1
|
Pan X, Ren Z, Liang W, Dong X, Li J, Wang L, Bhatia M, Pan LL, Sun J. Thiamine deficiency aggravates experimental colitis in mice by promoting glycolytic reprogramming in macrophages. Br J Pharmacol 2025; 182:1897-1911. [PMID: 39890689 DOI: 10.1111/bph.17435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 10/20/2024] [Accepted: 11/25/2024] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND AND PURPOSE Inflammatory bowel disease (IBD) is closely associated with immune dysfunction, where nutrient-mediated metabolic flux dictates immune cell fate and function. Thiamine is a central water-soluble vitamin involved in cellular energy metabolism, and its deficiency has been reported in IBD patients. However, whether thiamine deficiency is a cause or consequence of IBD pathogenesis remains unclear. The current study aimed to reveal the immunometabolic regulation of macrophages and underlying mechanism of thiamine deficiency in colitis development. EXPERIMENTAL APPROACH Thiamine deficiency was induced in C57BL/6 mice and bone marrow-derived macrophages (BMDMs), by administering a thiamine-deficient diet/medium together with pyrithiamine hydrobromide. The frequency of macrophage phenotypes and their intracellular metabolism were detected using flow cytometry and non-targeted metabolomics, respectively. KEY RESULTS Thiamine deficiency aggravated ulcerative colitis in mice and promoted the infiltration of proinflammatory M1 macrophages in colonic lamina propria. Our mechanistic study revealed that thiamine deficiency impaired pyruvate dehydrogenase (PDH) activity, thereby reprogramming cellular glucose metabolism to enhance glycolysis and lactic acid accumulation in M1 macrophages. Using a well-established PDH inhibitor (CPI-613) and lactic acid dehydrogenase inhibitor (galloflavin), we further demonstrated that PDH inhibition mimics, while lactate dehydrogenase inhibition partially rescues, thiamine deficiency-induced proinflammatory macrophage infiltration and experimental colitis in mice. CONCLUSION AND IMPLICATIONS Our study provides evidence linking thiamine deficiency with proinflammatory macrophage activation and colitis aggravation, suggesting that monitoring thiamine status and adjusting thiamine intake is necessary to protect against colitis.
Collapse
Affiliation(s)
- Xiaohua Pan
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Zhengnan Ren
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Wenjie Liang
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Xiaoliang Dong
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Jiahong Li
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Lili Wang
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Li-Long Pan
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jia Sun
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Beltramo E, Mazzeo A, Porta M. Release of Pro-Inflammatory/Angiogenic Factors by Retinal Microvascular Cells Is Mediated by Extracellular Vesicles Derived from M1-Activated Microglia. Int J Mol Sci 2023; 25:15. [PMID: 38203187 PMCID: PMC10778795 DOI: 10.3390/ijms25010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
The interactions between the neuronal and vascular sides of the retina during diabetic retinopathy (DR) have gained increasing attention. Microglia is responsible for the immune response to inflammation inside the retina, which could be mediated by paracrine signals carried by extracellular vesicles (EVs). We aimed to characterize EVs released from immortalized human microglial cells in inflammation and investigate their effects on the retinal microvasculature and the anti-inflammatory potential of thiamine in this context. M1 pro-inflammatory polarization in microglia was induced through a cytokine cocktail. EVs were isolated from the supernatants, characterized, and used to stimulate human retinal endothelial cells (HRECs) and pericytes (HRPs). Microvascular cell functions and their release of pro-inflammatory/angiogenic factors were assessed. M1-derived EVs showed increased content of miR-21, miR-155, CCL2, MMP2, and MMP9, and enhanced apoptosis, proliferation, migration, and ROS production in HRPs and HRECs. IL-1β, IL-6, MMP9, CCL2, and VEGF release increased in HRPs exposed to M1-derived EVs, while HRECs showed augmented IL-6, Ang2, VEGF, and PDFG-B. Addition of thiamine to M1-microglial cultures reverted most of these effects. In conclusion, M1-derived EVs stimulate functional changes and secretion of pro-inflammatory/angiogenic molecules in microvascular cells, exacerbating inflammatory damage and retinopathy features. Thiamine added to microglia exerts anti-inflammatory effects.
