1
|
Deng X, Guo Y, Jin X, Si H, Dai K, Deng M, He J, Hao C, Yao W. Manganese accumulation in red blood cells as a biomarker of manganese exposure and neurotoxicity. Neurotoxicology 2024; 102:1-11. [PMID: 38461971 DOI: 10.1016/j.neuro.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/12/2024]
Abstract
Although overexposure to manganese (Mn) is known to cause neurotoxic damage, effective exposure markers for assessing Mn loading in Mn-exposed workers are lacking. Here, we construct a Mn-exposed rat model to perform correlation analysis between Mn-induced neurological damage and Mn levels in various biological samples. We combine this analysis with epidemiological investigation to assess whether Mn concentrations in red blood cells (MnRBCs) and urine (MnU) can be used as valid exposure markers. The results show that Mn exposure resulted in neurotoxic damage in rats and that MnRBCs correlated well with neurological damage, showing potential as a novel Mn exposure biomarker. These findings provide a basis for health monitoring of Mn-exposed workers and the development of more appropriate biological exposure limits.
Collapse
Affiliation(s)
- Xuedan Deng
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yonghua Guo
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiaofei Jin
- Department of Ultrasound, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Huifang Si
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Kai Dai
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Meng Deng
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jing He
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Changfu Hao
- Department of Child and Adolescence Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Wu Yao
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
2
|
Zhang Y, Hu HT, Cao YM, Jiang ZG, Liu J, Fan QY. Biphasic Dose-Response of Mn-Induced Mitochondrial Damage, PINK1/Parkin Expression, and Mitophagy in SK-N-SH Cells. Dose Response 2023; 21:15593258231169392. [PMID: 37113652 PMCID: PMC10126627 DOI: 10.1177/15593258231169392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Excessive manganese (Mn) exposure produces neurotoxicity with mitochondrial damage. Mitophagy is a protective mechanism to eliminate damaged mitochondria to protect cells. The aim of this study was to determine the dose-response of Mn-induced mitochondria damage, the expression of mitophagy-mediated protein PINK1/Parkin and mitophagy in dopamine-producing SK-N-SH cells. Cells were exposed to 0, 300, 900, and 1500 μM Mn2+ for 24 h, and ROS production, mitochondrial damage and mitophagy were examined. The levels of dopamine were detected by ELISA and neurotoxicity and mitophagy-related proteins (α-synuclein, PINK1, Parkin, Optineurin, and LC3II/I) were detected by western blot. Mn increased intracellular ROS and apoptosis and decreased mitochondrial membrane potential in a concentration-dependent manner. However, at the low dose of 300 μM Mn, autophagosome was increased 11-fold, but at the high dose of 1500 μM, autophagosome was attenuated to 4-fold, together with decreased mitophagy-mediated protein PINK1/Parkin and LC3II/I ratio and increased Optineurin expression, resulting in increased α-synuclein accumulation and decreased dopamine production. Thus, Mn-induced mitophagy exhibited a novel biphasic regulation: at the low dose, mitophagy is activated to eliminate damaged mitochondria, however, at the high dose, cells gradually loss the adaptive machinery, the PINK1/Parkin-mediated mitophagy weakened, resulting in neurotoxicity.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Pediatrics, Hospital
of Chongqing Medical University/Chongqing Health Center for Women and Children,
Chongqing, China
- School of Public Health, Zunyi Medical
University, Zunyi, China
| | - Hong-Tao Hu
- School of Public Health, Zunyi Medical
University, Zunyi, China
| | - Yu-Min Cao
- The Third Afliated Hospital of Zunyi
Medical University, (The First People’s Hospital of Zunyi), Zunyi, China
| | - Zhi-Gang Jiang
- School of Public Health, Zunyi Medical
University, Zunyi, China
| | - Jie Liu
- Key Lab for Basic Pharmacology of
Ministry of Education, Zunyi Medical
