1
|
Shvachiy L, Amaro-Leal Â, Machado F, Rocha I, Geraldes V, Outeiro TF. Lead as an environmental toxicant in models of synucleinopathies. CHEMOSPHERE 2025; 380:144477. [PMID: 40347673 DOI: 10.1016/j.chemosphere.2025.144477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/08/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Lead, a toxic heavy metal, is prevalent in various industrial applications, contributing to environmental contamination and significant health concerns. Lead affects various body systems, especially the brain, causing long-lasting cognitive and behavioral changes. While most studies have focused on continuous lead exposure, intermittent exposure, such as that caused by migration or relocations, has received less attention. Importantly, lead exposure intensifies the severity of Parkinson's disease (PD) and dementia with Lewy bodies, diseases involving the accumulation of alpha-synuclein (aSyn) in the brain and in the gut. Although the precise mechanisms underlying these observations remain unclear, oxidative stress and mitochondrial dysfunction likely play a role. Here, we investigated how two different profiles of lead exposure - continuous and intermittent - affect models of synucleinopathies. We found that lead exposure enhances the formation of aSyn inclusions, resulting in an increase in both their number and size in cell models. In addition, we found that animals injected with aSyn pre-formed fibrils display serine 129-phosphorylated aSyn inclusions and a reduction in astrocytes in the substantia nigra. These animals also display neuronal damage and alterations in locomotor activity, exploration behavior, anxiety, memory impairments and hypertension. Our results suggest a mechanistic link between environmental lead exposure and the onset and progression of diseases associated with aSyn pathology. Understanding the molecular and cellular interactions between lead and aSyn is crucial for shaping public health policies and may provide novel insight into strategies for mitigating the impact of environmental toxins on neurodegenerative processes involved in Parkinson's disease and related synucleinopathies.
Collapse
Affiliation(s)
- Liana Shvachiy
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, 37073, Germany; Cardiovascular Centre of the University of Lisbon, Lisbon, 1649-028, Portugal; Institute of Physiology, Faculty of Medicine of the University of Lisbon, Portugal
| | - Ângela Amaro-Leal
- Cardiovascular Centre of the University of Lisbon, Lisbon, 1649-028, Portugal; Institute of Physiology, Faculty of Medicine of the University of Lisbon, Portugal; Egas Moniz School of Health and Science, 2829-511, Caparica, Portugal
| | - Filipa Machado
- Cardiovascular Centre of the University of Lisbon, Lisbon, 1649-028, Portugal
| | - Isabel Rocha
- Cardiovascular Centre of the University of Lisbon, Lisbon, 1649-028, Portugal; Institute of Physiology, Faculty of Medicine of the University of Lisbon, Portugal
| | - Vera Geraldes
- Cardiovascular Centre of the University of Lisbon, Lisbon, 1649-028, Portugal; Institute of Physiology, Faculty of Medicine of the University of Lisbon, Portugal.
| | - Tiago F Outeiro
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, 37073, Germany; Max Planck Institute for Muldisciplinary Science, 37075, Göttingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK; Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany.
| |
Collapse
|
2
|
Adeniyi MJ, Fabunmi OA, Awosika A. Unravelling the interplay between Harmattan wind and baroreflex functions: implications on environmental health and cardiovascular pathophysiology. EXPLORATION OF MEDICINE 2024:584-600. [DOI: 10.37349/emed.2024.00242] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/14/2024] [Indexed: 05/14/2025] Open
Abstract
Harmattan is a season characterized by dust, cold, and sub-humid trade winds in Sub-Saharan countries. It’s similar to meteorological phenomena like Asian dust storms, Santa Ana winds, Australian bushfires, and Saharan dust in the Caribbean. It causes profound changes in the cardiorespiratory system in apparently healthy individuals and increases the risk of hospitalization in susceptible individuals. Exposure to these extreme conditions has been associated with alterations in autonomic function and baroreceptor sensitivity thus resulting in dysregulation of blood pressure control mechanisms. Baroreceptors are critical regulators of hemodynamics and cardiovascular function. They play a vital role in the short-term responses to blood pressure perturbation and are essential for acute restoration of blood pressure following cold exposure. Harmattan wind contains a barrage of chemicals, dust, and particulate matters depending on industrialization, natural and human activities. Particulate matter from Harmattan dust can trigger systemic inflammation and oxidative stress, exacerbating endothelial dysfunction and impairing vascular reactivity thus contributing to the pathogenesis of alterations in baroreceptor insensitivity, and cardiovascular diseases, including hypertension and atherosclerosis. Furthermore, fine particulate matter from dust may penetrate deep into the respiratory tract, activating pulmonary sensory receptors and eliciting reflex responses that influence autonomic tone. The presence of rich acrolein smokes and non-essential heavy metals such as cadmium, lead, and mercury in Harmattan wind also reduces baroreflex sensitivity, culminating in a sustained increase in diastolic and systolic blood pressure. This integrated review aims to provide valuable insights into how changes in each of these environmental constituents alter vital pathophysiologic and immunologic mechanisms of the body leading to baroreceptor instability and ultimately hemodynamic imbalance using available primary studies. Understanding this intricate interplay is crucial for implementing targeted interventions and informed public health strategies to mitigate the adverse effects of extreme environmental exposure and ultimately reduce poor health outcomes in the affected regions.
Collapse
Affiliation(s)
- Mayowa Jeremiah Adeniyi
- Departments of Physiology, Federal University of Health Sciences Otukpo, Benue 972261, Nigeria
| | - Oyesanmi A. Fabunmi
- Health-awareness, Exercise and Cardio-immunologic Research Unit (HECIRU), Department of Physiology, College of Medicine, Ekiti State University, Ado-Ekiti 5363, Nigeria
| | - Ayoola Awosika
- College of Medicine, University of Illinois, Peoria, IL 61606, USA
| |
Collapse
|
3
|
Shvachiy L, Amaro-Leal Â, Machado F, Rocha I, Outeiro TF, Geraldes V. Gender-Specific Effects on the Cardiorespiratory System and Neurotoxicity of Intermittent and Permanent Low-Level Lead Exposures. Biomedicines 2024; 12:711. [PMID: 38672068 PMCID: PMC11048361 DOI: 10.3390/biomedicines12040711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Lead exposure is a significant health concern, ranking among the top 10 most harmful substances for humans. There are no safe levels of lead exposure, and it affects multiple body systems, especially the cardiovascular and neurological systems, leading to problems such as hypertension, heart disease, cognitive deficits, and developmental delays, particularly in children. Gender differences are a crucial factor, with women's reproductive systems being especially vulnerable, resulting in fertility issues, pregnancy complications, miscarriages, and premature births. The globalization of lead exposure presents new challenges in managing this issue. Therefore, understanding the gender-specific implications is essential for developing effective treatments and public health strategies to mitigate the impact of lead-related health problems. This study examined the effects of intermittent and permanent lead exposure on both male and female animals, assessing behaviours like anxiety, locomotor activity, and long-term memory, as well as molecular changes related to astrogliosis. Additionally, physiological and autonomic evaluations were performed, focusing on baro- and chemoreceptor reflexes. The study's findings revealed that permanent lead exposure has more severe health consequences, including hypertension, anxiety, and reactive astrogliosis, affecting both genders. However, males exhibit greater cognitive, behavioural, and respiratory changes, while females are more susceptible to chemoreflex hypersensitivity. In contrast, intermittent lead exposure leads to hypertension and reactive astrogliosis in both genders. Still, females are more vulnerable to cognitive impairment, increased respiratory frequency, and chemoreflex hypersensitivity, while males show more reactive astrocytes in the hippocampus. Overall, this research emphasizes the importance of not only investigating different types of lead exposure but also considering gender differences in toxicity when addressing this public health concern.