Collapse
Affiliation(s)
- Elena Beltramo
- Department of Medical Sciences, University of Turin, 10126 Torino, Italy; (A.M.); (M.P.)
| | | | | |
Collapse
|
3
|
Effects of Marginal Zn Excess and Thiamine Deficiency on Microglial N9 Cell Metabolism and Their Interactions with Septal SN56 Cholinergic Cells. Int J Mol Sci 2023; 24:ijms24054465. [PMID: 36901896 PMCID: PMC10002586 DOI: 10.3390/ijms24054465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Mild thiamine deficiency aggravates Zn accumulation in cholinergic neurons. It leads to the augmentation of Zn toxicity by its interaction with the enzymes of energy metabolism. Within this study, we tested the effect of Zn on microglial cells cultivated in a thiamine-deficient medium, containing 0.003 mmol/L of thiamine vs. 0.009 mmol/L in a control medium. In such conditions, a subtoxic 0.10 mmol/L Zn concentration caused non-significant alterations in the survival and energy metabolism of N9 microglial cells. Both activities of the tricarboxylic acid cycle and the acetyl-CoA level were not decreased in these culture conditions. Amprolium augmented thiamine pyrophosphate deficits in N9 cells. This led to an increase in the intracellular accumulation of free Zn and partially aggravated its toxicity. There was differential sensitivity of neuronal and glial cells to thiamine-deficiency-Zn-evoked toxicity. The co-culture of neuronal SN56 with microglial N9 cells reduced the thiamine-deficiency-Zn-evoked inhibition of acetyl-CoA metabolism and restored the viability of the former. The differential sensitivity of SN56 and N9 cells to borderline thiamine deficiency combined with marginal Zn excess may result from the strong inhibition of pyruvate dehydrogenase in neuronal cells and no inhibition of this enzyme in the glial ones. Therefore, ThDP supplementation can make any brain cell more resistant to Zn excess.
Collapse
|
4
|
Endothelial Toll-like receptor 4 is required for microglia activation in the murine retina after systemic lipopolysaccharide exposure. J Neuroinflammation 2023; 20:25. [PMID: 36739425 PMCID: PMC9899393 DOI: 10.1186/s12974-023-02712-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/30/2023] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Clustering of microglia around the vasculature has been reported in the retina and the brain after systemic administration of lipopolysaccharides (LPS) in mice. LPS acts via activation of Toll-like receptor 4 (TRL4), which is expressed in several cell types including microglia, monocytes and vascular endothelial cells. The purpose of this study was to investigate the effect of systemic LPS in the pigmented mouse retina and the involvement of endothelial TLR4 in LPS-induced retinal microglia activation. METHODS C57BL/6J, conditional knockout mice that lack Tlr4 expression selectively on endothelial cells (TekCre-posTlr4loxP/loxP) and TekCre-negTlr4loxP/loxP mice were used. The mice were injected with 1 mg/kg LPS via the tail vein once per day for a total of 4 days. Prior to initiation of LPS injections and approximately 5 h after the last injection, in vivo imaging using fluorescein angiography and spectral-domain optical coherence tomography was performed. Immunohistochemistry, flow cytometry, electroretinography and transmission electron microscopy were utilized to investigate the role of endothelial TLR4 in LPS-induced microglia activation and retinal function. RESULTS Activation of microglia, infiltration of monocyte-derived macrophages, impaired ribbon synapse organization and retinal dysfunction were observed after the LPS exposure in C57BL/6J and TekCre-negTlr4loxP/loxP mice. None of these effects were observed in the retinas of conditional Tlr4 knockout mice after the LPS challenge. CONCLUSIONS The findings of the present study suggest that systemic LPS exposure can have detrimental effects in the healthy retina and that TLR4 expressed on endothelial cells is essential for retinal microglia activation and retinal dysfunction upon systemic LPS challenge. This important finding provides new insights into the role of microglia-endothelial cell interaction in inflammatory retinal disease.
Collapse
|
5
|
Lv S, Dai W, Zheng Y, Dong P, Yu Y, Zhao Y, Sun S, Bi D, Liu C, Han F, Wu J, Zhao T, Ma Y, Zheng F, Sun P. Anxiolytic effect of YangshenDingzhi granules: Integrated network pharmacology and hippocampal metabolomics. Front Pharmacol 2022; 13:966218. [PMID: 36386232 PMCID: PMC9659911 DOI: 10.3389/fphar.2022.966218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/10/2022] [Indexed: 11/04/2023] Open
Abstract
Anxiety disorder is one of the most common mental diseases. It is mainly characterized by a sudden, recurring but indescribable panic, fear, tension and/or anxiety. Yangshendingzhi granules (YSDZ) are widely used in the treatment of anxiety disorders, but its active ingredients and underlying mechanisms are not yet clear. This study integrates network pharmacology and metabolomics to investigate the potential mechanism of action of YSDZ in a rat model of anxiety. First, potential active ingredients and targets were screened by network pharmacology. Then, predictions were verified by molecular docking, molecular dynamics and western blotting. Metabolomics was used to identify differential metabolites and metabolic pathways. All results were integrated for a comprehensive analysis. Network pharmacology analysis found that Carotene, β-sitosterol, quercetin, Stigmasterol, and kaempferol in YSDZ exert anxiolytic effects mainly by acting on IL1β, GABRA1, PTGS1, ESR1, and TNF targets. Molecular docking results showed that all the affinities were lower than -5 kcal/mol, and the average affinities were -7.7764 kcal/mol. Molecular dynamics simulation results showed that RMSD was lower than 2.5 A, and the overall conformational changes of proteins were small, indicating that the small molecules formed stable complexes with proteins. The results of animal experiments showed that YSDZ exerts anxiolytic effects by regulating GABRA1 and TNF-α, ameliorating pathological damage in hippocampal CA1, and regulating metabolic pathways such as thiamine, cysteine and methionine metabolism, lysine biosynthesis and degradation. Altogether, we reveal multiple mechanisms through which YSDZ exerts its anti-anxiety effects, which may provide a reference for its clinical application and drug development.