University, Zunyi, China
- Jie Liu, Department of Pharmacology, Zunyi
Medical University, 5 Xingpu Road, Zunyi 563003, China. Emails:
;
| | - Qi-Yuan Fan
- School of Public Health, Zunyi Medical
University, Zunyi, China
- Zunyi Medical and Pharmaceutical
College, Zunyi, China
| |
Collapse
|
3
|
Song M, Bai H, Zhang P, Zhou X, Ying B. Promising applications of human-derived saliva biomarker testing in clinical diagnostics. Int J Oral Sci 2023; 15:2. [PMID: 36596771 PMCID: PMC9810734 DOI: 10.1038/s41368-022-00209-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/23/2022] [Accepted: 11/03/2022] [Indexed: 01/05/2023] Open
Abstract
Saliva testing is a vital method for clinical applications, for its noninvasive features, richness in substances, and the huge amount. Due to its direct anatomical connection with oral, digestive, and endocrine systems, clinical usage of saliva testing for these diseases is promising. Furthermore, for other diseases that seeming to have no correlations with saliva, such as neurodegenerative diseases and psychological diseases, researchers also reckon saliva informative. Tremendous papers are being produced in this field. Updated summaries of recent literature give newcomers a shortcut to have a grasp of this topic. Here, we focused on recent research about saliva biomarkers that are derived from humans, not from other organisms. The review mostly addresses the proceedings from 2016 to 2022, to shed light on the promising usage of saliva testing in clinical diagnostics. We recap the recent advances following the category of different types of biomarkers, such as intracellular DNA, RNA, proteins and intercellular exosomes, cell-free DNA, to give a comprehensive impression of saliva biomarker testing.
Collapse
Affiliation(s)
- Mengyuan Song
- grid.13291.380000 0001 0807 1581Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Bai
- grid.13291.380000 0001 0807 1581Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Zhang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & Human Saliva Laboratory & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & Human Saliva Laboratory & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Yang T, Hao S, Wang P, Qin Y, You G, Shi Y, Yang B, Zhang A, Guo L, Jiang T. Material properties of degradable alloy Fe-30Mn-0.6N and its effect on ferroptosis in synoviocytes. J Biomed Mater Res B Appl Biomater 2023; 111:127-139. [PMID: 36066321 DOI: 10.1002/jbm.b.35139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022]
Abstract
Ferroalloy has shown potential as implant materials, but little attention has been paid to their effects on synovial tissue ferroptosis. This study aimed to examine the mechanical properties, degradability and biocompatibility of Fe-30Mn-0.6N alloy and effects of it on synovial tissue ferroptosis. Tensile testing showed that Fe-30Mn-0.6N alloys exhibited tensile strength of 487 ± 18 MPa, yield strength of 221 ± 10 MPa, elongation of 16.9 ± 0.3% and Young's modulus of 37.7 ± 1.3 GPa. In vivo experiments, the cross-sectional area of the Fe-30Mn-0.6N alloys decreased by 73.32 ± 12.73% after 8 weeks of implantation. The results of scanning electron microscopy (SEM) and surface elemental analysis (EDS) showed that the Fe-30Mn-0.6N alloys had more Ca, O, C and P element deposition (p < .05). After 2, 4 and 8 weeks of implantation, no inflammatory response was observed in peri-implant synovial tissue of Fe-30Mn-0.6N and Ti-6Al-4V alloys, and Fe-30Mn-0.6N alloys did not affect the expression of the ferroptosis inhibitory gene Glutathione peroxidase 4 (GPX4). Compared with the control group, 30% Fe-30Mn-0.6N alloy extracts did not affect the cell viability (p > .05) in vitro, and intracellular Fe2+ and the reactive oxygen species (ROS) was significantly reduced (p < .05). WB and PCR results showed that the 30% extracts increased the protein activity and mRNA expression of GPX4, FTH1 and SLC7A11 in synoviocytes, but had no effect on PTGS2 and p53. It is concluded that Fe-30Mn-0.6N had degradability and biocompatibility in peri-implant synovial tissue, and did not induce significantly ferroptosis in synoviocytes.