Collapse
Affiliation(s)
- Liana Shvachiy
- Center for Biostructural Imaging of Neurodegeneration, Department of Experimental Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany; (L.S.); (T.F.O.)
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal; (F.M.); (I.R.)
- Institute of Physiology, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal;
| | - Ângela Amaro-Leal
- Institute of Physiology, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal;
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
| | - Filipa Machado
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal; (F.M.); (I.R.)
| | - Isabel Rocha
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal; (F.M.); (I.R.)
- Institute of Physiology, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal;
| | - Tiago F. Outeiro
- Center for Biostructural Imaging of Neurodegeneration, Department of Experimental Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany; (L.S.); (T.F.O.)
- Max Planck Institute for Natural Science, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37073 Göttingen, Germany
| | - Vera Geraldes
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal; (F.M.); (I.R.)
- Institute of Physiology, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal;
| |
Collapse
|
4
|
Shvachiy L, Geraldes V, Outeiro TF. Uncovering the Molecular Link Between Lead Toxicity and Parkinson's Disease. Antioxid Redox Signal 2023; 39:321-335. [PMID: 36641635 DOI: 10.1089/ars.2022.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Significance: Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects millions around the world. The etiology of PD remains unknown, but environmental and occupational exposures to heavy metals are likely at play, and may impact the severity of the disease. Lead is a toxin known to affect many organs in the body throughout life, particularly the central nervous system. Recent Advances: In this study, we summarize and examine the evidence for such environmental and/or occupational exposures, with a focus on the molecular mechanisms associated with lead exposure and its potential contribution to the onset of parkinsonism in PD. In particular, populational studies suggest higher bone and blood lead levels are associated with increased risk of PD. Interestingly, low levels of lead exposure in the very early stages of life cause increase the production of alpha-synuclein protein in animal models. Critical Issues: Although the specific mechanisms underlying this association have not been fully assessed, oxidative stress and mitochondrial dysfunction are likely implicated and may explain the toxic effects that connect lead exposure to parkinsonism. Future Directions: Additional pre-clinical and clinical studies should be performed in order to further document the molecular link between lead toxicity and PD, as this may open novel perspectives in terms of disease prevention. Antioxid. Redox Signal. 39, 321-335.
Collapse
Affiliation(s)
- Liana Shvachiy
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Cardiovascular Centre of the University of Lisbon, Lisbon, Portugal
| | - Vera Geraldes
- Cardiovascular Centre of the University of Lisbon, Lisbon, Portugal
- Institute of Physiology, Faculty of Medicine of the University of Lisbon, Lisbon, Portugal
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| |
Collapse
|
5
|
Afonso AI, Amaro-Leal Â, Machado F, Rocha I, Geraldes V. Doxorubicin Dose-Dependent Impact on Physiological Balance-A Holistic Approach in a Rat Model. BIOLOGY 2023; 12:1031. [PMID: 37508460 PMCID: PMC10376408 DOI: 10.3390/biology12071031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Doxorubicin (DOX) is commonly used in several chemotherapies to treat various cancers, but it is known to cause cardiotoxicity and cardiac symptoms. Autonomic dysfunction is thought to contribute to the cardiotoxic effects of DOX, but the specific dose required to disrupt homeostatic processes is still unclear and is influenced by numerous factors. This study aimed to investigate how the DOX dosage affects autonomic function and physiological parameters, to elucidate the neurocardiac mechanisms underlying the observed cardiovascular side effects. Wistar rats were treated with DOX for four weeks and divided into three dosing groups: DOX8 (2 mg/kg/week), DOX16 (4 mg/kg/week), and DOX20 (5 mg/kg/week). A control group received NaCl 0.9% saline (1 mL/kg/week). In an acute experiment, we recorded blood pressure (BP), electrocardiogram, heart rate (HR), and respiratory rate (RF). Baroreflex gain and chemoreflex sensitivity were calculated, and cardiac tissue was analyzed with picrosirius histochemistry to measure collagen content. Our results showed that the LF/HF ratio, indicative of autonomic activity, was altered along with hypotension and bradycardia at a cumulative DOX dose threshold of 16 mg/kg. We observed a positive correlation between DOX dose and BP, HR, urinary norepinephrine, LF/HF ratio, and fibrotic heart area. Lower LF/HF ratios were associated with high DOX doses, reflecting drug-induced impairment of autonomic control of HR. This study provides valuable insights into the dose-dependent effects of DOX on physiological parameters and the development of cardiovascular dysfunction. These findings are critical, which is important for optimizing the management and therapeutic strategies for patients undergoing DOX-based chemotherapy.
