1
|
Li Z, Han Y, Li X, Xiong W, Cui T, Xi W, Jin S, Zhang X. Polycyclic aromatic hydrocarbons exposure in early pregnancy on child neurodevelopment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125527. [PMID: 39675657 DOI: 10.1016/j.envpol.2024.125527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/18/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
The epidemiological evidence from studies on the impact of exposure to polycyclic aromatic hydrocarbons (PAHs) during pregnancy on child neurodevelopment is inconclusive. This study aimed to assess the associations of PAHs exposure in early pregnancy and neurodevelopmental outcomes in children aged 6-12 months in a prospective cohort. In this study, we included 172 mother-child pairs with complete data in Tianjin City, China. Ten PAH metabolites were determined in early-pregnancy urine using gas chromatography and tandem mass spectrometry (GC-MS/MS). Child neurodevelopment was measured using the Griffiths Development Scales-Chinese (GDS-C) when children were between 6 and 12 months old. We employed multivariable linear regression, Weighted Quantile Sum (WQS) regression, and Bayesian Kernel Machine Regression (BKMR) to assess the relationships of individual PAH metabolites and mixtures of these metabolites with child neurodevelopment. Multiplicative interactions were analyzed to examine effect modification by child sex. In the multivariable linear regression analysis, six PAH metabolites were found to be negatively associated with personal social scores, while three PAH metabolites showed a negative association with language scores. The WQS model revealed that the PAHs mixture was linked to decreased personal social scores (β = - 4.18, 95% CI = -7.56, - 0.80) and language scores (β = - 4.17, 95% CI = -7.98, -0.37). Furthermore, the BKMR models also indicated the negative associations between the PAHs mixture and personal social scores and language scores. Notably, three PAH metabolites (1-hydroxynaphthalene(1-OHNap), 3-hydroxyfluorene(3-OHFlu), 3+9-hydroxyphenanthrene(3+9-OHPhe)) were identified as important contributors to these associations. All analyses of interactions were null. Exposure to PAHs during early pregnancy, whether individually or as a mixture, demonstrated a negative association with child neurodevelopment outcomes.
Collapse
Affiliation(s)
- Zhi Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, China
| | - Yu Han
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, China
| | - Xinyu Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, China
| | - Wenjuan Xiong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, China
| | - Tingkai Cui
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, China
| | - Wei Xi
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, China
| | - Shihao Jin
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, China
| | - Xin Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
2
|
Sturla Irizarry SM, Cathey AL, Zimmerman E, Rosario Pabón ZY, Huerta Montañez G, Vélez Vega CM, Alshawabkeh AN, Cordero JF, Meeker JD, Watkins DJ. Prenatal polycyclic aromatic hydrocarbon exposure and neurodevelopment among children in Puerto Rico. CHEMOSPHERE 2024; 366:143468. [PMID: 39369740 DOI: 10.1016/j.chemosphere.2024.143468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/04/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants produced through the combustion of organic matter, with sources ranging from traffic pollution to diet. Although PAH exposure has been associated with adverse health effects, few studies have examined its impact on neurodevelopmental delay (NDD). Thus, our study aims to investigate the effect of prenatal PAH exposure on the odds of NDD. We measured 7 hydroxylated PAH metabolites in spot urine samples collected up to three times during pregnancy in the PROTECT birth cohort. NDD was identified using score cutoffs from the Ages and Stages Questionnaire, 3rd edition offered in Spanish, across five domains at 12, 24, 36, and 48 months. We utilized logistic regression and mixed effects logistic regression models to assess associations between prenatal PAH concentrations and NDD. Our results showed mostly lower odds of NDD with higher PAH exposure (p < 0.05). However, male children showed higher odds of NDD in relation to PAH exposure, particularly in the Fine Motor domain. For example, 1-hydroxypyrene was associated with 1.11 (1.01, 1.23) times odds of delay in fine motor function in male children versus 0.91 (0.82, 1.00) times odds in female children. Our preliminary sex-specific results suggest that PAH exposure may impact neurodevelopment in male children and prompt further investigation into the potential sex-specific mechanisms of PAHs on motor function.
