1
|
Batterman S, Grant-Alfieri A, Seo SH. Low level exposure to hydrogen sulfide: a review of emissions, community exposure, health effects, and exposure guidelines. Crit Rev Toxicol 2023; 53:244-295. [PMID: 37431804 PMCID: PMC10395451 DOI: 10.1080/10408444.2023.2229925] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/12/2023]
Abstract
Hydrogen sulfide (H2S) is a toxic gas that is well-known for its acute health risks in occupational settings, but less is known about effects of chronic and low-level exposures. This critical review investigates toxicological and experimental studies, exposure sources, standards, and epidemiological studies pertaining to chronic exposure to H2S from both natural and anthropogenic sources. H2S releases, while poorly documented, appear to have increased in recent years from oil and gas and possibly other facilities. Chronic exposures below 10 ppm have long been associated with odor aversion, ocular, nasal, respiratory and neurological effects. However, exposure to much lower levels, below 0.03 ppm (30 ppb), has been associated with increased prevalence of neurological effects, and increments below 0.001 ppm (1 ppb) in H2S concentrations have been associated with ocular, nasal, and respiratory effects. Many of the studies in the epidemiological literature are limited by exposure measurement error, co-pollutant exposures and potential confounding, small sample size, and concerns of representativeness, and studies have yet to consider vulnerable populations. Long-term community-based studies are needed to confirm the low concentration findings and to refine exposure guidelines. Revised guidelines that incorporate both short- and long-term limits are needed to protect communities, especially sensitive populations living near H2S sources.
Collapse
Affiliation(s)
- Stuart Batterman
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Amelia Grant-Alfieri
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Sung-Hee Seo
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, United States
| |
Collapse
|
2
|
Santana Maldonado C, Weir A, Rumbeiha WK. A comprehensive review of treatments for hydrogen sulfide poisoning: past, present, and future. Toxicol Mech Methods 2023; 33:183-196. [PMID: 36076319 DOI: 10.1080/15376516.2022.2121192] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Hydrogen sulfide (H2S) poisoning remains a significant source of occupational fatalities and is the second most common cause of toxic gas-induced deaths. It is a rapidly metabolized systemic toxicant targeting the mitochondria, among other organelles. Intoxication is mostly acute, but chronic or in-between exposure scenarios also occur. Some genetic defects in H2S metabolism lead to lethal chronic H2S poisoning. In acute exposures, the neural, respiratory, and cardiovascular systems are the primary target organs resulting in respiratory distress, convulsions, hypotension, and cardiac irregularities. Some survivors of acute poisoning develop long-term sequelae, particularly in the central nervous system. Currently, treatment for H2S poisoning is primarily supportive care as there are no FDA-approved drugs. Besides hyperbaric oxygen treatment, drugs in current use for the management of H2S poisoning are controversial. Novel potential drugs are under pre-clinical research development, most of which target binding the H2S. However, there is an acute need to discover new drugs to prevent and treat H2S poisoning, including reducing mortality and morbidity, preventing sequalae from acute exposures, and for treating cumulative pathology from chronic exposures. In this paper, we perform a comprehensive review of H2S poisoning including perspectives on past, present, and future.
Collapse
Affiliation(s)
| | - Abigail Weir
- Molecular Biosciences, University of California, Davis, Davis, CA, USA
| | - Wilson K Rumbeiha
- Molecular Biosciences, University of California, Davis, Davis, CA, USA
| |
Collapse
|
3
|
Li FR, Zhu B, Liao J, Cheng Z, Jin C, Mo C, Liang F. Ambient Air Pollutants and Incident Microvascular Disease: A Cohort Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8485-8495. [PMID: 35616623 DOI: 10.1021/acs.est.2c00898] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Little is known about the links between long-term exposure to air pollution and risk of incident microvascular disease (retinopathy, peripheral neuropathy, and chronic kidney disease). This study included 396 014 UK residents free of microvascular disease and macrovascular disease at baseline. Annual means of PM2.5, PM2.5-10, PM10, NO2, and NOx were assessed by land use regression models for each participant. A weighted air pollution score was generated from PM10 and NOx. Cox proportional hazards models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). During a median follow-up of 11.7 years, 14 327 composite microvascular disease occurred. While none of the air pollutants showed any statistically significant association with the risk of retinopathy, all the air pollutants were linked to the risk of peripheral neuropathy and chronic kidney disease. The adjusted-HRs (95% CIs) for each interquartile range increase in air pollution score were 1.07 (1.05, 1.09), 1.01 (0.94, 1.07), 1.13 (1.08, 1.19), and 1.07 (1.05, 1.10) for overall microvascular disease, retinopathy, peripheral neuropathy, and chronic kidney disease, respectively. In conclusion, long-term exposure to overall air pollution was associated with higher risks of peripheral neuropathy and chronic kidney disease among the general UK population.