Collapse
Affiliation(s)
- Tianyu Yang
- Department of Orthopedics, the First Hospital of China Medical University, Shenyang, China
| | - Shimin Hao
- Department of Orthopedics, the First Hospital of China Medical University, Shenyang, China
| | - Penghao Wang
- Department of Orthopedics, the First Hospital of China Medical University, Shenyang, China
| | - Yu Qin
- Department of Orthopedics, the First Hospital of China Medical University, Shenyang, China
| | - Guanchao You
- Department of Orthopedics, the First Hospital of China Medical University, Shenyang, China
| | - Yunyi Shi
- Department of Orthopedics, the First Hospital of China Medical University, Shenyang, China
| | - Boning Yang
- Department of Orthopedics, the First Hospital of China Medical University, Shenyang, China
| | - Ao Zhang
- Department of Orthopedics, the First Hospital of China Medical University, Shenyang, China
| | - Lei Guo
- Department of Orthopedics, the First Hospital of China Medical University, Shenyang, China
| | - Tianlong Jiang
- Department of Orthopedics, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Xiang Y, Wang L, Wei Y, Zhang H, Emu Q. Excessive manganese alters serum biochemical indices, induces histopathological alterations, and activates apoptosis in liver and cerebrum of Jianzhou Da'er goat (Capra hircus). Comp Biochem Physiol C Toxicol Pharmacol 2022; 252:109241. [PMID: 34752896 DOI: 10.1016/j.cbpc.2021.109241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 02/05/2023]
Abstract
The present study aimed to explore the toxic effects of excessive dietary Mn in livers and cerebrums of Jianzhou Da'er goat (Capra hircus). Three-month old goats were assigned into three groups: control group, fed on basal diet; Mn I group, fed on the basal diet mixed with MnCl2 (2.5 g/kg); Mn II group, fed on the basal diet mixed with MnCl2 (5 g/kg). Compared with the control group, the activities of serum alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and the concentrations of interferon-γ (IFN-γ) in Mn I and Mn II groups were significantly increased, but the concentrations of IgG in Mn I and Mn II groups were significantly decreased (p < 0.05). The activities of superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and the concentrations of glutathione (GSH) in Mn I and Mn II groups were significantly decreased, whereas the concentrations of malondialdehyde (MDA) in Mn I and Mn II groups were significantly increased in livers and cerebrums (p < 0.05). Moreover, the hepatocytes necrosed, inflammatory cells infiltrated, chromatin concentrated, mitochondrial cristae reduced in Mn I and Mn II groups. The nerve cells necrosed, blood vessels congested, inflammatory cells infiltrated, mitochondrial electron density and mitochondrial cristae decreased, and vacuolization increased in Mn I and Mn II groups. Furthermore, the mRNA expressions of tumor necrosis factor alpha (TNF-α), tumor necrosis factor receptor type 1 (TNFR1), fas-associated protein via a death domain (FADD), Bcl2-associated X (Bax), cysteinyl aspartate specific proteinase 3, 8, 9 (Caspase-3, 8, 9) in Mn I and Mn II groups were significantly increased (p < 0.05), but the mRNA expressions of B-cell lymphoma-2 (Bcl-2) in Mn I and Mn II groups were significantly decreased (p < 0.05) in livers. The mRNA expressions of Bcl-2, Bax, Caspase-3, 9, 7, 12 in Mn I and Mn II groups were significantly increased (p < 0.05), however, the ratio of Bcl-2/Bax in Mn I and Mn II groups was significantly decreased (p < 0.05) in cerebrums. In summary, our results provided new insights for better understanding the mechanisms of Mn toxicity in Capra hircus.