Collapse
Affiliation(s)
- Shimeng Lv
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weibo Dai
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine, Zhong Shan, China
| | - Yan Zheng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ping Dong
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yihong Yu
- School of Management, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yifan Zhao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shiguang Sun
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dezhong Bi
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fabin Han
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jibiao Wu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Zhao
- School of Foreign Language, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuexiang Ma
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Feng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Peng Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Liu X, Yao C, Tang Y, Liu X, Duan C, Wang C, Han F, Xiang Y, Wu L, Li Y, Ji A, Cai T. Role of p53 methylation in manganese-induced cyclooxygenase-2 expression in BV2 microglial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113824. [PMID: 36068751 DOI: 10.1016/j.ecoenv.2022.113824] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 05/21/2023]
Abstract
Manganese (Mn) is an essential cofactor for many enzymes and plays an important role in normal growth and development. However, excess exposure to manganese (Mn) may be an important environmental factor leading to neurodegeneration. The overexpression of microglial cyclooxygenase-2 (COX-2) plays a key role in neuroinflammation in neurodegenerative diseases. The existing data suggest that Mn can induce neuroinflammation by up-regulating COX-2 expression. However, the mechanisms involved in Mn-induced microglial COX-2 up-regulation remain to be determined. The aim of this study was to investigate the role of p53 in Mn-induced COX-2 expression in microglial cells. The results showed that Mn exposure induced the up-regulation of COX-2 and inhibited the expression of p53 in BV2 microglial cells. The addition of p53 activator and the over-expression of p53 blocked the expression of COX-2 and prostaglandin E2 (PGE2), a COX-2 downstream effector, induced by Mn. Further, Mn increased the methylation of p53 DNA in microglia, while the addition of demethylation reagent 5-Aza-dC enhanced the expression of p53 but decreased the expression of COX-2. These results suggested that Mn may inhibit p53 expression through induction of DNA methylation, which can further induce the expression of COX-2 in microglial cells.
Collapse
Affiliation(s)
- Xiaoling Liu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chunyan Yao
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan Tang
- Experimental Teaching Center, School of Public Health, Southwest Medical University, Luzhou, China
| | - Xiaoyan Liu
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Chenggang Duan
- Department of Pathophysiology, Southwest Medical University, Luzhou, China
| | - Chunmei Wang
- Experimental Teaching Center, School of Public Health, Southwest Medical University, Luzhou, China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ying Xiang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Long Wu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yafei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ailing Ji
- Department of Preventive Medicine & Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, China.
| | - Tongjian Cai
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
7
|
Gomes KC, Lima FWB, da Silva Aguiar HQ, de Araújo SS, de Cordova CAS, de Cordova FM. Thiamine deficiency and recovery: impact of recurrent episodes and beneficial effect of treatment with Trolox and dimethyl sulfoxide. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2289-2307. [PMID: 34468817 DOI: 10.1007/s00210-021-02148-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
At present, thiamine deficiency (TD) is managed with administration of high doses of thiamine. Even so, severe and permanent neurological disorders can occur in recurrent episodes of TD. In this study, we used a murine model to assess the efficacy of TD recovery treatments using thiamine with or without additional administration of the antioxidant Trolox or the anti-inflammatory dimethyl sulfoxide (DMSO) after a single or recurrent episode of TD. TD was induced for 9 days with deficient chow and pyrithiamine, and the recovery period was 7 days with standard amounts of chow and thiamine, Trolox, and/or DMSO. After these periods, we evaluated behavior, histopathology, and ERK1/2 modulation in the brain. Deficient animals showed reductions in locomotor activity, motor coordination, and spatial memory. Morphologically, after a single episode of TD and recovery, deficient mice showed neuronal vacuolization in the dorsal thalamus and, after two episodes, a reduction in neuronal cell number. These effects were attenuated or reversed by the recovery treatments, mainly in the treatments with thiamine associated with Trolox or DMSO. Deficient animals showed a strong increase in ERK1/2 phosphorylation in the thalamus, hippocampus, and cerebral cortex after one deficiency episode and recovery. Interestingly, after recurrent TD and recovery, ERK1/2 phosphorylation remained high only in the deficient mice treated with thiamine and/or Trolox or thiamine with DMSO. Our data suggest that a protocol for TD treatment with thiamine in conjunction with Trolox or DMSO enhances the recovery of animals and possibly minimizes the late neurological sequelae.