Collapse
Affiliation(s)
| | - Amber L Cathey
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA.
| | - Emily Zimmerman
- Department of Communication Sciences and Disorders, Northeastern University, Boston, MA, USA.
| | - Zaira Y Rosario Pabón
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA.
| | - Gredia Huerta Montañez
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA.
| | - Carmen M Vélez Vega
- Department of Social Sciences, Doctoral Program in Social Determinants of Health, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA.
| | - Akram N Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA.
| | - José F Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA.
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA.
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Ni Y, Szpiro AA, Loftus CT, Workman T, Sullivan A, Wallace ER, Riederer AM, Day DB, Murphy LE, Nguyen RHN, Sathyanarayana S, Barrett ES, Zhao Q, Enquobahrie DA, Simpson C, Ahmad SI, Arizaga JA, Collett BR, Derefinko KJ, Kannan K, Bush NR, LeWinn KZ, Karr CJ. Prenatal exposure to polycyclic aromatic hydrocarbons and executive functions at school age: Results from a combined cohort study. Int J Hyg Environ Health 2024; 260:114407. [PMID: 38879913 PMCID: PMC11896739 DOI: 10.1016/j.ijheh.2024.114407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/26/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Executive functions develop rapidly in childhood, enabling problem-solving, focused attention, and planning. Exposures to environmental toxicants in pregnancy may impair healthy executive function development in children. There is increasing concern regarding polycyclic aromatic hydrocarbons (PAHs) given their ability to transfer across the placenta and the fetal blood-brain barrier, yet evidence from epidemiological studies is limited. METHODS We examined associations between prenatal PAH exposure and executive functions in 814 children of non-smoking mothers from two U.S. cohorts in the ECHO-PATHWAYS Consortium. Seven mono-hydroxylated PAH metabolites were measured in mid-pregnancy urine and analyzed individually and as mixtures. Three executive function domains were measured at age 8-9: cognitive flexibility, working memory, and inhibitory control. A composite score quantifying overall performance was further calculated. We fitted linear regressions adjusted for socio-demographics, maternal health behaviors, and psychological measures, and examined modification by child sex and stressful life events in pregnancy. Bayesian kernel machine regression was performed to estimate the interactive and overall effects of the PAH mixture. RESULTS The results from primary analysis of linear regressions were generally null, and no modification by child sex or maternal stress was indicated. Mixture analyses suggested several pairwise interactions between individual PAH metabolites in varied directions on working memory, particularly interactions between 2/3/9-FLUO and other PAH metabolites, but no overall or individual effects were evident. CONCLUSION We conducted a novel exploration of PAH-executive functions association in a large, combined sample from two cohorts. Although findings were predominantly null, the study carries important implications for future research and contributes to evolving science regarding developmental origins of diseases.
Collapse
Affiliation(s)
- Yu Ni
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA; Division of Epidemiology and Biostatistics, School of Public Health, College of Health and Human Services, San Diego State University, San Diego, CA, USA.
| | - Adam A Szpiro
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Christine T Loftus
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Tomomi Workman
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Alexis Sullivan
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Erin R Wallace
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Anne M Riederer
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Drew B Day
- Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA, USA
| | - Laura E Murphy
- Department of Psychiatry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ruby H N Nguyen
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minnesota, USA
| | - Sheela Sathyanarayana
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA; Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Qi Zhao
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Daniel A Enquobahrie
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Christopher Simpson
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Shaikh I Ahmad
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Jessica A Arizaga
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Brent R Collett
- Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Karen J Derefinko
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Nicole R Bush
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Kaja Z LeWinn
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Catherine J Karr
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA; Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Grippo A, Zhu K, Yeung EH, Bell EM, Bonner MR, Tian L, Mendola P, Mu L. Indoor air pollution exposure and early childhood development in the Upstate KIDS Study. ENVIRONMENTAL RESEARCH 2023; 234:116528. [PMID: 37419197 PMCID: PMC11365522 DOI: 10.1016/j.envres.2023.116528] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Limited human studies have investigated the impact of indoor air pollution on early childhood neurodevelopment among the US population. We aimed to examine the associations between prenatal and postnatal indoor air pollution exposure and early childhood development in a population-based birth cohort. METHODS This analysis included 4735 mother-child pairs enrolled between 2008 and 2010 in the Upstate KIDS Study. Indoor air pollution exposure from cooking fuels, heating fuels, and passive smoke during pregnancy, and at 12 and 36 months after birth were assessed by questionnaires. Five domains of child development were assessed by the Ages and Stages Questionnaire at 4, 8, 12, 18, 24, 30, and 36 months. Generalized estimating equations were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs), adjusting for potential confounders. RESULTS Exposure to unclean cooking fuels (natural gas, propane, or wood) throughout the study period was associated with increased odds of failing any development domain (OR = 1.28, 95% CI 1.07, 1.53), the gross motor domain (OR = 1.52, 95% CI: 1.09, 2.13), and the personal-social domain (OR = 1.36, 95% CI: 1.00, 1.85), respectively. Passive smoke exposure throughout the study period increased the odds of failing the problem-solving domain by 71% (OR = 1.71, 95% CI 1.01, 2.91) among children of non-smoking mothers. No association was found between heating fuel use and failing any or specific domains. CONCLUSION Unclean cooking fuel use and passive smoke exposure during pregnancy and early life were associated with developmental delays in this large prospective birth cohort.