Collapse
Affiliation(s)
- Yi Xiang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Li Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China.
| | - Yong Wei
- Animal Science Academy of Sichuan Province, Chengdu 610066, China.
| | - Hua Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Quzhe Emu
- Animal Science Academy of Sichuan Province, Chengdu 610066, China
| |
Collapse
|
6
|
Yuan X, Tian Y, Liu C, Zhang Z. Environmental factors in Parkinson's disease: New insights into the molecular mechanisms. Toxicol Lett 2021; 356:1-10. [PMID: 34864130 DOI: 10.1016/j.toxlet.2021.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/25/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
Parkinson's disease is a chronic, progressive neurodegenerative disorder affecting 2-3% of the population ≥65 years. It has long been characterized by motor impairment, autonomic dysfunction, and psychological and cognitive changes. The pathological hallmarks are intracellular inclusions containing α-synuclein aggregates and the loss of dopaminergic neurons in the substantia nigra. Parkinson's disease is thought to be caused by a combination of various pathogenic factors, including genetic factors, environmental factors, and lifestyles. Although much research has focused on the genetic causes of PD, environmental risk factors also play a crucial role in the development of the disease. Here, we summarize the environmental risk factors that may increase the occurrence of PD, as well as the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Xin Yuan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ye Tian
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chaoyang Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
7
|
Manganese Intoxication Recovery and the Expression Changes of Park2/Parkin in Rats. Neurochem Res 2021; 47:897-906. [PMID: 34839452 DOI: 10.1007/s11064-021-03493-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/18/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
Occupational overexposure to manganese (Mn) produces Parkinson's disease-like manganism. Acute Mn intoxication in rats causes dopaminergic neuron loss, impairment of motor activity and reduction of the expression of Park2/Parkin. The expression of Park2/Parkin is also reduced. Whether these changes are reversible after cessation of Mn exposure is unknown, and is the goal of this investigation. Adult male rats were injected with Mn2+ at doses 1 mg/kg and 5 mg/kg in the form of MnCl2·4H2O, every other day for one-month to produce acute Mn neurotoxicity. For a half of rats Mn exposure was suspended for recovery for up to 5 months. Mn neurotoxicity was evaluated by the accumulation of Mn in blood and brain, behavioral activities, dopaminergic neuron loss, and the expression of Park2/Parkin in the blood cells and brain. Dose-dependent Mn neurotoxicity in rats was evidenced by Mn accumulation, rotarod impairments, reduction of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra, decreased level of Park2 mRNA in the blood and brain, and decreased Parkin protein in the brain. After cessation of Mn exposure, the amount of Park2 mRNA in the blood started to increase one month after the recovery. After 5-month of recovery, blood and brain Mn returned to normal, rotarod activity recovered, the reduction of TH-positive dopaminergic neurons ameliorated, and the level of Park2 mRNA in the blood and Park2/Parkin in the midbrain and striatum were returned to the normal. Mn neurotoxicity in rats is reversible after cessation of Mn exposure. The level of Park2 mRNA in the blood could be used as a novel biomarker for Mn exposure and recovery.
