1
|
Hornung E, Robbins S, Srivastava A, Achanta S, Chen J, Cheng ZJ, Schwaber J, Vadigepalli R. Neuromodulatory co-expression in cardiac vagal motor neurons of the dorsal motor nucleus of the vagus. iScience 2024; 27:110549. [PMID: 39171288 PMCID: PMC11338141 DOI: 10.1016/j.isci.2024.110549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/31/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
Vagal innervation is well known to be crucial to the maintenance of cardiac health, and to protect and recover the heart from injury. Only recently has this role been shown to depend on the activity of the underappreciated dorsal motor nucleus of the vagus (DMV). By combining neural tracing, transcriptomics, and anatomical mapping in male and female Sprague-Dawley rats, we characterize cardiac-specific neuronal phenotypes in the DMV. We find that the DMV cardiac-projecting neurons differentially express pituitary adenylate cyclase-activating polypeptide (PACAP), cocaine- and amphetamine-regulated transcript (CART), and synucleins, as well as evidence that they participate in neuromodulatory co-expression involving catecholamines. The significance of these findings is enhanced by previous knowledge of the role of PACAP at the heart and of the other neuromodulators in peripheral vagal targets.
Collapse
Affiliation(s)
- Eden Hornung
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Shaina Robbins
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ankita Srivastava
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sirisha Achanta
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, BMS Building 20, Room 230, 4110 Libra Drive, Orlando, FL 32816, USA
| | - Zixi Jack Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, BMS Building 20, Room 230, 4110 Libra Drive, Orlando, FL 32816, USA
| | - James Schwaber
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
2
|
Tóth D, Simon G, Reglődi D. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and Sudden Infant Death Syndrome: A Potential Model for Investigation. Int J Mol Sci 2023; 24:15063. [PMID: 37894743 PMCID: PMC10606572 DOI: 10.3390/ijms242015063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Sudden infant death syndrome (SIDS) represents a significant cause of post-neonatal mortality, yet its underlying mechanisms remain unclear. The triple-risk model of SIDS proposes that intrinsic vulnerability, exogenous triggers, and a critical developmental period are required for SIDS to occur. Although case-control studies have identified potential risk factors, no in vivo model fully reflects the complexities observed in human studies. Pituitary adenylate cyclase-activating polypeptide (PACAP), a highly conserved neuropeptide with diverse physiological functions, including metabolic and thermal regulation, cardiovascular adaptation, breathing control, stress responses, sleep-wake regulation and immunohomeostasis, has been subject to early animal studies, which revealed that the absence of PACAP or its specific receptor (PAC1 receptor: PAC1R) correlates with increased neonatal mortality similar to the susceptible period for SIDS in humans. Recent human investigations have further implicated PACAP and PAC1R genes as plausible contributors to the pathomechanism of SIDS. This mini-review comprehensively synthesizes all PACAP-related research from the perspective of SIDS and proposes that PACAP deficiency might offer a promising avenue for studying SIDS.