Collapse
Affiliation(s)
- Fu-Rong Li
- School of Public Health and Emergency Management, Southern University of Science and Technology, 1088 Xueyuan Avenue, Fuguang community, Taoyuan Street, Nanshan District, Shenzhen, 518055, Guangdong China
| | - Bin Zhu
- School of Public Health and Emergency Management, Southern University of Science and Technology, 1088 Xueyuan Avenue, Fuguang community, Taoyuan Street, Nanshan District, Shenzhen, 518055, Guangdong China
| | - Jian Liao
- School of Public Health and Emergency Management, Southern University of Science and Technology, 1088 Xueyuan Avenue, Fuguang community, Taoyuan Street, Nanshan District, Shenzhen, 518055, Guangdong China
| | - Zhiyuan Cheng
- School of Public Health and Emergency Management, Southern University of Science and Technology, 1088 Xueyuan Avenue, Fuguang community, Taoyuan Street, Nanshan District, Shenzhen, 518055, Guangdong China
| | - Cheng Jin
- School of Public Health and Emergency Management, Southern University of Science and Technology, 1088 Xueyuan Avenue, Fuguang community, Taoyuan Street, Nanshan District, Shenzhen, 518055, Guangdong China
| | - Chunbao Mo
- School of Public Health and Emergency Management, Southern University of Science and Technology, 1088 Xueyuan Avenue, Fuguang community, Taoyuan Street, Nanshan District, Shenzhen, 518055, Guangdong China
| | - Fengchao Liang
- School of Public Health and Emergency Management, Southern University of Science and Technology, 1088 Xueyuan Avenue, Fuguang community, Taoyuan Street, Nanshan District, Shenzhen, 518055, Guangdong China
| |
Collapse
|
4
|
Hydrogen sulfide in ageing, longevity and disease. Biochem J 2021; 478:3485-3504. [PMID: 34613340 PMCID: PMC8589328 DOI: 10.1042/bcj20210517] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/21/2022]
Abstract
Hydrogen sulfide (H2S) modulates many biological processes, including ageing. Initially considered a hazardous toxic gas, it is now recognised that H2S is produced endogenously across taxa and is a key mediator of processes that promote longevity and improve late-life health. In this review, we consider the key developments in our understanding of this gaseous signalling molecule in the context of health and disease, discuss potential mechanisms through which H2S can influence processes central to ageing and highlight the emergence of novel H2S-based therapeutics. We also consider the major challenges that may potentially hinder the development of such therapies.
Collapse
|
5
|
Elwood M. The Scientific Basis for Occupational Exposure Limits for Hydrogen Sulphide-A Critical Commentary. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18062866. [PMID: 33799676 PMCID: PMC8001002 DOI: 10.3390/ijerph18062866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Occupational exposure limits for hydrogen sulphide (H2S) vary considerably; three expert group reports, published from 2006 to 2010, each recommend different limits. Some jurisdictions are considering substantial reductions. METHODS This review assesses the scientific evidence used in these recommendations and presents a new systematic review of human studies from 2006-20, identifying 33 studies. RESULTS The three major reports all give most weight to two sets of studies: of physiological effects in human volunteers, and of effects in the nasal passages of rats and mice. The human studies were done in one laboratory over 20 years ago and give inconsistent results. The breathing style and nasal anatomy of rats and mice would make them more sensitive than humans to inhaled agents. Each expert group applied different uncertainly factors. From these reports and the further literature review, no clear evidence of detrimental health effects from chronic occupational exposures specific to H2S was found. Detailed studies of individuals in communities with natural sources in New Zealand have shown no detrimental effects. Studies in Iceland and Italy show some associations; these and various other small studies need verification. CONCLUSIONS The scientific justification for lowering occupational exposure limits is very limited. There is no clear evidence, based on currently available studies, that lower limits will protect the health of workers further than will the current exposure limits used in most countries. Further review and assessment of relevant evidence is justified before exposure limits are set.