Collapse
Affiliation(s)
- Ketren Carvalho Gomes
- Programa de Pós-Graduação em Sanidade Animal e Saúde Pública nos Trópicos , Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | | | - Helen Quézia da Silva Aguiar
- Curso de Medicina Veterinária, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | - Suiane Silva de Araújo
- Curso de Medicina Veterinária, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | | | - Fabiano Mendes de Cordova
- Programa de Pós-Graduação em Sanidade Animal e Saúde Pública nos Trópicos , Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil.
| |
Collapse
|
8
|
Savage LM, Nunes PT, Gursky ZH, Milbocker KA, Klintsova AY. Midline Thalamic Damage Associated with Alcohol-Use Disorders: Disruption of Distinct Thalamocortical Pathways and Function. Neuropsychol Rev 2021; 31:447-471. [PMID: 32789537 PMCID: PMC7878584 DOI: 10.1007/s11065-020-09450-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
The thalamus, a significant part of the diencephalon, is a symmetrical and bilateral central brain structure. The thalamus is subdivided into three major groups of nuclei based on their function: sensorimotor nuclei (or principal/relay nuclei), limbic nuclei and nuclei bridging these two domains. Anatomically, nuclei within the thalamus are described by their location, such as anterior, medial, lateral, ventral, and posterior. In this review, we summarize the role of medial and midline thalamus in cognition, ranging from learning and memory to flexible adaptation. We focus on the discoveries in animal models of alcohol-related brain damage, which identify the loss of neurons in the medial and midline thalamus as drivers of cognitive dysfunction associated with alcohol use disorders. Models of developmental ethanol exposure and models of adult alcohol-related brain damage and are compared and contrasted, and it was revealed that there are similar (anterior thalamus) and different (intralaminar [adult exposure] versus ventral midline [developmental exposure]) thalamic pathology, as well as disruptions of thalamo-hippocampal and thalamo-cortical circuits. The final part of the review summarizes approaches to recover alcohol-related brain damage and cognitive and behavioral outcomes. These approaches include pharmacological, nutritional and behavioral interventions that demonstrated the potential to mitigate alcohol-related damage. In summary, the medial/midline thalamus is a significant contributor to cognition function, which is also sensitive to alcohol-related brain damage across the life span, and plays a role in alcohol-related cognitive dysfunction.
Collapse
Affiliation(s)
- Lisa M Savage
- Developmental Ethanol Alcohol Research Center, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, 13902-6000, USA.
| | - Polliana T Nunes
- Developmental Ethanol Alcohol Research Center, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, 13902-6000, USA
| | - Zachary H Gursky
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Katrina A Milbocker
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Anna Y Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
9
|
Xu Y, Zhao L, Qiu H, Qian T, Sang S, Zhong C. The impact of thiamine deficiency and benfotiamine treatment on Nod-like receptor protein-3 inflammasome in microglia. Neuroreport 2021; 32:1041-1048. [PMID: 34232130 DOI: 10.1097/wnr.0000000000001691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Thiamine-dependent processes are critical in cerebral glucose metabolism, it is abnormity induces oxidative stress, inflammation and neurodegeneration. Nod-like receptor protein-3 (NLRP3) inflammasome-mediated inflammation is closely related to neurologic diseases and can be activated by oxidative stress. However, the impact of thiamine deficiency on NLRP3 inflammasome activation remains unknown. In this study, we found that NLRP3 inflammasomes were significantly activated in the microglia of thiamine deficiency mice model. In contrast, benfotiamine dampened inflammation NLRP3 mediated in BV2 cells stimulated with LPS and ATP through reducing mitochondrial reactive oxygen species levels and mitigating autophagy flux defect. These data identify an important role of thiamine metabolism in NLRP3 inflammasome activation, and correcting thiamine metabolism through benfotiamine provides a new therapeutic strategy for NLRP3 inflammasome related neurological, metabolic, and inflammatory diseases.