Collapse
Affiliation(s)
- Alexandra Grippo
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Kexin Zhu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Edwina H Yeung
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Erin M Bell
- Department of Environmental Health Sciences and Epidemiology and Biostatistics, University at Albany School of Public Health, Rensselaer, NY, USA
| | - Matthew R Bonner
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Lili Tian
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Pauline Mendola
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Lina Mu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| |
Collapse
|
5
|
Tartaglione AM, Racca A, Ricceri L. Developmental exposure to polycyclic aromatic hydrocarbons (PAHs): Focus on benzo[a]pyrene neurotoxicity. Reprod Toxicol 2023; 119:108394. [PMID: 37164061 DOI: 10.1016/j.reprotox.2023.108394] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) are a class of ubiquitous organic compounds produced during the incomplete combustion or pyrolysis of organic material. Dietary source is the main route for PAH human exposure by environmental contamination, food industrial processing or domestic cooking methods. The most studied PAH is benzo[a]pyrene (B[a]P), due to its harmful and multiple effects on human health: in addition to its well-known carcinogenic effects, emerging evidence indicates that B[a]P also induces neurotoxicity earlier and at lower doses than B[a]P-induced carcinogenicity making B[a]P neurotoxicity relevant to human health risk assessment. Developmental neurotoxicity of B[a]P has indeed received increasing attention: both human and experimental studies provide evidence of detrimental effects of prenatal or early postnatal B[a]P exposure, even at low doses. Indeed, in some of the multi-dose animal studies, maximal adverse effects were observed at lower B[a]P doses, according to a non-monotonic dose-response curve typical of endocrine-disrupting compounds. In substantial agreement with epidemiological studies, both rodents and zebrafish developmentally exposed to B[a]P exhibit long-term changes in multiple behavioural domains, in the absence of overt toxicological effects at birth (e.g. body weight and morphologic abnormalities). Notably, most targeted behavioural responses converge on locomotor activity and emotional profile, often, but not always, leading to a disinhibitory/hyperactive profile.