Collapse
Affiliation(s)
- Mark Elwood
- Department of Epidemiology & Biostatistics, School of Population Health, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| |
Collapse
|
6
|
Bustaffa E, Cori L, Manzella A, Nuvolone D, Minichilli F, Bianchi F, Gorini F. The health of communities living in proximity of geothermal plants generating heat and electricity: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135998. [PMID: 31862594 DOI: 10.1016/j.scitotenv.2019.135998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Since the 1990s, in areas with natural geothermal manifestations studies on the association between exposure to pollutants and health effect have become increasingly relevant. These emissions consist of water vapor mixed with carbon dioxide, hydrogen sulfide (H2S), methane and, to a lesser extent, rare gases and trace elements in volatile forms. Considering the indications of the World Health Organization and the growth in the use of geothermal energy for energy production, this review aims to report studies exploring the health status of the populations living in areas where geothermal energy is used to produce heat and electricity. Studies on the health effects of the general population exposed to emissions from both natural geothermal events and plants using geothermal energy at domestic or commercial level have been considered between 1999 and 2019. Studies were classified into those based on health indicators and those based on proxy-individual level exposure metrics. Both statistically significant results (p<0.05) and interesting signals were commented. The 19 studies selected (New Zealand, Iceland and Italy) provide heterogeneous results, with an increased risk for several tumor sites. Exposure to H2S low concentrations is positively associated with an increment of respiratory symptoms, anti-asthma drugs use, mortality for respiratory diseases and lung cancer. Exposure to H2S high levels is inversely related to cancer mortality but associated with an increase in hospitalization for respiratory diseases, central nervous system disorders and cardiovascular diseases. The results indicate that the health of populations residing in areas rich in geothermal emissions presents some critical elements to be explored. The two major limitations of the studies are the ecological design and the inadequate exposure assessment. The authors suggested the prosecution and the systematization of health surveillance and human biomonitoring activities associated with permanent control of atmospheric emissions from both industrial and natural plants.
Collapse
Affiliation(s)
- Elisa Bustaffa
- Unit of Environmental Epidemiology and Diseases Registries, Institute of Clinical Physiology, National Research Council, IFC-CNR, via Moruzzi 1, Pisa 56124, Italy.
| | - Liliana Cori
- Unit of Environmental Epidemiology and Diseases Registries, Institute of Clinical Physiology, National Research Council, IFC-CNR, via Moruzzi 1, Pisa 56124, Italy
| | - Adele Manzella
- Institute of Geosciences and Earth Resources, National Research Council, IGG-CNR, via Moruzzi 1, Pisa 56124, Italy
| | - Daniela Nuvolone
- Epidemiology Unit, Regional Health Agency of Tuscany, Via Pietro Dazzi 1, Florence 50100, Italy
| | - Fabrizio Minichilli
- Unit of Environmental Epidemiology and Diseases Registries, Institute of Clinical Physiology, National Research Council, IFC-CNR, via Moruzzi 1, Pisa 56124, Italy
| | - Fabrizio Bianchi
- Unit of Environmental Epidemiology and Diseases Registries, Institute of Clinical Physiology, National Research Council, IFC-CNR, via Moruzzi 1, Pisa 56124, Italy
| | - Francesca Gorini
- Unit of Environmental Epidemiology and Diseases Registries, Institute of Clinical Physiology, National Research Council, IFC-CNR, via Moruzzi 1, Pisa 56124, Italy
| |
Collapse
|
7
|