Collapse
Affiliation(s)
- Ana I Afonso
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal
| | - Ângela Amaro-Leal
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal
- Egas Moniz School of Health and Science, 2829-511 Caparica, Portugal
| | - Filipa Machado
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal
| | - Isabel Rocha
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal
- Institute of Physiology, Faculty of Medicine of the University of Lisbon, 1649-028 Lisbon, Portugal
| | - Vera Geraldes
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal
- Institute of Physiology, Faculty of Medicine of the University of Lisbon, 1649-028 Lisbon, Portugal
| |
Collapse
|
6
|
Shvachiy L, Amaro-Leal Â, Outeiro TF, Rocha I, Geraldes V. Intermittent Lead Exposure Induces Behavioral and Cardiovascular Alterations Associated with Neuroinflammation. Cells 2023; 12:cells12050818. [PMID: 36899953 PMCID: PMC10000953 DOI: 10.3390/cells12050818] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
The nervous system is the primary target for lead exposure and the developing brain appears to be especially susceptible, namely the hippocampus. The mechanisms of lead neurotoxicity remain unclear, but microgliosis and astrogliosis are potential candidates, leading to an inflammatory cascade and interrupting the pathways involved in hippocampal functions. Moreover, these molecular changes can be impactful as they may contribute to the pathophysiology of behavioral deficits and cardiovascular complications observed in chronic lead exposure. Nevertheless, the health effects and the underlying influence mechanism of intermittent lead exposure in the nervous and cardiovascular systems are still vague. Thus, we used a rat model of intermittent lead exposure to determine the systemic effects of lead and on microglial and astroglial activation in the hippocampal dentate gyrus throughout time. In this study, the intermittent group was exposed to lead from the fetal period until 12 weeks of age, no exposure (tap water) until 20 weeks, and a second exposure from 20 to 28 weeks of age. A control group (without lead exposure) matched in age and sex was used. At 12, 20 and 28 weeks of age, both groups were submitted to a physiological and behavioral evaluation. Behavioral tests were performed for the assessment of anxiety-like behavior and locomotor activity (open-field test), and memory (novel object recognition test). In the physiological evaluation, in an acute experiment, blood pressure, electrocardiogram, and heart and respiratory rates were recorded, and autonomic reflexes were evaluated. The expression of GFAP, Iba-1, NeuN and Synaptophysin in the hippocampal dentate gyrus was assessed. Intermittent lead exposure induced microgliosis and astrogliosis in the hippocampus of rats and changes in behavioral and cardiovascular function. We identified increases in GFAP and Iba1 markers together with presynaptic dysfunction in the hippocampus, concomitant with behavioral changes. This type of exposure produced significant long-term memory dysfunction. Regarding physiological changes, hypertension, tachypnea, baroreceptor reflex impairment and increased chemoreceptor reflex sensitivity were observed. In conclusion, the present study demonstrated the potential of lead intermittent exposure inducing reactive astrogliosis and microgliosis, along with a presynaptic loss that was accompanied by alterations of homeostatic mechanisms. This suggests that chronic neuroinflammation promoted by intermittent lead exposure since fetal period may increase the susceptibility to adverse events in individuals with pre-existing cardiovascular disease and/or in the elderly.
Collapse
Affiliation(s)
- Liana Shvachiy
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal
- Institute of Physiology, Faculty of Medicine of the University of Lisbon, 1649-028 Lisbon, Portugal
| | - Ângela Amaro-Leal
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal
- Institute of Physiology, Faculty of Medicine of the University of Lisbon, 1649-028 Lisbon, Portugal
| | - Tiago F. Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany
- Max Planck Institute for Natural Science, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37073 Göttingen, Germany
| | - Isabel Rocha
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal
- Institute of Physiology, Faculty of Medicine of the University of Lisbon, 1649-028 Lisbon, Portugal
| | - Vera Geraldes
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal
- Institute of Physiology, Faculty of Medicine of the University of Lisbon, 1649-028 Lisbon, Portugal
- Correspondence: ; Tel.: +351-217999435
| |
Collapse
|
7
|
Moraes TAPD, Dias FCR, Sarmento-Filha MJ, Camara CDA, Silva TMS, Torres SM, Souza IA, Pereira MDF, Morais DB, Silva Junior VA. Role of synthetical amynoquinone ethyl 2-(1,4-dioxo-1,4-dihydronaphthalen-2-ylamino) acetate in inhibition of Ehrlich's tumor. Pathol Res Pract 2023; 241:154272. [PMID: 36525850 DOI: 10.1016/j.prp.2022.154272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Quinones are naturally or synthetically occurring secondary metabolites that have various bio-dynamics, highlighting their antitumor potential. This has been explored through their selective cytotoxicity, and studies in medicinal chemistry about the relation between biological activity versus chemical structure may lead to the solution of the toxicity problems associated with quinones. In this context, the antitumor effect of a synthetic naphthoquinone, named Ethyl 2-(1,4-Dioxo-1,4-Dihydronaphthalen-2-Ylamino) Acetate, was tested using mice transplanted with Ehrlich ascitic tumor as an experimental model. The acute toxicity test was performed using 30 mice that received the aminoquinone at doses of 100, 200, 300, and 600 mg/kg. After evaluation of the clinical findings in the spontaneous activity tests, the LD50 calculation for the test substance showed low levels of toxicity at doses lower than 244.11 ± 23.29 mg/kg. Thus, three experimental groups were established, where animals transplanted with tumor cells received NaCl vehicle solution (control, n = 6), and the others were treated with 71.7 mg/kg of Methotrexate (n = 6) or 20 mg/kg of Aminoquinone (n = 6). All administrations were intraperitoneal, in a single dose. Three days after the implantation of the tumor cells the animals were weighed daily and evaluated for tumor biometry and development. The treatments occurred five days after the implantation of the tumor cells and were extended for 7 more days. At the end of the 12-day experimental period, all animals were euthanized for biochemical and histopathological analyses of the tumors and vital organs. The spontaneous activity test showed that the amount of responses associated with the nervous system tends to increase with the increase in dosage, highlighting the excitatory effect on the central nervous system in almost all dosages employed, followed by depressant activities on this system. There was a significant tumor reduction, both in animals treated with methotrexate (71.7 %) and in those treated with aminoquinone (91.6 %) in the control group. There was no significant difference in tumor volume between the animals treated with aminoquinone or methotrexate. The histopathological analysis revealed that in both treatments there were fewer mitoses in the tumor mass compared to the control group. However, there was apparent toxicity to the liver, heart, and left kidney in the treatment with methotrexate compared to aminoquinone. The significant capacity for tumor reduction presented by aminoquinone allows pointing it as a promising alternative for the development of a more efficient drug to control tumor development, being necessary for the development of new studies to deepen the knowledge about its mechanisms of action.