Collapse
Affiliation(s)
- Yangqi Xu
- Department of Neurology, Zhongshan Hospital, Fudan university
| | - Lei Zhao
- Department of Neurology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyan Qiu
- Department of Neurology, Zhongshan Hospital, Fudan university
| | - Ting Qian
- Department of Neurology, Zhongshan Hospital, Fudan university
| | - Shaoming Sang
- Department of Neurology, Zhongshan Hospital, Fudan university
| | - Chunjiu Zhong
- Department of Neurology, Zhongshan Hospital, Fudan university
| |
Collapse
|
10
|
Thiamine deficiency in rats affects thiamine metabolism possibly through the formation of oxidized thiamine pyrophosphate. Biochim Biophys Acta Gen Subj 2021; 1865:129980. [PMID: 34390792 DOI: 10.1016/j.bbagen.2021.129980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/16/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Thiamine deficiency (TD) has a number of features in common with the neurodegenerative diseases development and close relationship between TD and oxidative stress (OS) has been repeatedly reported in the literature. The aim of this study is to understand how alimentary TD, accompanied by OS, affects the expression and level of two thiamine metabolism proteins in rat brain, namely, thiamine transporter 1 (THTR1) and thiamine pyrophosphokinase (TPK1), and what factors are responsible for the observed changes. METHODS The effects of OS caused by TD on the THTR1and TPK1 expression in rat cortex, cerebellum and hippocampus were examined. The levels of active and oxidized forms of ThDP (enzymatically measured) in the blood and brain, ROS and SH-groups in the brain were also analyzed. RESULTS TD increased the expression of THTR1 and protein level in all studied regions. In contrast, expression of TPK1 was depressed. TD-induced OS led to the accumulation of ThDP oxidized inactive form (ThDPox) in the blood and brain. In vitro reduction of ThDPox by dithiothreitol regenerates active ThDP suggesting that ThDPox is in disulfide form. A single high-dose thiamine administration to TD animals had no effect on THTR1 expression, partly raised TPK1 mRNA and protein levels, but is unable to normalize TPK1 enzyme activity. Brain and blood ThDP levels were increased in these conditions, but ThDPox was not decreased. GENERAL SIGNIFICANCE It is likely, that the accumulation of ThDPox in tissue could be seen as a potential marker of neurocellular dysfunction and thiamine metabolic state.
Collapse
|
11
|
Bolaños-Burgos IC, Bernal-Correa AM, Mahecha GAB, Ribeiro ÂM, Kushmerick C. Thiamine Deficiency Increases Intrinsic Excitability of Mouse Cerebellar Purkinje Cells. THE CEREBELLUM 2020; 20:186-202. [PMID: 33098550 DOI: 10.1007/s12311-020-01202-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 10/23/2022]
Abstract
Thiamine deficiency is associated with cerebellar dysfunction; however, the consequences of thiamine deficiency on the electrophysiological properties of cerebellar Purkinje cells are poorly understood. Here, we evaluated these parameters in brain slices containing cerebellar vermis. Adult mice were maintained for 12-13 days on a thiamine-free diet coupled with daily injections of pyrithiamine, an inhibitor of thiamine phosphorylation. Morphological analysis revealed a 20% reduction in Purkinje cell and nuclear volume in thiamine-deficient animals compared to feeding-matched controls, with no reduction in cell count. Under whole-cell current clamp, thiamine-deficient Purkinje cells required significantly less current injection to fire an action potential. This reduction in rheobase was not due to a change in voltage threshold. Rather, thiamine-deficient neurons presented significantly higher input resistance specifically in the voltage range just below threshold, which increases their sensitivity to current at these critical membrane potentials. In addition, thiamine deficiency caused a significant decrease in the amplitude of the action potential afterhyperpolarization, broadened the action potential, and decreased the current threshold for depolarization block. When thiamine-deficient animals were allowed to recover for 1 week on a normal diet, rheobase, threshold, action potential half-width, and depolarization block threshold were no longer different from controls. We conclude that thiamine deficiency causes significant but reversible changes to the electrophysiology properties of Purkinje cells prior to pathological morphological alterations or cell loss. Thus, the data obtained in the present study indicate that increased excitability of Purkinje cells may represent a leading indicator of cerebellar dysfunction caused by lack of thiamine.