Nuvolone D, Petri D, Pepe P, Voller F. Health effects associated with chronic exposure to low-level hydrogen sulfide from geothermoelectric power plants. A residential cohort study in the geothermal area of Mt. Amiata in Tuscany. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:973-982. [PMID: 31096427 DOI: 10.1016/j.scitotenv.2018.12.363] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Geothermal power plants for the production of electricity are currently active in Mt. Amiata, Italy. The present study aimed to investigate the association between chronic low-level exposure to H2S and health outcomes, using a residential cohort study design. METHODS Spatial variability of exposure to chronic levels of H2S was evaluated using dispersion modelling. Cohorts included people residing in six municipalities of the geothermal district from 01/01/1998 to 31/12/2016. Residence addresses were georeferenced and each subject was matched with H2S exposure metrics and socio-economic status available at census tract level. Mortality and hospital discharge data for neoplasms and diseases of the respiratory, central nervous and cardiovascular systems were taken from administrative health databases. Cox proportional hazard models were used to test the association between H2S exposure and outcomes, with age as the temporal axis and adjusting for gender, socio-economic status and calendar period. RESULTS The residential cohort was composed of 33,804 subjects for a total of 391,002 person-years. Analyses reported risk increases associated with high exposure to H2S for respiratory diseases (HR = 1.12 95%CI: 1.00-1.25 for mortality data; HR = 1.02 95%CI: 0.98-1.06 for morbidity data), COPD and disorders of the peripheral nervous system. Neoplasms were negatively associated with increased H2S exposure. CONCLUSIONS The most consistent findings were reported for respiratory diseases. Associations with increased H2S exposure were coherent in both mortality and hospitalization analyses, for both genders, with evidence of exposure-related trends. No positive associations were found for cancer or cardiovascular diseases.
Collapse
Affiliation(s)
- Daniela Nuvolone
- Epidemiology Unit, Regional Health Agency of Tuscany, Via Pietro Dazzi 1, 50100 Florence, Italy.
| | - Davide Petri
- Epidemiology Unit, Regional Health Agency of Tuscany, Via Pietro Dazzi 1, 50100 Florence, Italy.
| | - Pasquale Pepe
- Epidemiology Unit, Regional Health Agency of Tuscany, Via Pietro Dazzi 1, 50100 Florence, Italy
| | - Fabio Voller
- Epidemiology Unit, Regional Health Agency of Tuscany, Via Pietro Dazzi 1, 50100 Florence, Italy.
| |
Collapse
|
8
|
Hine C, Zhu Y, Hollenberg AN, Mitchell JR. Dietary and Endocrine Regulation of Endogenous Hydrogen Sulfide Production: Implications for Longevity. Antioxid Redox Signal 2018; 28:1483-1502. [PMID: 29634343 PMCID: PMC5930795 DOI: 10.1089/ars.2017.7434] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Hydrogen sulfide (H2S) at the right concentration is associated with numerous health benefits in experimental organisms, ranging from protection from ischemia/reperfusion injury to life span extension. Given the considerable translation potential, two major strategies have emerged: supplementation of exogenous H2S and modulation of endogenous H2S metabolism. Recent Advances: Recently, it was reported that hepatic H2S production capacity is increased in two of the best-characterized mammalian models of life span extension, dietary restriction, and hypopituitary dwarfism, leading to new insights into dietary and hormonal regulation of endogenous H2S production together with broader changes in sulfur amino acid (SAA) metabolism with implications for DNA methylation and redox status. CRITICAL ISSUES Here, we discuss the role of dietary SAAs and growth hormone (GH)/thyroid hormone (TH) signaling in regulation of endogenous H2S production largely via repression of H2S generating enzymes cystathionine γ-lyase (CGL) and cystathionine β-synthase (CBS) on the level of gene transcription, as well as reciprocal regulation of GH and TH signaling by H2S itself. We also discuss plasticity of CGL and CBS gene expression in response to environmental stimuli and the potential of the microbiome to impact overall H2S levels. FUTURE DIRECTIONS The relative contribution of increased H2S to health span or lifespan benefits in models of extended longevity remains to be determined, as does the mechanism by which such benefits occur. Nonetheless, our ability to control H2S levels using exogenous H2S donors or by modifying the endogenous H2S production/consumption equilibrium has the potential to improve health and increase "shelf-life" across evolutionary boundaries, including our own. Antioxid. Redox Signal. 28, 1483-1502.