Collapse
|
8
|
Rehman AU, Nazir S, Irshad R, Tahir K, ur Rehman K, Islam RU, Wahab Z. Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114455] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Bauer JA, Devick KL, Bobb JF, Coull BA, Bellinger D, Benedetti C, Cagna G, Fedrighi C, Guazzetti S, Oppini M, Placidi D, Webster TF, White RF, Yang Q, Zoni S, Wright RO, Smith DR, Lucchini RG, Claus Henn B. Associations of a Metal Mixture Measured in Multiple Biomarkers with IQ: Evidence from Italian Adolescents Living near Ferroalloy Industry. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:97002. [PMID: 32897104 PMCID: PMC7478128 DOI: 10.1289/ehp6803] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/03/2020] [Accepted: 08/04/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Research on the health effects of chemical mixtures has focused mainly on early life rather than adolescence, a potentially important developmental life stage. OBJECTIVES We examined associations of a metal mixture with general cognition in a cross-sectional study of adolescents residing near ferromanganese industry, a source of airborne metals emissions. METHODS We measured manganese (Mn), lead (Pb), copper (Cu), and chromium (Cr) in hair, blood, urine, nails, and saliva from 635 Italian adolescents 10-14 years of age. Full-scale, verbal, and performance intelligence quotient (FSIQ, VIQ, PIQ) scores were assessed using the Wechsler Intelligence Scale for Children-III. Multivariable linear regression and Bayesian kernel machine regression (BKMR) were used to estimate associations of the metal mixture with IQ. In secondary analyses, we used BKMR's hierarchical variable selection option to inform biomarker selection for Mn, Cu, and Cr. RESULTS Median metal concentrations were as follows: hair Mn, 0.08 μ g / g ; hair Cu, 9.6 μ g / g ; hair Cr, 0.05 μ g / g ; and blood Pb, 1.3 μ g / dL . Adjusted models revealed an inverted U-shaped association between hair Cu and VIQ, consistent with Cu as an essential nutrient that is neurotoxic in excess. At low levels of hair Cu (10th percentile, 5.4 μ g / g ), higher concentrations (90th percentiles) of the mixture of Mn, Pb, and Cr (0.3 μ g / g , 2.6 μ g / dL , and 0.1 μ g / g , respectively) were associated with a 2.9 (95% CI: - 5.2 , - 0.5 )-point decrease in VIQ score, compared with median concentrations of the mixture. There was suggestive evidence of interaction between Mn and Cu. In secondary analyses, saliva Mn, hair Cu, and saliva Cr were selected as the biomarkers most strongly associated with VIQ score. DISCUSSION Higher adolescent levels of Mn, Pb, and Cr were associated with lower IQ scores, especially at low Cu levels. Findings also support further investigation into Cu as both beneficial and toxic for neurobehavioral outcomes. https://doi.org/10.1289/EHP6803.
Collapse
Affiliation(s)
- Julia A. Bauer
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Katrina L. Devick
- Division of Biomedical Statistics and Informatics, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Jennifer F. Bobb
- Biostatistics Unit, Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA
| | - Brent A. Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - David Bellinger
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Departments of Neurology and Psychiatry, Boston Children’s Hospital, Boston, Massachusetts, USA
- Departments of Neurology and Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Chiara Benedetti
- Department of Medical-Surgical Specialties, Radiological Science and Public Health, University of Brescia, Brescia, Italy
| | - Giuseppa Cagna
- Department of Medical-Surgical Specialties, Radiological Science and Public Health, University of Brescia, Brescia, Italy
| | - Chiara Fedrighi
- Department of Medical-Surgical Specialties, Radiological Science and Public Health, University of Brescia, Brescia, Italy
| | | | - Manuela Oppini
- Department of Medical-Surgical Specialties, Radiological Science and Public Health, University of Brescia, Brescia, Italy
| | - Donatella Placidi
- Department of Medical-Surgical Specialties, Radiological Science and Public Health, University of Brescia, Brescia, Italy
| | - Thomas F. Webster
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Roberta F. White
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
- Department of Neurology, Boston University Medical School, Boston, Massachusetts, USA
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Silvia Zoni
- Department of Medical-Surgical Specialties, Radiological Science and Public Health, University of Brescia, Brescia, Italy
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Donald R. Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Roberto G. Lucchini
- Department of Medical-Surgical Specialties, Radiological Science and Public Health, University of Brescia, Brescia, Italy