Collapse
Affiliation(s)
| | | | - Maria José Sarmento-Filha
- Programa de Pós-Graduação em Desenvolvimento e Inovação Tecnológica em Medicamentos, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil
| | - Celso de Amorim Camara
- Departamento de Química, Universidade Federal Rural de Pernambuco - UFRPE, Recife, PE, Brazil
| | | | - Sandra Maria Torres
- Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco - UFRPE, Recife, PE, Brazil
| | - Ivone Antônia Souza
- Departamento de Antibióticos, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brazil
| | | | - Danielle Barbosa Morais
- Departamento de Morfologia, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil
| | | |
Collapse
|
8
|
From Molecular to Functional Effects of Different Environmental Lead Exposure Paradigms. BIOLOGY 2022; 11:biology11081164. [PMID: 36009791 PMCID: PMC9405384 DOI: 10.3390/biology11081164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/22/2022] [Accepted: 07/30/2022] [Indexed: 12/05/2022]
Abstract
Simple Summary Our comparative study brings new insights regarding the effects of environmental lead exposure on the cardiorespiratory and nervous systems. We show how various kinds of exposure can lead to different toxicities, with various degrees of nefarious effects. The developmental period is of utmost importance to the toxicity of environmental lead; however, we found that the duration of exposure is the prime reason for stronger effects, even though the dual effect of intermittent exposure causes greater molecular neuronal alterations. Abstract Lead is a heavy metal whose widespread use has resulted in environmental contamination and significant health problems, particularly if the exposure occurs during developmental stages. It is a cumulative toxicant that affects multiple systems of the body, including the cardiovascular and nervous systems. Chronic lead exposure has been defined as a cause of behavioral changes, inflammation, hypertension, and autonomic dysfunction. However, different environmental lead exposure paradigms can occur, and the different effects of these have not been described in a broad comparative study. In the present study, rats of both sexes were exposed to water containing lead acetate (0.2% w/v), from the fetal period until adulthood. Developmental Pb-exposed (DevPb) pups were exposed to lead until 12 weeks of age (n = 13); intermittent Pb exposure (IntPb) pups drank leaded water until 12 weeks of age, tap water until 20 weeks, and leaded water for a second time from 20 to 28 weeks of age (n = 14); and the permanent (PerPb) exposure group were exposed to lead until 28 weeks of age (n = 14). A control group (without exposure, Ctrl), matched in age and sex was used. After exposure protocols, at 28 weeks of age, behavioral tests were performed for assessment of anxiety (elevated plus maze test), locomotor activity (open-field test), and memory (novel object recognition test). Metabolic parameters were evaluated for 24 h, and the acute experiment was carried out. Blood pressure (BP), electrocardiogram, and heart (HR) and respiratory (RF) rates were recorded. Baroreflex gain, chemoreflex sensitivity, and sympathovagal balance were calculated. Immunohistochemistry protocol for NeuN, Syn, Iba-1, and GFAP staining was performed. All Pb-exposed groups showed hypertension, concomitant with a decrease in baroreflex gain and chemoreceptor hypersensitivity, without significant changes in HR and RF. Long-term memory impairment associated with reactive astrogliosis and microgliosis in the dentate gyrus of the hippocampus, indicating the presence of neuroinflammation, was also observed. However, these alterations seemed to reverse after lead abstinence for a certain period (DevPb) and were enhanced when a second exposure occurred (IntPb), along with a synaptic loss. These results suggest that the duration of Pb exposure is more relevant than the timing of exposure, since the PerPb group presented more pronounced effects and a significant increase in the LF and HF bands and anxiety levels. In summary, this is the first study with the characterization and comparison of physiological, autonomic, behavioral, and molecular changes caused by different low-level environmental lead exposures, from the fetal period to adulthood, where the duration of exposure was the main factor for stronger adverse effects. These kinds of studies are of immense importance, showing the importance of the surrounding environment in health from childhood until adulthood, leading to the creation of new policies for toxicant usage control.
Collapse
|
9
|
Public Health Implications and Possible Sources of Lead (Pb) as a Contaminant of Poorly Regulated Kratom Products in the United States. TOXICS 2022; 10:toxics10070398. [PMID: 35878303 PMCID: PMC9320411 DOI: 10.3390/toxics10070398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 02/04/2023]
Abstract
Kratom (Mitragyna speciosa) is a tropical tree that is indigenous to Southeast Asia. Kratom leaf products have been used in traditional folk medicine for their unique combination of stimulant and opioid-like effects. Kratom is being increasingly used in the West for its reputed benefits in the treatment of pain, depression, and opioid use disorder (OUD). Recent studies from the United States Food and Drug Administration (FDA, Silver Spring, MD, USA) and our laboratory have shown that many kratom products being sold in the United States are contaminated with potentially hazardous levels of lead (Pb). In this commentary, we discuss the public health implications of the presence of Pb in kratom products, particularly as they relate to the predicted levels of Pb exposure among kratom users. We also considered the specific toxic effects of Pb and how they might relate to the known physiologic and toxicologic effects of kratom. Finally, we consider the possible sources of Pb in kratom products and suggest several areas for research on this issue.
Collapse
|
10
|
Halabicky OM, Pinto-Martin JA, Compton P, Liu J. Longitudinal association of early childhood lead exposure and adolescent heart rate variability: influence of parental education. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2022; 40:133-153. [PMID: 35895919 PMCID: PMC9339516 DOI: 10.1080/26896583.2022.2060689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Lead exposure has been shown to dysregulate physiological stress responses. However, few studies have investigated the effect of lead exposure on later heart rate variability (HRV), an indicator of a stress response, in large samples of children. Furthermore, the interaction between social environmental factors and lead exposure in childhood, which commonly co-occur, remains understudied. This study examined relationships between childhood lead exposure and early adolescent physiological stress responses at different levels of parental education. Participants were 406 children from Jintan, China. Blood lead levels (BLLs) and parental education data were collected at 3-5 years of age, and HRV outcomes assessed at 12 years via frequency domain measures (LF/HF ratio) collected during an induced stress test. Results show a significant interaction between parental education and BLLs at 3-5 years. This relationship was found to be most consistent for the interaction between BLLs and mother's years of education for both the planning (β = 0.12, p = 0.046) and speaking (β = 0.11, p = 0.043) phase of the stress task, suggesting that increasing years of mother's education may enhance the deleterious influence of lead exposure on the HRV frequency measure, LF/HF ratio. This research highlights the complexity in lead exposure induced outcomes.