Collapse
Affiliation(s)
- Anna Maria Tartaglione
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Arianna Racca
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Ricceri
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
6
|
Li P, Yang Q, Li Y, Han Y, Qu Z, Gao L, Cui T, Xiong W, Xi W, Zhang X. Association of urinary polycyclic aromatic hydrocarbon metabolites with symptoms among autistic children: A case–control study in Tianjin, China. Autism Res 2022; 15:1941-1960. [DOI: 10.1002/aur.2788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/25/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Peiying Li
- Department of Maternal, Child and Adolescent Health School of Public Health, Tianjin Medical University Tianjin China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health School of Public Health, Tianjin Medical University Tianjin China
| | - Qiaoyun Yang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health School of Public Health, Tianjin Medical University Tianjin China
- Department of Occupational and Environmental Health School of Public Health, Tianjin Medical University Tianjin China
| | - Yao Li
- Department of Maternal, Child and Adolescent Health School of Public Health, Tianjin Medical University Tianjin China
| | - Yu Han
- Department of Maternal, Child and Adolescent Health School of Public Health, Tianjin Medical University Tianjin China
| | - Zhiyi Qu
- Department of Maternal, Child and Adolescent Health School of Public Health, Tianjin Medical University Tianjin China
| | - Lei Gao
- Department of Maternal, Child and Adolescent Health School of Public Health, Tianjin Medical University Tianjin China
| | - Tingkai Cui
- Department of Maternal, Child and Adolescent Health School of Public Health, Tianjin Medical University Tianjin China
| | - Wenjuan Xiong
- Department of Maternal, Child and Adolescent Health School of Public Health, Tianjin Medical University Tianjin China
| | - Wei Xi
- Department of Maternal, Child and Adolescent Health School of Public Health, Tianjin Medical University Tianjin China
| | - Xin Zhang
- Department of Maternal, Child and Adolescent Health School of Public Health, Tianjin Medical University Tianjin China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health School of Public Health, Tianjin Medical University Tianjin China
| |
Collapse
|
7
|
Wallace ER, Ni Y, Loftus CT, Sullivan A, Masterson E, Szpiro AA, Day DB, Robinson M, Kannan K, Tylavsky FA, Sathyanarayana S, Bush NR, LeWinn KZ, Karr CJ. Prenatal urinary metabolites of polycyclic aromatic hydrocarbons and toddler cognition, language, and behavior. ENVIRONMENT INTERNATIONAL 2022; 159:107039. [PMID: 34902794 PMCID: PMC8748410 DOI: 10.1016/j.envint.2021.107039] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Animal and epidemiological studies suggest that prenatal exposure to polycyclic aromatic hydrocarbons (PAHs) may negatively impact toddler neurodevelopment. METHODS We investigated this association in 835 mother-child pairs from CANDLE, a diverse pregnancy cohort in the mid-South region of the U.S. PAH metabolite concentrations were measured in mid-pregnancy maternal urine. Cognitive and Language composite scores at ages 2 and 3 years were derived from the Bayley Scales of Infant and Toddler Development, 3rd edition (Bayley-3). Behavior Problem and Competence scores at age 2 were derived from the Brief Infant and Toddler Social Emotional Assessment (BITSEA). We used multivariate linear or Poisson regression to estimate associations with continuous scores and relative risks (RR) of neurodevelopment delay or behavior problems per 2-fold increase in PAH, adjusted for maternal health, nutrition, and socioeconomic status. Secondary analyses investigated associations with PAH mixture using Weighted Quantile Sum Regression (WQS) with a permutation test extension. RESULTS 1- hydroxypyrene was associated with elevated relative risk for Neurodevelopmental Delay at age 2 (RR = 1.20, 95% CI: 1.03,1.39). Contrary to hypotheses, 1-hydroxynaphthalene was associated with lower risk for Behavior Problems at age 2 (RR = 0.90, 95% CI: 0.83,0.98), and combined 1- and 9-hydroxyphenanthrene was associated with 0.52-point higher (95% CI: 0.11,0.93) Cognitive score at age 3. For PAH mixtures, a quintile increase in hydroxy-PAH mixture was associated with lower Language score at age 2 (βwqs = -1.59; 95% CI: -2.84, -0.34; ppermutation = 0.07) and higher Cognitive score at age 3 (βwqs = 0.96; 95% CI: 0.11, 1.82; ppermutation = 0.05). All other estimates were consistent with null associations. CONCLUSION In this large southern U.S. population we observed some support for adverse associations between PAHs and neurodevelopment.
Collapse
Affiliation(s)
- Erin R Wallace
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA.
| | - Yu Ni
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Christine T Loftus
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Alexis Sullivan
- Department of Psychiatry, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Erin Masterson
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Adam A Szpiro
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Drew B Day
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Morgan Robinson
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Fran A Tylavsky
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sheela Sathyanarayana
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, USA
| | - Nicole R Bush
- Department of Psychiatry, School of Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Kaja Z LeWinn
- Department of Psychiatry, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Catherine J Karr
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA; Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, USA; Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| |
Collapse
|