1
|
Izumi H, Demura M, Imai A, Ogawa R, Fukuchi M, Okubo T, Tabata T, Mori H, Yoshida T. Developmental synapse pathology triggered by maternal exposure to the herbicide glufosinate ammonium. Front Mol Neurosci 2023; 16:1298238. [PMID: 38098940 PMCID: PMC10720911 DOI: 10.3389/fnmol.2023.1298238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
Environmental and genetic factors influence synapse formation. Numerous animal experiments have revealed that pesticides, including herbicides, can disturb normal intracellular signals, gene expression, and individual animal behaviors. However, the mechanism underlying the adverse outcomes of pesticide exposure remains elusive. Herein, we investigated the effect of maternal exposure to the herbicide glufosinate ammonium (GLA) on offspring neuronal synapse formation in vitro. Cultured cerebral cortical neurons prepared from mouse embryos with maternal GLA exposure demonstrated impaired synapse formation induced by synaptic organizer neuroligin 1 (NLGN1)-coated beads. Conversely, the direct administration of GLA to the neuronal cultures exhibited negligible effect on the NLGN1-induced synapse formation. The comparison of the transcriptomes of cultured neurons from embryos treated with maternal GLA or vehicle and a subsequent bioinformatics analysis of differentially expressed genes (DEGs) identified "nervous system development," including "synapse," as the top-ranking process for downregulated DEGs in the GLA group. In addition, we detected lower densities of parvalbumin (Pvalb)-positive neurons at the postnatal developmental stage in the medial prefrontal cortex (mPFC) of offspring born to GLA-exposed dams. These results suggest that maternal GLA exposure induces synapse pathology, with alterations in the expression of genes that regulate synaptic development via an indirect pathway distinct from the effect of direct GLA action on neurons.
Collapse
Affiliation(s)
- Hironori Izumi
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Maina Demura
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Ayako Imai
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Ryohei Ogawa
- Department of Radiology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Mamoru Fukuchi
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, Gunma, Japan
| | - Taisaku Okubo
- Laboratory for Biological Information Processing, Faculty of Engineering, University of Toyama, Toyama, Japan
| | - Toshihide Tabata
- Laboratory for Biological Information Processing, Faculty of Engineering, University of Toyama, Toyama, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Research Center for Pre-Disease Science, University of Toyama, Toyama, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| |
Collapse
|
2
|
Ma X, Wang B, Li Z, Ding X, Wen Y, Shan W, Hu W, Wang X, Xia Y. Effects of glufosinate-ammonium on male reproductive health: Focus on epigenome and transcriptome in mouse sperm. CHEMOSPHERE 2022; 287:132395. [PMID: 34597628 DOI: 10.1016/j.chemosphere.2021.132395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/18/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Glufosinate-ammonium (GLA) is a widely used herbicide with emerging concern over its neural and reproductive toxicity. To uncover potential effects of GLA on male reproductive health in mammals, adult male C57BL/6J mice were administered 0.2 mg/kg·d GLA for 5 weeks. After examination on fertility, testis histology and semen quality in the GLA group, we performed deep sequencing to identify repressive epigenetic marks including DNA methylation and histone modifications (H3K27me3 and H3K9me3), together with mRNA transcript levels in sperm. Then, we integrated multi-omics sequencing data to comprehensively explore GLA-induced epigenetic and transcriptomic alterations. We found no significant difference either on fertility, testis histology or semen quality-related indicators. As for epigenome, the protein level of H3K27me3 was significantly increased in GLA sperm. Next generation sequencing showed alterations of these epigenetic marks and extensive transcription inhibition in sperm. These differential repressive marks were mainly distributed at intergenic regions and introns. According to results by Gene Ontology enrichment analysis, both differentially methylated and expressed genes were mainly enriched in pathways related to synapse organization. Subtle differences in genomic imprinting were also observed between the two groups. These results suggested that GLA predominantly impaired sperm epigenome and transcriptome in mice, with little effect on fertility, testis histology or semen quality. Further studies on human sperm using similar strategies need to be conducted for a better understanding of the male reproductive toxicity of GLA.
Collapse
Affiliation(s)
- Xuan Ma
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Bingqian Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zhe Li
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xingwang Ding
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ya Wen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Wenqi Shan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Weiyue Hu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|