Collapse
Affiliation(s)
| | - Jennifer A Pinto-Martin
- School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peggy Compton
- School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Jianghong Liu
- School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Famurewa AC, Renu K, Eladl MA, Chakraborty R, Myakala H, El-Sherbiny M, Elsherbini DMA, Vellingiri B, Madhyastha H, Ramesh Wanjari U, Goutam Mukherjee A, Valsala Gopalakrishnan A. Hesperidin and hesperetin against heavy metal toxicity: Insight on the molecular mechanism of mitigation. Biomed Pharmacother 2022; 149:112914. [DOI: 10.1016/j.biopha.2022.112914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/02/2022] Open
|
12
|
Halabicky OM, Pinto-Martin JA, Compton P, Liu J. Early childhood lead exposure and adolescent heart rate variability: A longitudinal cohort study. ENVIRONMENTAL RESEARCH 2022; 205:112551. [PMID: 34915034 PMCID: PMC9214828 DOI: 10.1016/j.envres.2021.112551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 06/01/2023]
Abstract
Lead is a known neurotoxicant with many detrimental health effects, including neurocognitive deficits and cardiovascular and metabolic disorders. However, few studies have tested the association between lead exposure and the physiological stress response, which in and of itself may act as a precursor to and/or underlying mechanism of detrimental health outcomes. The purpose of this study was to examine the influence of early childhood and early adolescent low-level lead exposure on early adolescent heart rate variability, a widely-used measure of physiological stress. Participants were 408 children from Jintan, China for whom blood lead levels were measured between 3 and 5 years (early childhood) and again at 12 years (early adolescence). Heart rate variability was assessed at 12 years while participants underwent an induced stress task utilizing the ratio of low to high frequency (LF/HF) ECG measures. Mean blood lead levels in the cohort were 6.63 mcg/dl and 3.10 mcg/dl at 3-5 years and 12 years, respectively. Blood lead levels at 3-5 years of age (β 0.06, p = 0.027), but not at age 12 (β -0.05, p = 0.465), were significantly associated with LF/HF measures while controlling for multiple sociodemographic variables, potentially reflecting a dysregulated stress response with a shift towards sympathetic dominance. These findings suggest that early childhood lead exposure may have a detrimental influence on early adolescent autonomic responses to acute stress, which holds implications for cardiovascular health and overall growth and development.
Collapse
Affiliation(s)
- Olivia M Halabicky
- School of Nursing, University of Pennsylvania, 418 Curie Blvd. Claire M. Fagin Hall, Philadelphia, PA, USA.
| | - Jennifer A Pinto-Martin
- School of Nursing, University of Pennsylvania, 418 Curie Blvd. Claire M. Fagin Hall, Philadelphia, PA, USA; Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, 34th & Civic Center Blvd., Philadelphia, PA, USA.
| | - Peggy Compton
- School of Nursing, University of Pennsylvania, 418 Curie Blvd. Claire M. Fagin Hall, Philadelphia, PA, USA.
| | - Jianghong Liu
- School of Nursing, University of Pennsylvania, 418 Curie Blvd. Claire M. Fagin Hall, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Amer AAEM, El-Makarem HSA, El-Maghraby MAE, Abou-Alella SAE. Lead, cadmium, and aluminum in raw bovine milk: Residue level, estimated intake, and fate during artisanal dairy manufacture. J Adv Vet Anim Res 2021; 8:454-464. [PMID: 34722744 PMCID: PMC8520162 DOI: 10.5455/javar.2021.h534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The goal of this study was to determine the levels of lead (Pb), cadmium (Cd), and aluminum (Al) in raw bovine milk. Milk consumption was used to calculate the estimated weekly intake (EWI), provisional tolerable weekly intake (PTWI), and target hazard quotient (THQ) for individuals. Metal distribution in dairy products and byproducts was studied as a result of artisanal processing. MATERIAL AND METHODS Seventy-five raw bovine milk samples were collected from artisanal producers in Alexandria city, West Delta, Egypt, and analyzed using the atomic absorption spectrophotometer. The effect of artisanal dairy processing on metal distribution was studied. RESULTS The averages of Pb, Cd, and Al in milk samples were 45.06, 4.77, and 2.93 μg/l, with 13.33% and 1.33% of analyzed samples had Pb and Al levels higher than the permissible limits, respectively. The EWI values of Pb, Cd, and Al were 1.050, 0.111, and 0.068 μg/kg body weight, which contributed to about 4.20%, 1.59%, and 0.97% from the PTWI, respectively. The THQ of three metals was <1, which referred to safe consumption. Metal residues were heavily concentrated in artisanal cheese and yogurt after coagulation and fermentation compared with other dairy products. Accordingly, the maximum average and reduction values of Pb, Cd, and Al were 745.87, 51.99, and 71.58 μg/l and -72.87%, -56.5%, and -40.96% in Damietta cheese; 535.51, 40.11, and 62.43 μg/l and -24.11%, -20.74%, and -22.94%) in Kareish cheese; and 418.42, 31.26, and 50.66 μg/l and 3.02%, 5.90%, and 0.27% in yogurt, respectively. CONCLUSIONS The results indicated that consumption of raw bovine milk did not pose a risk to Alexandria citizens. Metal concentration increased in artisanal cheese and yogurt because of metal bio-gathering after coagulation and fermentation. Fat separation, churning, and boiling milk might keep metal concentration in dairy products and byproducts at lower levels than milk. Thus, they are suggested to be applied especially in highly contaminated areas.
Collapse
Affiliation(s)
- Amr Abd El-Moamen Amer
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Hussien Sobhy Abo El-Makarem
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mahmoud Abd-Elsabor El-Maghraby
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
14
|
Yu YL, Thijs L, Yu CG, Yang WY, Melgarejo JD, Wei DM, Wei FF, Nawrot TS, Verhamme P, Roels HA, Staessen JA, Zhang ZY. Two-Year Responses of Heart Rate and Heart Rate Variability to First Occupational Lead Exposure. Hypertension 2021; 77:1775-1786. [PMID: 33775124 DOI: 10.1161/hypertensionaha.120.16545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yu-Ling Yu
- From the Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium (Y.-L.Y., L.T., J.D.M., D.-M.W., Z.-Y.Z.).,Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China (Y.-L.Y.)
| | - Lutgarde Thijs
- From the Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium (Y.-L.Y., L.T., J.D.M., D.-M.W., Z.-Y.Z.)
| | - Cai-Guo Yu
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital and Key Laboratory of Diabetes Prevention and Research, Capital Medical University, China (C.-G.Y.)
| | - Wen-Yi Yang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China (W.-Y.Y.)
| | - Jesus D Melgarejo
- From the Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium (Y.-L.Y., L.T., J.D.M., D.-M.W., Z.-Y.Z.)
| | - Dong-Mei Wei
- From the Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium (Y.-L.Y., L.T., J.D.M., D.-M.W., Z.-Y.Z.)
| | - Fang-Fei Wei
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China (F.-F.W.)