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Chronic Manganese Administration with Longer Intervals Between Injections Produced Neurotoxicity and Hepatotoxicity in Rats. Neurochem Res 2020; 45:1941-1952. [PMID: 32488470 PMCID: PMC7378106 DOI: 10.1007/s11064-020-03059-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/03/2022]
Abstract
Abstract Subacute exposure to manganese (Mn) produced Parkinson’s disease-like syndrome called Manganism. Chronic onset and progression are characteristics of Manganism, therefore, this study aimed to examine Mn toxicity following chronic exposures. Male Sprague-Dawley rats were injected Mn2+ 1 and 5 mg/kg, every 10 days for 150 days (15 injections). Animal body weight and behavioral activities were recorded. At the end of experiments, the brain and liver were collected for morphological and molecular analysis. Chronic Mn exposure did not affect animal body weight gain, but the high dose of Mn treatment caused 20% mortality after 140 days of administration. Motor activity deficits were observed in a dose-dependent manner at 148 days of Mn administration. Immunofluorescence double staining of substantia nigra pars compacta (SNpc) revealed the activation of microglia and loss of dopaminergic neurons. The chronic neuroinflammation mediators TNFα, inflammasome Nlrp3, Fc fragment of IgG receptor IIb, and formyl peptide receptor-1 were increased, implicating chronic Mn-induced neuroinflammation. Chronic Mn exposure also produced liver injury, as evidenced by hepatocyte degeneration with pink, condensed nuclei, indicative of apoptotic lesions. The inflammatory cytokines TNFα, IL-1β, and IL-6 were increased, alone with stress-related genes heme oxygenase-1, NAD(P)H:quinone oxidoreductase-1 and metallothionein. Hepatic transporters, such as multidrug resistant proteins (Abcc1, Abcc2, and Abcc3) and solute carrier family proteins (Slc30a1, Slc39a8 and Slc39a14) were increased in attempt to eliminate Mn from the liver. In summary, chronic Mn exposure produced neuroinflammation and dopaminergic neuron loss in the brain, but also produced inflammation to the liver, with upregulation of hepatic transporters. Graphic Abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s11064-020-03059-2) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Butler L, Gennings C, Peli M, Borgese L, Placidi D, Zimmerman N, Hsu HHL, Coull BA, Wright RO, Smith DR, Lucchini RG, Claus Henn B. Assessing the contributions of metals in environmental media to exposure biomarkers in a region of ferroalloy industry. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2019; 29:674-687. [PMID: 30337680 PMCID: PMC6472994 DOI: 10.1038/s41370-018-0081-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 09/10/2018] [Accepted: 09/18/2018] [Indexed: 05/04/2023]
Abstract
Residential proximity to ferroalloy production has been associated with increased manganese exposure, which can adversely affect health, particularly among children. Little is known, however, about which environmental samples contribute most to internal levels of manganese and other ferroalloy metals. We aimed to characterize sources of exposure to metals and evaluate the ability of internal biomarkers to reflect exposures from environmental media. In 717 Italian adolescents residing near ferromanganese industry, we examined associations between manganese, lead, chromium, and copper in environmental samples (airborne particles, surface soil, indoor/outdoor house dust) and biological samples (blood, hair, nails, saliva, urine). In multivariable regression analyses adjusted for child age and sex, a 10% increase in soil Mn was associated with increases of 3.0% (95% CI: 1.1%, 4.9%) in nail Mn and 1.6% (95% CI: -0.2%, 3.4%) in saliva Mn. Weighted-quantile-sum (WQS) regression estimated that higher soil and outdoor dust Mn accounted for most of the effect on nail Mn (WQS weights: 0.61 and 0.22, respectively, out of a total of 1.0). Higher air and soil Mn accounted for most of the effect on saliva Mn (WQS weights: 0.65 and 0.29, respectively). These findings can help inform biomarker selection in future epidemiologic studies and guide intervention strategies in exposed populations.
Collapse
Affiliation(s)
- Lindsey Butler
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marco Peli
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Brescia, Italy
| | - Laura Borgese
- Department of Mechanical and Industrial Engineering, University of Brescia, Brescia, Italy
| | - Donatella Placidi
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Neil Zimmerman
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Hsiao-Hsien L Hsu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Roberto G Lucchini
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA.
| |
Collapse
|