Collapse
Affiliation(s)
| | - Ana María Bernal-Correa
- Graduate Program in Physiology and Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Ângela Maria Ribeiro
- Graduate Program in Neuroscience, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Christopher Kushmerick
- Graduate Program in Neuroscience, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. .,Graduate Program in Physiology and Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. .,Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
12
|
Regions of the basal ganglia and primary olfactory system are most sensitive to neurodegeneration after extended sevoflurane anesthesia in the perinatal rat. Neurotoxicol Teratol 2020; 80:106890. [PMID: 32413489 DOI: 10.1016/j.ntt.2020.106890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/10/2020] [Accepted: 04/29/2020] [Indexed: 01/22/2023]
Abstract
Extended general anesthesia early in life is neurotoxic in multiple species. However, little is known about the temporal progression of neurodegeneration after general anesthesia. It is also unknown if a reduction in natural cell death, or an increase in cell creation, occurs as a form of compensation after perinatal anesthesia exposure. The goal of this study was to evaluate markers of neurodegeneration and cellular division at 2, 24, or 72 h after sevoflurane (Sevo) exposure (6 h) in fully oxygenated postnatal day (PND) 7 rats. Neurodegeneration was observed in areas throughout the forebrain, while the largest changes (fold increase above vehicle) were observed in areas associated with either the primary olfactory learning pathways or the basal ganglia. These regions included the indusium griseum (IG, 25-fold), the posterior dorso medial hippocampal CA1 (17-fold), bed nucleus of the stria terminalis (Bed Nuclei STM, 5-fold), the shell of the nucleus accumbens (Acb, 5-fold), caudate/putamen (CPu, 5-fold), globus pallidus (GP, 9-fold) and associated thalamic (11-fold) and cortical regions (5-fold). Sevo neurodegeneration was minimal or undetectable in the ventral tegmentum, substantia nigra, and most of the hypothalamus and frontal cortex. In most brain regions where neurodegeneration was increased 2 h post Sevo exposure, the levels returned to <4-fold above control levels by 24 h. However, in the IG, CA1, GP, anterior thalamus, medial preoptic nucleus of the hypothalamus (MPO), anterior hypothalamic area (AHP), and the amygdaloid nuclei, neurodegeneration at 24 h was double or more than that at 2 h post exposure. Anesthesia exposure causes either a prolonged period of neurodegeneration in certain brain regions, or a distinct secondary degenerative event occurs after the initial insult. Moreover, regions most sensitive to Sevo neurodegeneration did not necessarily coincide with areas of new cell birth, and new cell birth was not consistently affected by Sevo. The profile of anesthesia related neurotoxicity changes with time, and multiple mechanisms of toxicity may exist in a time-dependent fashion.
Collapse
|
13
|
Bowyer JF, Sarkar S, Burks SM, Hess JN, Tolani S, O'Callaghan JP, Hanig JP. Microglial activation and responses to vasculature that result from an acute LPS exposure. Neurotoxicology 2020; 77:181-192. [PMID: 32014511 DOI: 10.1016/j.neuro.2020.01.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/22/2022]
Abstract
Bacterial cell wall endotoxins, i.e. lipopolysaccharides (LPS), are some of the original compounds shown to evoke the classic signs of systemic inflammation/innate immune response and neuroinflammation. The term neuroinflammation often is used to infer the elaboration of proinflammatory mediators by microglia elicited by neuronal targeted activity. However, it also is possible that the microglia are responding to vasculature through several signaling mechanisms. Microglial activation relative to the vasculature in the hippocampus and parietal cortex was determined after an acute exposure of a single subcutaneous injection of 2 mg/kg LPS. Antibodies to allograft inflammatory factor (Aif1, a.k.a. Iba1) were used to track and quantify morphological changes in microglia. Immunostaining of platelet/endothelial cell adhesion molecule 1 (Pecam1, a.k.a. Cd31) was used to visualize vasculature in the forebrain and glial acidic fibrillary protein (GFAP) to visualize astrocytes. Neuroinflammation and other aspects of neurotoxicity were evaluated histologically at 3 h, 6 h, 12 h, 24 h, 3 d and 14 d following LPS exposure. LPS did not cause neurodegeneration as determined by Fluoro Jade C labeling. Also, there were no signs of mouse IgG leakage from brain vasculature due to LPS. Some changes in microglia size occurred at 6 h, but by 12 h microglial activation had begun with the combined soma and proximal processes size increasing significantly (1.5-fold). At 24 h, almost all the microglia soma and proximal processes in the hippocampus, parietal cortex, and thalamus were closely associated with the vasculature and had increased almost 2.0-fold in size. In many areas where microglia were juxtaposed to vasculature, astrocytic endfeet appeared to be displaced. The microglial activation had subsided slightly by 3 d with microglial size 1.6-fold that of control. We hypothesize that acute LPS activation can result in vascular mediated microglial responses through several mechanisms: 1) binding to Cd14 and Tlr4 receptors on microglia processes residing on vasculature; 2) damaging vasculature and causing the release of cytokines; and 3) possibly astrocytic endfeet damage resulting in cytokine release. These acute responses may serve as an adaptive mechanism to exposure to circulating LPS where the microglia surround the vasculature. This could further prevent the pathogen(s) circulating in blood from entering the brain. However, diverting microglial interactions away from synaptic remodeling and other types of microglial interactions with neurons may have adverse effects on neuronal function.