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium (T.S.N., H.A.R.)
| | - Peter Verhamme
- Centre for Molecular and Vascular Biology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium (P.V.)
| | - Harry A Roels
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium (T.S.N., H.A.R.)
| | - Jan A Staessen
- Research Institute Alliance for the Promotion of Preventive Medicine (J.A.S.).,Biomedical Science Group, Faculty of Medicine, University of Leuven, Belgium (J.A.S.)
| | - Zhen-Yu Zhang
- From the Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium (Y.-L.Y., L.T., J.D.M., D.-M.W., Z.-Y.Z.)
| |
Collapse
|
15
|
Senila M, Cadar O, Miu I. Development and Validation of a Spectrometric Method for Cd and Pb Determination in Zeolites and Safety Evaluation. Molecules 2020; 25:molecules25112591. [PMID: 32498463 PMCID: PMC7321230 DOI: 10.3390/molecules25112591] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/22/2020] [Accepted: 06/02/2020] [Indexed: 01/05/2023] Open
Abstract
An analytical method based on microwave-assisted acid digestion and atomic absorption spectrometry with graphite furnace as atomization source was developed and validated for determining trace elements (Cd and Pb) in zeolites used as dietary supplements, for their characterization and safety evaluation. The method was checked for the main performance parameters according to the legislation requirements in the field of dietary supplements. In all cases, the obtained performance parameters were satisfactory. The selectivity study showed no significant non-spectral matrix effect. The linearity study was conducted for the calibration curves in the range of 0–10 ng mL−1 for Cd and 0–30 ng mL−1 for Pb. The obtained limits of detection (LoDs) and the limits of quantification (LoQs) were sufficiently low in order to allow Pb and Cd determination in dietary supplements. For the internal quality control, certified reference materials were analysed and good recoveries were obtained. The precision study was performed in terms of repeatability and reproducibility, considering the requirements imposed by the Commission Decision (2007/333/EC) and the method fulfilled these performance parameters. Expanded measurement uncertainties were estimated to 11% for Cd and 10% for Pb. Cd and Pb content were measured in real zeolite samples and, using these data, a safety evaluation was carried out.
Collapse
Affiliation(s)
- Marin Senila
- National Institute for Research and Development of Optoelectronics Bucharest INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania;
- Correspondence: ; Tel.: +40-264-420590
| | - Oana Cadar
- National Institute for Research and Development of Optoelectronics Bucharest INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania;
| | - Ion Miu
- SC UTCHIM SRL, 12 Buda Street, 240127 Ramnicu Valcea, Romania;
| |
Collapse
|
16
|
Therapeutic effects of IkB kinase inhibitor during systemic inflammation. Int Immunopharmacol 2020; 84:106509. [PMID: 32335479 DOI: 10.1016/j.intimp.2020.106509] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 04/08/2020] [Accepted: 04/12/2020] [Indexed: 01/17/2023]
Abstract
Animal models of inflammatory diseases support the idea that nuclear factor κB (NF-κB) activation plays a pathophysiological role and is widely implicated in multiple organ dysfunction (MOD). Indeed, the inhibition of the IκB kinase (IKK) complex, involved in the NF-κB pathway, can represent a promising approach to prevent MOD. The present work employed a rat model of systemic inflammation to investigate the preventive effects of Inhibitor of IKK complex (IKK16). In male Wistar rats, systemic inflammation was induced by a tail vein injection of lipopolysaccharides (LPS challenge; 12 mg/kg). Treatment with IKK16 (1 mg/kg body weight) was administered, by tail vein, 15 min post-LPS. Age- and sex-matched healthy rats and LPS rats without treatment were used as controls. At 24 h post-IKK16 treatment, serum enzyme levels indicative of liver, kidney, pancreas and muscle function were evaluated by biochemical analysis, and RT-PCR technique was used to analyze gene expression of pro-inflammatory cytokines. Hemodynamic parameters were also considered to assess the LPS-induced inflammation. IKK16 treatment yielded a strong therapeutic effect in preventing LPS-induced elevation of serological enzyme levels, attenuating hepatic, renal, pancreatic and muscular dysfunction after LPS challenge. Moreover, as expected, LPS promoted a significantly overexpression of TNF-α, IL-6 and IL-1β in the heart, kidney, and liver; which was diminished by IKK16 treatment. The present study provides convincing evidence that selective inhibition of the IκB kinase complex through the action of IKK16, plays a protective role against LPS-induced multiple organ dysfunction by reducing the acute inflammatory response induced by endotoxin exposure.
Collapse
|
17
|
Shvachiy L, Geraldes V, Amaro-Leal Â, Rocha I. Persistent Effects on Cardiorespiratory and Nervous Systems Induced by Long-Term Lead Exposure: Results from a Longitudinal Study. Neurotox Res 2020; 37:857-870. [PMID: 31997153 DOI: 10.1007/s12640-020-00162-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 02/06/2023]
Abstract
Long-term lead (Pb) exposure alters the normal development of the nervous system and physiology. It affects multiple organ systems, causing hypertension, cardiorespiratory dysfunction, being a well-known neurotoxin, inducing changes in neurogenesis, neurodegeneration, and glial cells. However, studies of the developmental effects of lead and its outcomes throughout life are lacking. Determine morphofunctional, behavioral, and cognitive developmental effects of long-term lead exposure at three different ages. Wistar rats were exposed to a Pb-acetate solution from fetal period until adulthood and compared to a non-exposed control group. General behavior and cognitive skills were evaluated by behavioral tests and physiological data and cardiorespiratory reflexes measured. Neurodegeneration, neuroinflammation, and synaptic activity were assessed by immunohistochemistry. Lead exposure caused long-lasting anxiety-like behavior and strong long-term memory impairment without changes in locomotor and exploratory activity. Hypertension was observed at all time points, concomitant with baroreflex impairment and increased chemoreflex sensitivity. Persistent neuroinflammation, transient synaptic overexcitation without neurodegeneration was observed. Long-term Pb exposure, since fetal period, causes long-lasting anxiety-like behavior, concomitant with hypertension, without general motor skills impairment. Synaptic overexcitation, reactive astrogliosis, and microgliosis could underlie behavioral and long-term memory changes, which might have been caused during developmental phases and consolidated during adulthood. Also, alterations observed in the cardiorespiratory reflexes can explain persistent hypertension. This longitudinal study identifies and characterizes lead toxicity nature and magnitude, important to devise and test potential interventions to attenuate the long-term harmful effects of lead on the nervous and cardiovascular systems.