Collapse
Affiliation(s)
- Dénes Tóth
- Department of Forensic Medicine, University of Pécs Medical School, Szigeti út 12, H-7624 Pécs, Hungary;
| | - Gábor Simon
- Department of Forensic Medicine, University of Pécs Medical School, Szigeti út 12, H-7624 Pécs, Hungary;
| | - Dóra Reglődi
- Department of Anatomy, HUN-REG-PTE PACAP Research Team, Centre for Neuroscience, University of Pécs Medical School, Szigeti út 12, H-7624 Pécs, Hungary;
| |
Collapse
|
3
|
Tóth T, Alizadeh H, Polgár B, Csalódi R, Reglődi D, Tamás A. Diagnostic and Prognostic Value of PACAP in Multiple Myeloma. Int J Mol Sci 2023; 24:10801. [PMID: 37445974 DOI: 10.3390/ijms241310801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a multifunctional neuropeptide with well-known anti-inflammatory, antioxidant, antitumor, and immunomodulatory effects. PACAP regulates the production of various proinflammatory factors and may influence the complex cytokine network of the bone marrow microenvironment altered by plasma cells, affecting the progression of multiple myeloma (MM) and the development of end-organ damage. The aim of our study was to investigate the changes in PACAP-38 levels in patients with MM to explore its value as a potential biomarker in this disease. We compared the plasma PACAP-38 levels of MM patients with healthy individuals by ELISA method and examined its relationship with various MM-related clinical and laboratory parameters. Lower PACAP-38 levels were measured in MM patients compared with the healthy controls, however, this difference vanished if the patient achieved any response better than partial response. In addition, lower peptide levels were found in elderly patients. Significantly higher PACAP-38 levels were seen in patients with lower stage, lower plasma cell infiltration in bone marrow, lower markers of tumor burden in serum, lower total urinary and Bence-Jones protein levels, and in patients after lenalidomide therapy. Higher PACAP-38 levels in newly diagnosed MM patients predicted longer survival and a higher probability of complete response to treatment. Our findings confirm the hypothesis that PACAP plays an important role in the pathomechanism of MM. Furthermore, our results suggest that PACAP might be used as a valuable, non-invasive, complementary biomarker in diagnosis, and may be utilized for prognosis prediction and response monitoring.
Collapse
Affiliation(s)
- Tünde Tóth
- Department of Anatomy, ELKH-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Hussain Alizadeh
- 1st Department of Medicine, Division of Hematology, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Beáta Polgár
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Renáta Csalódi
- Department of Hematology, Balassa János Hospital of Tolna County, 7100 Szekszárd, Hungary
| | - Dóra Reglődi
- Department of Anatomy, ELKH-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Andrea Tamás
- Department of Anatomy, ELKH-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
4
|
Genes involved in paediatric apnoea and death based on knockout animal models: Implications for sudden infant death syndrome (SIDS). Paediatr Respir Rev 2022; 44:53-60. [PMID: 34750067 DOI: 10.1016/j.prrv.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
The mechanism of death in Sudden infant death syndrome (SIDS) remains unknown but it is hypothesised that cardiorespiratory failure of brainstem origin results in early post-natal death. For a subset of SIDS infants, an underlying genetic cause may be present, and genetic abnormalities affecting brainstem respiratory control may result in abnormalities that are detectable before death. Genetic knockout mice models were developed in the 1990s and have since helped to elucidate the physiological roles of a number of genes. This systematic review aimed to identify which genes, when knocked out, result in the phenotypes of abnormal cardiorespiratory control and/or early post-natal death. Three major genes were identified: Pet1- a serotonin transcription factor, the neurotrophin pituitary adenylate cyclase activating polypeptide (PACAP) and its receptor (PAC1). Knockouts targeting these genes had blunted hypercapnic and/or hypoxic responses and early post-natal death. The hypothesis that these genes have a role in SIDS is supported by their being identified as abnormal in SIDS cohorts. Future research in SIDS cohorts will be important to determine whether these genetic abnormalities coexist and their potential applicability as biomarkers.
Collapse
|
5
|
Barrett KT, Hasan SU, Scantlebury MH, Wilson RJA. Impaired cardiorespiratory responses to hypercapnia in neonatal mice lacking PAC1 but not VPAC2 receptors. Am J Physiol Regul Integr Comp Physiol 2021; 320:R116-R128. [PMID: 33146556 DOI: 10.1152/ajpregu.00161.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The evidence is mounting for a role for abnormal signaling of the stress peptide pituitary adenylate cyclase activating polypeptide (PACAP) and its canonical receptor PAC1 in the pathogenesis of sudden infant death syndrome. In this study, we investigated whether the PACAP receptors PAC1 or VPAC2 are involved in the neonatal cardiorespiratory response to hypercapnic stress. We used head-out plethysmography and surface ECG electrodes to assess cardiorespiratory responses to an 8% hypercapnic challenge in unanesthetized and spontaneously breathing 4-day-old PAC1 or VPAC2 knockout (KO) and wild-type mouse pups. We demonstrate that compared with WTs, breathing frequency (RR) and minute ventilation ([Formula: see text]) in PAC1 KO pups were significantly blunted in response to hypercapnia. Although heart rate was unaltered in PAC1 KO pups during hypercapnia, heart rate recovery posthypercapnia was impaired. In contrast, cardiorespiratory impairments in VPAC2 KO pups were limited to only an overall higher tidal volume (VT), independent of treatment. These findings suggest that PACAP signaling through the PAC1 receptor plays a more important role than signaling through the VPAC2 receptor in neonatal respiratory responses to hypercapnia. Thus deficits in PACAP signaling primarily via PAC1 may contribute to the inability of infants to mount an appropriate protective response to homeostatic stressors in childhood disorders such as SIDS.
