1
|
Yang Y, Chen S, Zhang L, Zhang G, Liu Y, Li Y, Zou L, Meng L, Tian Y, Dai L, Xiong M, Pan L, Xiong J, Chen L, Hou H, Yu Z, Zhang Z. The PM20D1-NADA pathway protects against Parkinson's disease. Cell Death Differ 2024; 31:1545-1560. [PMID: 39174646 PMCID: PMC11519464 DOI: 10.1038/s41418-024-01356-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024] Open
Abstract
Parkinson's disease (PD) is characterized by the selective loss of dopaminergic neurons in the substantia nigra and the accumulation of α-synuclein (α-Syn) aggregates. However, the molecular mechanisms regulating α-Syn aggregation and neuronal degeneration remain poorly understood. The peptidase M20 domain containing 1 (PM20D1) gene lies within the PARK16 locus genetically linked to PD. Single nucleotide polymorphisms regulating PM20D1 expression are associated with changed risk of PD. Dopamine (DA) metabolism and DA metabolites have been reported to regulate α-Syn pathology. Here we report that PM20D1 catalyzes the conversion of DA to N-arachidonoyl dopamine (NADA), which interacts with α-Syn and inhibits its aggregation. Simultaneously, NADA competes with α-Syn fibrils to regulate TRPV4-mediated calcium influx and downstream phosphatases, thus alleviating α-Syn phosphorylation. The expression of PM20D1 decreases during aging. Overexpression of PM20D1 or the administration of NADA in a mouse model of synucleinopathy alleviated α-Syn pathology, dopaminergic neurodegeneration, and motor impairments. These observations support the protective effect of the PM20D1-NADA pathway against the progression of α-Syn pathology in PD.
Collapse
Affiliation(s)
- Yunying Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Sichun Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guoxin Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yan Liu
- Department of Nursing, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiming Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Zou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ye Tian
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lijun Dai
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lina Pan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jing Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Liam Chen
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Hua Hou
- Department of Polymer Science, College of Chemistry and Molecular Sciences of Wuhan University, Wuhan, 430060, China
| | - Zhui Yu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
2
|
Wang W, Sun T. Impact of TRPV1 on Pathogenesis and Therapy of Neurodegenerative Diseases. Molecules 2023; 29:181. [PMID: 38202764 PMCID: PMC10779880 DOI: 10.3390/molecules29010181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is a transmembrane and non-selective cation channel protein, which can be activated by various physical and chemical stimuli. Recent studies have shown the strong pathogenetic associations of TRPV1 with neurodegenerative diseases (NDs), in particular Alzheimer's disease (AD), Parkinson's disease (PD) and multiple sclerosis (MS) via regulating neuroinflammation. Therapeutic effects of TRPV1 agonists and antagonists on the treatment of AD and PD in animal models also are emerging. We here summarize the current understanding of TRPV1's effects and its agonists and antagonists as a therapeutic means in neurodegenerative diseases, and highlight future treatment strategies using natural TRPV1 agonists. Developing new targets and applying natural products are becoming a promising direction in the treatment of chronic disorders, especially neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China;
| |
Collapse
|
3
|
Novosadova EV, Dolotov OV, Novosadova LV, Davydova LI, Sidoruk KV, Arsenyeva EL, Shimchenko DM, Debabov VG, Bogush VG, Tarantul VZ. Composite Coatings Based on Recombinant Spidroins and Peptides with Motifs of the Extracellular Matrix Proteins Enhance Neuronal Differentiation of Neural Precursor Cells Derived from Human Induced Pluripotent Stem Cells. Int J Mol Sci 2023; 24:ijms24054871. [PMID: 36902300 PMCID: PMC10003142 DOI: 10.3390/ijms24054871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The production and transplantation of functionally active human neurons is a promising approach to cell therapy. Biocompatible and biodegradable matrices that effectively promote the growth and directed differentiation of neural precursor cells (NPCs) into the desired neuronal types are very important. The aim of this study was to evaluate the suitability of novel composite coatings (CCs) containing recombinant spidroins (RSs) rS1/9 and rS2/12 in combination with recombinant fused proteins (FP) carrying bioactive motifs (BAP) of the extracellular matrix (ECM) proteins for the growth of NPCs derived from human induced pluripotent stem cells (iPSC) and their differentiation into neurons. NPCs were produced by the directed differentiation of human iPSCs. The growth and differentiation of NPCs cultured on different CC variants were compared with a Matrigel (MG) coating using qPCR analysis, immunocytochemical staining, and ELISA. An investigation revealed that the use of CCs consisting of a mixture of two RSs and FPs with different peptide motifs of ECMs increased the efficiency of obtaining neurons differentiated from iPSCs compared to Matrigel. CC consisting of two RSs and FPs with Arg-Gly-Asp-Ser (RGDS) and heparin binding peptide (HBP) is the most effective for the support of NPCs and their neuronal differentiation.