Collapse
Affiliation(s)
- Liana Shvachiy
- Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, Av Prof Egas Moniz, 1649-028, Lisbon, Portugal
| | - Vera Geraldes
- Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, Av Prof Egas Moniz, 1649-028, Lisbon, Portugal.
| | - Ângela Amaro-Leal
- Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, Av Prof Egas Moniz, 1649-028, Lisbon, Portugal
| | - Isabel Rocha
- Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, Av Prof Egas Moniz, 1649-028, Lisbon, Portugal
| |
Collapse
|
18
|
Wang H, Xia M, Ling Y, Qian F, Xu J, Wang Z, Li J, Wang X. Switchable hydrophilicity solvent based and solidification-assisted liquid-phase microextraction combined with GFAAS for quantification of trace soluble lead in raw bovine and derivative milk products. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:1654-1666. [DOI: 10.1080/19440049.2019.1644458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Huili Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Min Xia
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Yuhang Ling
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, College of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Feiyue Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Jiaqi Xu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Zhenfeng Wang
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, College of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Jieyi Li
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
19
|
Yu CG, Wei FF, Yang WY, Zhang ZY, Mujaj B, Thijs L, Feng YM, Staessen JA. Heart rate variability and peripheral nerve conduction velocity in relation to blood lead in newly hired lead workers. Occup Environ Med 2019; 76:382-388. [PMID: 30928907 PMCID: PMC6585574 DOI: 10.1136/oemed-2018-105379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/09/2019] [Accepted: 01/22/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Previous studies relating nervous activity to blood lead (BL) levels have limited relevance, because over time environmental and occupational exposure substantially dropped. We investigated the association of heart rate variability (HRV) and median nerve conduction velocity (NCV) with BL using the baseline measurements collected in the Study for Promotion of Health in Recycling Lead (NCT02243904). METHODS In 328 newly hired men (mean age 28.3 years; participation rate 82.7%), we derived HRV measures (power expressed in normalised units (nu) in the high-frequency (HF) and low-frequency (LF) domains, and LF/HF) prior to long-term occupational lead exposure. Five-minute ECG recordings, obtained in the supine and standing positions, were analysed by Fourier transform or autoregressive modelling, using Cardiax software. Motor NCV was measured at the median nerve by a handheld device (Brevio Nerve Conduction Monitoring System, NeuMed, West Trenton, NJ, USA). BL was determined by inductively coupled plasma mass spectrometry. RESULTS Mean BL was 4.54 µg/dL (IQR 2.60-8.90 µg/dL). Mean supine and standing values of LF, HF and LF/HF were 50.5 and 21.1 nu and 2.63, and 59.7 and 10.9 nu and 6.31, respectively. Orthostatic stress decreased HF and increased LF (p<0.001). NCV averaged 3.74 m/s. Analyses across thirds of the BL distribution and multivariable-adjusted regression analyses failed to demonstrate any association of HRV or NCV with BL. CONCLUSIONS At the exposure levels observed in our study, autonomous nervous activity and NCV were not associated with BL. TRIAL REGISTRATION NUMBER NCT02243904.
Collapse
Affiliation(s)
- Cai-Guo Yu
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium.,Department of Endocrinology, Beijing Lu He Hospital and Key Laboratory of Diabetes Prevention and Research, Capital Medical University, Beijing, China
| | - Fang-Fei Wei
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Wen-Yi Yang
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Zhen-Yu Zhang
- Institut Universitaire de Médecine Sociale et Préventive, University of Lausanne, Lausanne, Switzerland
| | - Blerim Mujaj
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Lutgarde Thijs
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Ying-Mei Feng
- Department of Endocrinology, Beijing Lu He Hospital and Key Laboratory of Diabetes Prevention and Research, Capital Medical University, Beijing, China
| | - Jan A Staessen
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium.,Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
20
|
Le VT, Pham TM, Doan VD, Lebedeva OE, Nguyen HT. Removal of Pb(ii) ions from aqueous solution using a novel composite adsorbent of Fe3o4/PVA/spent coffee grounds. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1565770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Van Thuan Le
- Center for Advanced Chemistry, Institute of Research & Development, Duy Tan University, Danang city, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Center for High Technology Development, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thanh Minh Pham
- Deparment of Biology and Chemistry, Belgorod State National Research University, Belgorod, Russia
- Center of Research and Radioisotope Production, Nuclear Research Institute, Dalat, Vietnam
| | - Van Dat Doan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh city, Ho Chi Minh city, Vietnam
| | - Olga Evgenyevna Lebedeva
- Deparment of Biology and Chemistry, Belgorod State National Research University, Belgorod, Russia
| | - Hoai Thuong Nguyen
- Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
21
|
Intermittent low-level lead exposure provokes anxiety, hypertension, autonomic dysfunction and neuroinflammation. Neurotoxicology 2018; 69:307-319. [PMID: 30098355 DOI: 10.1016/j.neuro.2018.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/31/2018] [Accepted: 08/04/2018] [Indexed: 01/14/2023]
Abstract
BACKGROUND Exposures to lead (Pb) during developmental phases can alter the normal course of development, with lifelong health consequences. Permanent Pb exposure leads to behavioral changes, cognitive impairment, sympathoexcitation, tachycardia, hypertension and autonomic dysfunction. However, the effects of an intermittent lead exposure are not yet studied. This pattern of exposure has been recently increasing due to migrations, implementation of school exchange programs and/or residential changes. OBJECTIVE To determine and compare lead effects on mammal's behavior and physiology, using a rat model of intermittent and permanent Pb exposures. METHODS Fetuses were intermittently (PbI) or permanently (PbP) exposed to water containing lead acetate (0.2% w/v) throughout life until adulthood (28 weeks of age). A control group (CTL) without any exposure to lead was also used. Anxiety was assessed by elevated plus maze (EPM) and locomotor activity and exploration by open field test (OFT). Blood pressure (BP), electrocardiogram (ECG), heart rate (HR), respiratory frequency (RF), sympathetic and parasympathetic activity and baro- and chemoreceptor reflex profiles were evaluated. Immunohistochemistry protocol for the assessment of neuroinflammation, neuronal loss (NeuN), gliosis and synaptic alterations (Iba-1, GFAP, Syn), were performed at the hippocampus. One-way ANOVA with Tukey's multiple comparison between means were used (significance p < 0.05) for statistical analysis. RESULTS The intermittent lead exposure produced a significant increase in diastolic and mean BP values, concomitant with a tendency to sympathetic overactivity (estimated by increased low-frequency power) and without significant changes in systolic BP, HR and RF. A chemoreceptor hypersensitivity and a baroreflex impairment were also observed, however, less pronounced when compared to the permanent exposure. Regarding behavioral changes, both lead exposure profiles showed an anxiety-like behavior without changes in locomotor and exploratory activity. Increase in GFAP and Iba-1 positive cells, without changes in NeuN positive cells were found in both exposed groups. Syn staining suffered a significant decrease in PbI group and a significant increase in PbP group. CONCLUSION This study is the first to show that developmental Pb exposure since fetal period can cause lasting impairments in physiological parameters. The intermittent lead exposure causes adverse health effects, i.e, hypertension, increased respiratory frequency and chemoreflex sensitivity, baroreflex impairment, anxiety, decreased synaptic activity, neuroinflammation and reactive gliosis, in some ways similar to a permanent exposure, however some are lower-grade, due to the shorter duration of exposure. This study brings new insights on the environmental factors that influence autonomic and cardiovascular systems during development, which can help in creating public policy strategies to prevent and control the adverse effects of Pb toxicity.