Collapse
Affiliation(s)
- John F Bowyer
- Division of Neurotoxicology, National Center for Toxicology/ FDA, Jefferson, AR 72079, USA
| | - Sumit Sarkar
- Division of Neurotoxicology, National Center for Toxicology/ FDA, Jefferson, AR 72079, USA.
| | - Susan M Burks
- Division of Neurotoxicology, National Center for Toxicology/ FDA, Jefferson, AR 72079, USA
| | - Jade N Hess
- Division of Neurotoxicology, National Center for Toxicology/ FDA, Jefferson, AR 72079, USA
| | - Serena Tolani
- Division of Neurotoxicology, National Center for Toxicology/ FDA, Jefferson, AR 72079, USA
| | - James P O'Callaghan
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health Morgantown, WV 26505, USA
| | - Joseph P Hanig
- Center for Drug Evaluation and Research/ FDA Silver Spring, MD 20993, USA
| |
Collapse
|
14
|
Medeiros RDCN, Moraes JO, Rodrigues SDC, Pereira LM, Aguiar HQDS, de Cordova CAS, Yim Júnior A, de Cordova FM. Thiamine Deficiency Modulates p38 MAPK and Heme Oxygenase-1 in Mouse Brain: Association with Early Tissue and Behavioral Changes. Neurochem Res 2020; 45:940-955. [PMID: 31989470 DOI: 10.1007/s11064-020-02975-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/11/2020] [Accepted: 01/22/2020] [Indexed: 12/18/2022]
Abstract
Thiamine deficiency (TD) produces severe neurodegenerative lesions. Studies have suggested that primary neurodegenerative events are associated with both oxidative stress and inflammation. Very little is known about the downstream effects on intracellular signaling pathways involved in neuronal death. The primary aim of this work was to evaluate the modulation of p38MAPK and the expression of heme oxygenase 1 (HO-1) in the central nervous system (CNS). Behavioral, metabolic, and morphological parameters were assessed. Mice were separated into six groups: control (Cont), TD with pyrithiamine (Ptd), TD with pyrithiamine and Trolox (Ptd + Tr), TD with pyrithiamine and dimethyl sulfoxide (Ptd + Dmso), Trolox (Tr) and DMSO (Dmso) control groups and treated for 9 days. Control groups received standard feed (AIN-93M), while TD groups received thiamine deficient feed (AIN-93DT). All the groups were subjected to behavioral tests, and CNS samples were collected for cell viability, histopathology and western blot analyses. The Ptd group showed a reduction in weight gain and feed intake, as well as a reduction in locomotor, grooming, and motor coordination activities. Also, Ptd group showed a robust increase in p38MAPK phosphorylation and mild HO-1 expression in the cerebral cortex and thalamus. The Ptd group showed a decreased cell viability, hemorrhage, spongiosis, and astrocytic swelling in the thalamus. Groups treated with Trolox and DMSO displayed diminished p38MAPK phosphorylation in both the structures, as well as attenuated thalamic lesions and behavioral activities. These data suggest that p38MAPK and HO-1 are involved in the TD-induced neurodegeneration in vivo, possibly modulated by oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Rita de Cássia Noronha Medeiros
- Programa de Pós-Graduação em Sanidade Animal e Saúde Pública nos Trópicos, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | - Juliana Oliveira Moraes
- Programa de Pós-Graduação em Sanidade Animal e Saúde Pública nos Trópicos, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | | | - Leidiano Martins Pereira
- Curso de Medicina Veterinária, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | - Helen Quézia da Silva Aguiar
- Curso de Medicina Veterinária, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | | | - Alberto Yim Júnior
- Curso de Medicina Veterinária, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | - Fabiano Mendes de Cordova
- Programa de Pós-Graduação em Sanidade Animal e Saúde Pública nos Trópicos, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil.