Collapse
Affiliation(s)
- Christopher Hine
- 1 Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute , Cleveland, Ohio
| | - Yan Zhu
- 2 Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts
| | - Anthony N Hollenberg
- 2 Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts
| | - James R Mitchell
- 3 Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health , Boston, Massachusetts
| |
Collapse
|
9
|
Li H, Li J, Zhu Y, Xie W, Shao R, Yao X, Gao A, Yin Y. Cd 2+-Doped Amorphous TiO 2 Hollow Spheres for Robust and Ultrasensitive Photoelectrochemical Sensing of Hydrogen Sulfide. Anal Chem 2018; 90:5496-5502. [PMID: 29611421 DOI: 10.1021/acs.analchem.8b01178] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide is a highly toxic molecule to human health, but high-performance detection of it remains a challenge. Herein, we report an ultrasensitive photoelectrochemical (PEC) sensor for H2S by modifying indium tin oxide (ITO) electrodes with Cd2+-doped amorphous TiO2 hollow spheres, which are prepared by templating against colloidal silica particles followed by a cadmium-sodium cation exchange reaction. The amorphous TiO2 hollow spheres act as both the probing cation carrier and the photoelectric beacon. Upon exposure to sulfide ions, the photocurrent of the functionalized photoanode proportionately decreases in response to the formation of CdS nanoparticles. The decreased photocurrent could be attributed to the mismatching bandgap between the amorphous TiO2 and CdS nanoparticles: the photoexcited electrons and holes from amorphous TiO2 are transferred to the conduction band and valence band of CdS, respectively, and then recombined. The decrease in photocurrent is linear with the concentration of sulfide ions in the range from 1 to 10 000 pmol L-1 with a detection limit of 0.36 pmol L-1. Enabled by a unique sensitization mechanism, this PEC sensor features excellent performance in a wide linear range, high selectivity and sensitivity, high stability, and low fabrication cost.
Collapse
Affiliation(s)
- Hongbo Li
- School of Chemistry and Chemical Engineering , Yancheng Institute of Technology , Yancheng 224051 , PR China.,Department of Chemistry , University of California , Riverside , California 92521 , United States
| | - Jing Li
- School of Chemistry and Chemical Engineering , Yancheng Institute of Technology , Yancheng 224051 , PR China
| | - Yunyun Zhu
- School of Chemistry and Chemical Engineering , Yancheng Institute of Technology , Yancheng 224051 , PR China
| | - Wenyu Xie
- School of Chemistry and Chemical Engineering , Yancheng Institute of Technology , Yancheng 224051 , PR China
| | - Rong Shao
- School of Chemistry and Chemical Engineering , Yancheng Institute of Technology , Yancheng 224051 , PR China
| | - Xiaxi Yao
- Department of Chemistry , University of California , Riverside , California 92521 , United States
| | - Aiqin Gao
- Department of Chemistry , University of California , Riverside , California 92521 , United States
| | - Yadong Yin
- Department of Chemistry , University of California , Riverside , California 92521 , United States
| |
Collapse
|
10
|
Gahlaut SK, Yadav K, Sharan C, Singh JP. Quick and Selective Dual Mode Detection of H2S Gas by Mobile App Employing Silver Nanorods Array. Anal Chem 2017; 89:13582-13588. [DOI: 10.1021/acs.analchem.7b04064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Shashank Kumar Gahlaut
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Kavita Yadav
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Chandrashekhar Sharan
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Jitendra Pratap Singh
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
11
|
Malone Rubright SL, Pearce LL, Peterson J. Environmental toxicology of hydrogen sulfide. Nitric Oxide 2017; 71:1-13. [PMID: 29017846 PMCID: PMC5777517 DOI: 10.1016/j.niox.2017.09.011] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/23/2017] [Accepted: 09/27/2017] [Indexed: 11/24/2022]
Affiliation(s)
- Samantha L Malone Rubright
- University of Pittsburgh Graduate School of Public Health, Department of Environmental Health, 100 Technology Drive, Pittsburgh PA 15219, United States
| | - Linda L Pearce
- University of Pittsburgh Graduate School of Public Health, Department of Environmental Health, 100 Technology Drive, Pittsburgh PA 15219, United States.
| | - Jim Peterson
- University of Pittsburgh Graduate School of Public Health, Department of Environmental Health, 100 Technology Drive, Pittsburgh PA 15219, United States.
| |
Collapse
|