Collapse
|
22
|
Cong X, Xu X, Xu L, Li M, Xu C, Qin Q, Huo X. Elevated biomarkers of sympatho-adrenomedullary activity linked to e-waste air pollutant exposure in preschool children. ENVIRONMENT INTERNATIONAL 2018; 115:117-126. [PMID: 29558634 DOI: 10.1016/j.envint.2018.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/06/2018] [Accepted: 03/08/2018] [Indexed: 02/07/2023]
Abstract
Air pollution is a risk factor for cardiovascular disease (CVD), and cardiovascular regulatory changes in childhood contribute to the development and progression of cardiovascular events at older ages. The aim of the study was to investigate the effect of air pollutant exposure on the child sympatho-adrenomedullary (SAM) system, which plays a vital role in regulating and controlling the cardiovascular system. Two plasma biomarkers (plasma epinephrine and norepinephrine) of SAM activity and heart rate were measured in preschool children (n = 228) living in Guiyu, and native (n = 104) and non-native children (n = 91) living in a reference area (Haojiang) for >1 year. Air pollution data, over the 4-months before the health examination, was also collected. Environmental PM2.5, PM10, SO2, NO2 and CO, plasma norepinephrine and heart rate of the e-waste recycling area were significantly higher than for the non-e-waste recycling area. However, there was no difference in plasma norepinephrine and heart rate between native children living in the non-e-waste recycling area and non-native children living in the non-e-waste recycling area. PM2.5, PM10, SO2 and NO2 data, over the 30-day and the 4-month average of pollution before the health examination, showed a positive association with plasma norepinephrine level. PM2.5, PM10, SO2, NO2 and CO concentrations, over the 24 h of the day of the health examination, the 3 previous 24-hour periods before the health examination, and the 24 h after the health examination, were related to increase in heart rate. At the same time, plasma norepinephrine and heart rate on children in the high air pollution level group (≤50-m radius of family-run workshops) were higher than those in the low air pollution level group. Our results suggest that air pollution exposure in e-waste recycling areas could result in an increase in heart rate and plasma norepinephrine, implying e-waste air pollutant exposure impairs the SAM system in children.
Collapse
Affiliation(s)
- Xiaowei Cong
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Long Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Minghui Li
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Cheng Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qilin Qin
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangzhou and Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangzhou and Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China.
| |
Collapse
|
23
|
Mitra P, Sharma S, Purohit P, Sharma P. Clinical and molecular aspects of lead toxicity: An update. Crit Rev Clin Lab Sci 2017; 54:506-528. [DOI: 10.1080/10408363.2017.1408562] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Prasenjit Mitra
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Shailja Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| |
Collapse
|
24
|
de Oliveira TM, Augusto Peres J, Lurdes Felsner M, Cristiane Justi K. Direct determination of Pb in raw milk by graphite furnace atomic absorption spectrometry (GF AAS) with electrothermal atomization sampling from slurries. Food Chem 2017; 229:721-725. [PMID: 28372236 DOI: 10.1016/j.foodchem.2017.02.143] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/22/2016] [Accepted: 02/28/2017] [Indexed: 02/02/2023]
Abstract
Milk is an important food in the human diet due to its physico-chemical composition; therefore, it is necessary to monitor contamination by toxic metals such as Pb. Milk sample slurries were prepared using Triton X-100 and nitric acid for direct analysis of Pb using graphite furnace atomic absorption spectrometry - GF AAS. After dilution of the slurries, 10.00µl were directly introduced into the pyrolytic graphite tube without use of a chemical modifier, which acts as an advantage considering this type of matrix. The limits of detection and quantification were 0.64 and 2.14µgl-1, respectively. The figures of merit studied showed that the proposed methodology without pretreatment of the raw milk sample and using external standard calibration is suitable. The methodology was applied in milk samples from the Guarapuava region, in Paraná State (Brazil) and Pb concentrations ranged from 2.12 to 37.36µgl-1.
Collapse
Affiliation(s)
- Tatiane Milão de Oliveira
- Departamento de Química, Universidade Estadual do Centro-Oeste - UNICENTRO, 85040-080 Guarapuava, PR, Brazil.
| | - Jayme Augusto Peres
- Departamento de Medicina Veterinária, Universidade Estadual do Centro-Oeste - UNICENTRO, 85040-080 Guarapuava, PR, Brazil.
| | - Maria Lurdes Felsner
- Departamento de Química, Universidade Estadual do Centro-Oeste - UNICENTRO, 85040-080 Guarapuava, PR, Brazil.
| | - Karin Cristiane Justi
- Departamento de Química, Universidade Estadual do Centro-Oeste - UNICENTRO, 85040-080 Guarapuava, PR, Brazil.
| |
Collapse
|
25
|
Pb(II) Removal Process in a Packed Column System with Xanthation-Modified Deoiled Allspice Husk. J CHEM-NY 2017. [DOI: 10.1155/2017/4296515] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present research dealt with lead removal using modified Pimenta dioica L. Merrill as biosorbent in a batch and in continuous flow column systems, respectively. The allspice husk residues were modified first with a treatment through the xanthation reaction. For the adsorption tests, the atomic adsorption spectrophotometry method was used to determine the lead concentrations in the liquid samples. In the kinetic batch study (10 mg of sorbent in 10 mL of 25 mg L−1 lead solution), the removal efficiency was 99% (adsorption capacity of 25.8 mg g−1). The kinetic data followed the pseudo-second-order model. The adsorption isotherm was fitted to the Freundlich model, where constants were Kf and 1/n (8.06 mg(1-1/n) g−1 L1/n and 0.52), corresponding to adsorption capacities of 8 and 62 mg g−1, at liquid equilibrium concentration of 1 and 50 mg L−1, respectively. In the continuous flow systems where lead solution of 50 mg L−1 was treated in 2 columns of 5 cm (4.45 g) and 10 cm (9.07 g) bed heights, the dynamic adsorption capacity obtained by fitting the Thomas model was 29.114 mg g−1 and 45.322 mg g−1, respectively.
Collapse
|