| |
Collapse
|
15
|
Yokoi F, Jiang F, Dexter K, Salvato B, Li Y. Improved survival and overt "dystonic" symptoms in a torsinA hypofunction mouse model. Behav Brain Res 2019; 381:112451. [PMID: 31891745 DOI: 10.1016/j.bbr.2019.112451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 12/25/2022]
Abstract
DYT1 dystonia is an inherited movement disorder without obvious neurodegeneration. Multiple mutant mouse models exhibit motor deficits without overt "dystonic" symptoms and neurodegeneration. However, some mouse models do. Among the later models, the N-CKO mouse model, which has a heterozygous Tor1a/Dyt1 knockout (KO) in one allele and Nestin-cre-mediated conditional KO in the other, exhibits a severe lack of weight gain, neurodegeneration, overt "dystonic" symptoms, such as overt leg extension, weak walking, twisted hindpaw and stiff hindlimb, and complete infantile lethality. However, it is not clear if the overt dystonic symptoms were caused by the neurodegeneration in the dying N-CKO mice. Here, the effects of improved maternal care and nutrition during early life on the symptoms in N-CKO mice were analyzed by culling the litter and providing wet food to examine whether the overt dystonic symptoms and severe lack of weight gain are caused by malnutrition-related neurodegeneration. Although the N-CKO mice in this study replicated the severe lack of weight gain and overt "dystonic" symptoms during the lactation period regardless of culling at postnatal day zero or later, there was no significant difference in the brain astrocytes and apoptosis between the N-CKO and control mice. Moreover, more than half of the N-CKO mice with culling survived past the lactation period. The surviving adult N-CKO mice did not display overt "dystonic" symptoms, and in addition they still exhibited small body weight. The results suggest that the overt "dystonic" symptoms in the N-CKO mice were independent of prominent neurodegeneration, which negates the role of neurodegeneration in the pathogenesis of DYT1 dystonia.
Collapse
Affiliation(s)
- Fumiaki Yokoi
- Department of Neurology and Norman Fixel Institute of Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Fangfang Jiang
- Department of Neurology and Norman Fixel Institute of Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL, USA; Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Kelly Dexter
- Department of Neurology and Norman Fixel Institute of Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Bryan Salvato
- Department of Neurology and Norman Fixel Institute of Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yuqing Li
- Department of Neurology and Norman Fixel Institute of Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
16
|
Tsatsakis A, Tyshko NV, Docea AO, Shestakova SI, Sidorova YS, Petrov NA, Zlatian O, Mach M, Hartung T, Tutelyan VA. The effect of chronic vitamin deficiency and long term very low dose exposure to 6 pesticides mixture on neurological outcomes – A real-life risk simulation approach. Toxicol Lett 2019; 315:96-106. [DOI: 10.1016/j.toxlet.2019.07.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 01/27/2023]
|
17
|
Moraes JO, Rodrigues SDC, Pereira LM, Medeiros RDCN, de Cordova CAS, de Cordova FM. Amprolium exposure alters mice behavior and metabolism in vivo. Animal Model Exp Med 2018; 1:272-281. [PMID: 30891577 PMCID: PMC6388078 DOI: 10.1002/ame2.12040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/01/2018] [Accepted: 10/22/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Thiamine deficiency (TD) models have been developed, mainly using the thiamine analog pyrithiamine. Other analogs have not been used in rodents. We aimed to evaluate the effects and mechanisms of intraperitoneal (ip) amprolium-induced TD in mice. We also evaluated the associated pathogenesis using antioxidant and anti-inflammatory compounds (Trolox, dimethyl sulfoxide). METHODS Male mice were separated into two groups, one receiving a standard diet (control animals), and the other a TD diet (deficient groups) for 20 days. Control mice were further subdivided into three groups receiving daily ip injections of saline (NaCl 0.9%; Cont group), Tolox (Tr group) or dimethyl sulfoxide (DMSO; Dmso group). The three TD groups received amprolium (Amp group), amprolium and Trolox (Amp+Tr group), or amprolium and DMSO (Amp+Dmso group). The animals were subjected to behavioral tests and then euthanized. The brain and viscera were analyzed. RESULTS Amprolium exposure induced weight loss with hyporexia, reduced the behavioral parameters (locomotion, exploratory activity, and motor coordination), and induced changes in the brain (lower cortical cell viability) and liver (steatosis). Trolox co-treatment partially improved these conditions, but to a lesser extent than DMSO. CONCLUSIONS Amprolium-induced TD may be an interesting model, allowing the deficiency to develop more slowly and to a lesser extent. Amprolium exposure also seems to involve oxidative stress and inflammation, suggested as the main mechanisms of cell dysfunction in TD.
Collapse
Affiliation(s)
- Juliana Oliveira Moraes
- Programa de Pós‐Graduação em Sanidade Animal e Saúde Pública nos TrópicosUniversidade Federal do TocantinsAraguaínaTOBrazil
| | | | | | | | | | - Fabiano Mendes de Cordova
- Programa de Pós‐Graduação em Sanidade Animal e Saúde Pública nos TrópicosUniversidade Federal do TocantinsAraguaínaTOBrazil
| |
Collapse
|