Collapse
Affiliation(s)
- Karlene T Barrett
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Alberta, Canada
| | - Shabih U Hasan
- Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Alberta, Canada
| | - Morris H Scantlebury
- Department of Pediatrics, Clinical Neuroscience, Alberta Children's Hospital Research Institute, University of Calgary, Alberta, Canada
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Alberta, Canada
| |
Collapse
|
6
|
Khalil C, Chahine JB, Chahla B, Hobeika T, Khnayzer RS. Characterization and cytotoxicity assessment of nargile smoke using dynamic exposure. Inhal Toxicol 2019; 31:343-356. [DOI: 10.1080/08958378.2019.1683104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Christian Khalil
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
- Institute of Environmental Studies, University of New South Wales (UNSW), Sydney, Australia
| | - Joe Braham Chahine
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Brenda Chahla
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Tamara Hobeika
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Rony S. Khnayzer
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut, Lebanon
| |
Collapse
|
7
|
Machaalani R, Thawley M, Huang J, Chen H. Effects of prenatal cigarette smoke exposure on BDNF, PACAP, microglia and gliosis expression in the young male mouse brainstem. Neurotoxicology 2019; 74:40-46. [PMID: 31121239 DOI: 10.1016/j.neuro.2019.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/16/2019] [Accepted: 05/18/2019] [Indexed: 01/17/2023]
Abstract
Cigarette smoke exposure during pregnancy into infancy affects brain growth and development in both short and long term (into adulthood). Using a mouse model of pre- into post- natal cigarette smoke exposure (SE), we aimed to determine the effects on brain derived neurotrophic factor (BDNF) and its receptor TrkB, neuropeptide pituitary adenylate cyclase activating polypeptide (PACAP) and its receptor PAC1, and astrocyte (GFAP) and microglia (Iba-1) immunohistochemical expression, in seven nuclei of the medulla and the facial (FAC) nucleus of the pons. Male pups of dams exposed to two cigarettes (nicotine <1.2 mg, CO <15 mg) twice daily for six weeks prior to mating, during gestation and lactation (n = 5; SE), were compared to pups exposed to air under the same condition (n = 5; SHAM) at postnatal day 20. Expression changes were only evident for BDNF, TrkB and PAC1 and included decreased BDNF in the hypoglossal (XII) nucleus and nucleus of the solitary tract (NTS), increased TrkB in XII but decreased TrkB in the FAC, and increased PAC1 in 4 nuclei of the medulla including the NTS. These results suggest that the effect of SE on the brainstem are region and marker selective, affecting regions of respiratory control (XII and NTS), and restricted to the BDNF system and PAC1, with no effect on activation states of astrocytes or microglia.
Collapse
Affiliation(s)
- Rita Machaalani
- SIDS and Sleep Apnea Laboratory, Sydney Medical School (Central), Medical Foundation Building, K25, University of Sydney, NSW, 2006, Australia.