Collapse
Affiliation(s)
- Ekaterina V. Novosadova
- Laboratory of Cell Differentiation, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
- Correspondence:
| | - Oleg V. Dolotov
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Lyudmila V. Novosadova
- Laboratory of Cell Differentiation, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| | - Lubov I. Davydova
- Laboratory of Protein Engineering, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| | - Konstantin V. Sidoruk
- Laboratory of Protein Engineering, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| | - Elena L. Arsenyeva
- Laboratory of Cell Differentiation, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| | - Darya M. Shimchenko
- Laboratory of Cell Differentiation, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| | - Vladimir G. Debabov
- Laboratory of Protein Engineering, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| | - Vladimir G. Bogush
- Laboratory of Protein Engineering, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| | - Vyacheslav Z. Tarantul
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| |
Collapse
|
4
|
Transcriptome datasets of neural progenitors and neurons differentiated from induced pluripotent stem cells of healthy donors and Parkinson's disease patients with mutations in the PARK2 gene. Data Brief 2022; 41:107958. [PMID: 35242938 PMCID: PMC8867054 DOI: 10.1016/j.dib.2022.107958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/25/2022] [Accepted: 02/10/2022] [Indexed: 11/21/2022] Open
Abstract
Parkinson's disease (PD) is a complex systemic disorder caused by neurodegenerative processes in the brain that are mainly characterized by progressive loss of dopaminergic neurons in the substantia nigra. About 10% of PD cases have been linked to specific gene mutations (Zafar and Yaddanapudi, 2022) including the PARK2 gene that encodes a RING domain-containing E3 ubiquitin ligase Parkin. PD-Parkin patients have a younger onset, longer disease duration, and more severe clinical symptoms in comparison to PD patients with unknown causative PD mutations (Zhou et al., 2020). Induced pluripotent stem cells (iPSCs) are considered to be a powerful tool for disease modeling. To evaluate how mutations in PARK2 contribute to PD development, iPSC lines were obtained from three healthy donors and three PD patients with different mutations in the PARK2 gene. iPSC lines were differentiated consequently into neural progenitors (NPs) and then into terminally differentiated neurons (DNs). The data presented in this article were generated on an NextSeq 500 System (Illumina) and include transcriptome profiles for NPs and DNs of healthy donors and PD patients with mutations in the PARK2 gene. Top10 up- and down-regulated differentially expressed genes in NPs and DNs of patients with PD compared to healthy donors were also presented. A comparative transcriptome analysis of neuronal derivatives of healthy donors and PD patients allows to examine the contributions of the PARK2 gene mutations to PD pathogenesis.
Collapse
|
5
|
Influence of N-Arachidonoyl Dopamine and N-Docosahexaenoyl Dopamine on the Expression of Neurotrophic Factors in Neuronal Differentiated Cultures of Human Induced Pluripotent Stem Cells under Conditions of Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11010142. [PMID: 35052646 PMCID: PMC8773408 DOI: 10.3390/antiox11010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 01/27/2023] Open
Abstract
Oxidative stress (OS) is implicated in the pathogenesis of several neurodegenerative diseases. We have previously shown that N-acyl dopamines (N-ADA and N-DDA) protect the neural cells of healthy donors and patients with Parkinson’s disease from OS. In this study, we assessed the effects of N-acyl dopamines on the expression of neurotrophic factors in human-induced pluripotent stem cell-derived neuronal cultures enriched with dopaminergic neurons under conditions of OS induced by hydrogen peroxide. We showed that hydrogen peroxide treatment increased BDNF but not GDNF mRNA levels, while it did not affect the secretion of corresponding proteins into the culture medium of these cells. Application of N-acyl dopamines promoted BDNF release into the culture medium. Under conditions of OS, N-DDA also increased TRKB, TRKC and RET mRNA levels. Furthermore, N-acyl dopamines prevented cell death 24 h after OS induction and promoted the expression of antioxidant enzymes GPX1, GPX7, SOD1, SOD2 and CAT, as well as reduced the BAX/BCL2 mRNA ratio. These findings indicate that stimulation of the expression of neurotrophic factors and their receptors may underlie the neuroprotective effects of N-acyl dopamines in human neurons.
Collapse
|
6
|
Novel Approaches Used to Examine and Control Neurogenesis in Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22179608. [PMID: 34502516 PMCID: PMC8431772 DOI: 10.3390/ijms22179608] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/16/2022] Open
Abstract
Neurogenesis is a key mechanism of brain development and plasticity, which is impaired in chronic neurodegeneration, including Parkinson’s disease. The accumulation of aberrant α-synuclein is one of the features of PD. Being secreted, this protein produces a prominent neurotoxic effect, alters synaptic plasticity, deregulates intercellular communication, and supports the development of neuroinflammation, thereby providing propagation of pathological events leading to the establishment of a PD-specific phenotype. Multidirectional and ambiguous effects of α-synuclein on adult neurogenesis suggest that impaired neurogenesis should be considered as a target for the prevention of cell loss and restoration of neurological functions. Thus, stimulation of endogenous neurogenesis or cell-replacement therapy with stem cell-derived differentiated neurons raises new hopes for the development of effective and safe technologies for treating PD neurodegeneration. Given the rapid development of optogenetics, it is not surprising that this method has already been repeatedly tested in manipulating neurogenesis in vivo and in vitro via targeting stem or progenitor cells. However, niche astrocytes could also serve as promising candidates for controlling neuronal differentiation and improving the functional integration of newly formed neurons within the brain tissue. In this review, we mainly focus on current approaches to assess neurogenesis and prospects in the application of optogenetic protocols to restore the neurogenesis in Parkinson’s disease.
Collapse
|