed when metastatic foci develop. However, at this point in time, patients gain little benefit from traditional therapeutic methods. Methylation plays an important role in the pathogenesis of PHEO. The aim of this research was to use integrated bioinformatics analysis to identify differentially expressed genes (DEGs) showing aberrant methylation patterns in PHEO and therefore provide further understanding of the molecular mechanisms underlying this condition. Aberrantly methylated DEGs were first identified by using R software (version 3.6) to combine gene expression microarray data (GSE19422) with gene methylation microarray data (GSE43293). An online bioinformatics database (DAVID) was then used to identify all overlapping DEGs showing aberrant methylation; these were annotated and then functional enrichment was ascertained by gene ontology (GO) analysis. The online STRING tool was then used to analyze interactions between all overlapping DEGs showing aberrant methylation; these results were then visualized by Cytoscape (version 3.61). Next, using the cytoHubba plugin within Cytoscape, we identified the top 10 hub genes and found that these were predominantly enriched in pathways related to cancer. Reference to The Cancer Genome Atlas (TCGA) further confirmed our results and further identified an upregulated hypomethylated gene (SCN2A) and a downregulated hypermethylated gene (KCNQ1). Logistic regression analysis and receiver operating characteristic (ROC) curve analysis indicated that KCNQ1 and SCN2A represent promising differential diagnostic biomarkers between benign and malignant PHEO. Finally, clinical data showed that there were significant differences in the concentrations of potassium and sodium when compared between pre-surgery and post-surgery day 1. These suggest that KCNQ1 and SCN2A, genes that encode potassium and sodium channels, respectively, may serve as putative diagnostic targets for the diagnosis and prognosis of PHEO and therefore facilitate the clinical management of PHEO.
Collapse
Affiliation(s)
- Dengqiang Lin
- Department of Urology, Xiamen Hospital of Zhongshan Hospital, Fudan University, Xiamen, China
| | - Jinglai Lin
- Department of Urology, Xiamen Hospital of Zhongshan Hospital, Fudan University, Xiamen, China
| | - Xiaoxia Li
- Department of Radiology, Xiamen Hospital of Zhongshan Hospital, Fudan University, Xiamen, China
| | - Jianping Zhang
- Department of Urology, Xiamen Hospital of Zhongshan Hospital, Fudan University, Xiamen, China
| | - Peng Lai
- Department of Urology, Xiamen Hospital of Zhongshan Hospital, Fudan University, Xiamen, China
| | - Zhifeng Mao
- Department of Urology, Xiamen Hospital of Zhongshan Hospital, Fudan University, Xiamen, China
| | - Li Zhang
- Department of Urology, Xiamen Hospital of Zhongshan Hospital, Fudan University, Xiamen, China
| | - Yu Zhu
- Department of Urology, Ruijin Hospital, Medical School of Shanghai Jiaotong University, Shanghai, China
| | - Yujun Liu
- Department of Urology, Xiamen Hospital of Zhongshan Hospital, Fudan University, Xiamen, China
| |
Collapse
|
8
|
Tan Y, Bi X, Wang Q, Li Y, Zhang N, Lao J, Liu X. Dexmedetomidine protects PC12 cells from lidocaine-induced cytotoxicity via downregulation of Stathmin 1. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:2067-2079. [PMID: 31308624 PMCID: PMC6618032 DOI: 10.2147/dddt.s199572] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/04/2019] [Indexed: 12/26/2022]
Abstract
Background: Understanding of lidocaine-induced neurotoxicity is not complete, resulting in the unsuccessful treatment in some clinical settings. Dexmedetomidine (DEX) has been shown to alleviate lidocaine-induced neurotoxicity in our previous cell model. However, the rationale for DEX combined with lidocaine to reduce lidocaine-induced neurotoxicity in the clinical setting remains to be further clarified in the detailed molecular mechanism. Methods: In this study, we established a cellular injury model by lidocaine preconditioning. Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) proliferation assay kit were used to analyze cell proliferation. Cell apoptosis was measured by flow cytometry and Hoechst 33342 staining. Cell cycle progression was detected by flow cytometry. The protein expression levels were detected by Western blotting and immunofluorescence staining. Results: Our results showed that DEX dose-dependently restored impaired proliferation of PC12 cells induced by lidocaine,as reflected by the increased cell viability and EdU positive cells, which were consistent with the decreased expression of tumor suppressor protein p21 and increased expression of cell cycle-related cyclin D1 and CDK1. In addition, DEX dose-dependently reduced apoptotic PC12 cells induced by lidocaine,as reflected by the decreased expression of apoptosis-related Bax, caspase-3 and caspase-9 and increased expression of anti-apoptotic Bcl-2 compared to the cells only treated with lidocaine. Mechanistically, with gain-or-loss-of-function of STMN1, we showed that DEX-mediated neuroprotection by lidocaine-induced damage is associated with downregulation of STMN1 which might be an upstream molecule involved in regulation of mitochondria death pathway. Conclusion: Our results reveal that DEX is likely to be an effective adjunct to alleviate chronic neurotoxicity induced by lidocaine.
Collapse
Affiliation(s)
- Yonghong Tan
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, People's Republic of China
| | - Xiaobao Bi
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, People's Republic of China
| | - Qiong Wang
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, People's Republic of China
| | - Yu Li
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, People's Republic of China
| | - Na Zhang
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, People's Republic of China
| | - Jianxin Lao
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, People's Republic of China
| | - Xiaoping Liu
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, People's Republic of China
| |
Collapse
|
9
|
Do DN, Dudemaine PL, Fomenky BE, Ibeagha-Awemu EM. Integration of miRNA and mRNA Co-Expression Reveals Potential Regulatory Roles of miRNAs in Developmental and Immunological Processes in Calf Ileum during Early Growth. Cells 2018; 7:E134. [PMID: 30208606 PMCID: PMC6162677 DOI: 10.3390/cells7090134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 01/04/2023] Open
Abstract
This study aimed to investigate the potential regulatory roles of miRNAs in calf ileum developmental transition from the pre- to the post-weaning period. For this purpose, ileum tissues were collected from eight calves at the pre-weaning period and another eight calves at the post-weaning period and miRNA expression characterized by miRNA sequencing, followed by functional analyses. A total of 388 miRNAs, including 81 novel miRNAs, were identified. A total of 220 miRNAs were differentially expressed (DE) between the two periods. The potential functions of DE miRNAs in ileum development were supported by significant enrichment of their target genes in gene ontology terms related to metabolic processes and transcription factor activities or pathways related to metabolism (peroxisomes), vitamin digestion and absorption, lipid and protein metabolism, as well as intracellular signaling. Integration of DE miRNAs and DE mRNAs revealed several DE miRNA-mRNA pairs with crucial roles in ileum development (bta-miR-374a-FBXO18, bta-miR-374a-GTPBP3, bta-miR-374a-GNB2) and immune function (bta-miR-15b-IKBKB). This is the first integrated miRNA-mRNA analysis exploring the potential roles of miRNAs in calf ileum growth and development during early life.
Collapse
Affiliation(s)
- Duy N Do
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC J1M 0C8, Canada.
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Pier-Luc Dudemaine
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC J1M 0C8, Canada.
| | - Bridget E Fomenky
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC J1M 0C8, Canada.
- Département de Sciences Animale, Université Laval, Quebec, QC G1V 0A6, Canada.
| | - Eveline M Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC J1M 0C8, Canada.
| |
Collapse
|
10
|
Dexmedetomidine inhibits activation of the MAPK pathway and protects PC12 and NG108-15 cells from lidocaine-induced cytotoxicity at its maximum safe dose. Biomed Pharmacother 2017; 91:162-166. [DOI: 10.1016/j.biopha.2017.04.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 11/18/2022] Open
|