| | - Melisande Thawley
- SIDS and Sleep Apnea Laboratory, Sydney Medical School (Central), Medical Foundation Building, K25, University of Sydney, NSW, 2006, Australia
| | - Jessica Huang
- SIDS and Sleep Apnea Laboratory, Sydney Medical School (Central), Medical Foundation Building, K25, University of Sydney, NSW, 2006, Australia
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Broadway, NSW, 2007, Australia
| |
Collapse
|
8
|
Barrett KT, Hasan SU, Scantlebury MH, Wilson RJA. Impaired neonatal cardiorespiratory responses to hypoxia in mice lacking PAC1 or VPAC2 receptors. Am J Physiol Regul Integr Comp Physiol 2019; 316:R594-R606. [PMID: 30758978 DOI: 10.1152/ajpregu.00250.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The stress peptide pituitary adenylate cyclase activating polypeptide (PACAP) and its specific receptor PACAP type 1 receptor (PAC1) have been implicated in sudden infant death syndrome (SIDS). PACAP is also critical to the neonatal cardiorespiratory response to homeostatic stressors identified in SIDS, including hypoxia. However, which of PACAP's three receptors, PAC1, vasoactive intestinal peptide receptor type 1 (VPAC1), and/or vasoactive intestinal peptide receptor type 2 (VPAC2), are involved is unknown. In this study, we hypothesized that PAC1, but not VPAC2, is involved in mediating the cardiorespiratory response to hypoxia during neonatal development. To test this hypothesis, head-out plethysmography and surface ECG electrodes were used to assess the cardiorespiratory variables of unanesthetized postnatal day 4 PAC1 and VPAC2-knockout (KO) and wild-type (WT) mice in response to a 10% hypoxic challenge. Our results demonstrate that compared with WT pups, the early and late hypoxic rate of expired CO2 (V̇co2), V̇co2 and ventilatory responses were blunted in PAC1-KO neonates, and during the posthypoxic period, minute ventilation (V̇e), V̇co2 and heart rate were increased, while the increase in apneas normally associated with the posthypoxic period was reduced. Consistent with impaired cardiorespiratory control in these animals, the V̇e/V̇co2 slope was reduced in PAC1-KO pups, suggesting that breathing was inappropriately matched to metabolism. In contrast, VPAC2-KO pups exhibited elevated heart rate variability during hypoxia compared with WT littermates, but the effects of the VPAC2-KO genotype on breathing were minimal. These findings suggest that PAC1 plays the principal role in mediating the cardiorespiratory effects of PACAP in response to hypoxic stress during neonatal development and that defective PACAP signaling via PAC1 may contribute to the pathogenesis of SIDS.
Collapse
Affiliation(s)
- Karlene T Barrett
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta , Canada
| | - Shabih U Hasan
- Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta , Canada
| | - Morris H Scantlebury
- Department of Pediatrics, Clinical Neuroscience, Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta , Canada
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
9
|
Liu Q, Wong-Riley MTT. Pituitary adenylate cyclase-activating polypeptide: Postnatal development in multiple brain stem respiratory-related nuclei in the rat. Respir Physiol Neurobiol 2018; 259:149-155. [PMID: 30359769 DOI: 10.1016/j.resp.2018.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/26/2018] [Accepted: 10/20/2018] [Indexed: 11/17/2022]
Abstract
The pituitary adenylate cyclase-activating polypeptide (PACAP) plays an important role in anterior pituitary hormone secretion, neurotransmission, and the control of breathing. Mice lacking PACAP die suddenly mainly in the 2nd postnatal week, coinciding temporally with a critical period of respiratory development uncovered by our laboratory in the rat. The goal of the current study was to test our hypothesis that PACAP expression is reduced during the critical period in normal rats. We undertook immunohistochemistry and optical densitometry of PACAP (specifically PACAP38) in several brain stem respiratory-related nuclei of postnatal days P2-21 rats, and found that PACAP immunoreactivity was significantly reduced at P12 in the pre-Bötzinger complex, nucleus ambiguus, hypoglossal nucleus, and the ventrolateral subnucleus of the nucleus tractus solitarius. No changes were observed in the control, non-respiratory cuneate nucleus at P12. Results imply that the down-regulation of PACAP during normal postnatal development may contribute to the critical period of vulnerability, when the animals' response to hypoxia is at its weakest.
Collapse
Affiliation(s)
- Qiuli Liu
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Margaret T T Wong-Riley
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|