1
|
Wang L, Curran GL, Zhong R, Xue Z, Veerareddy V, Thieschafer J, Min PH, Li L, Lowe VJ, Kandimalla KK. Amyloid beta peptides inhibit glucose transport at the blood-brain barrier by disrupting the insulin-AKT pathway. J Cereb Blood Flow Metab 2025:271678X251332493. [PMID: 40370301 DOI: 10.1177/0271678x251332493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Molecular mechanisms underlying disruptions in brain glucose uptake and metabolism, linked with cognitive decline in Alzheimer's disease (AD) patients, are only partially understood. This study investigated how soluble amyloid beta (sAβ) peptides affect glucose transport at the blood-brain barrier (BBB), the primary portal for glucose entry into the brain. We demonstrated that [18F]-fluorodeoxyglucose (18FDG) uptake is reduced in sAβ overproducing APP,PS1 transgenic mice compared to wild-type mice. Moreover, the influx rate of 18FDG decreased in sAβ40 or sAβ42 pre-infused mice, highlighting the inhibitory effect of sAβ peptides on glucose transport at the BBB. Consistently, the expression of GLUT1, the primary glucose transporter at the BBB, is reduced in polarized human cerebral microvascular endothelial cell (hCMEC/D3) monolayers upon exposure to sAβ peptides and in Aβ-laden cerebral vasculature in vivo. The study further examined the influence of sAβ on the insulin-AKT pathway, known to regulate glucose uptake through modulation of thioredoxin-interacting protein (TXNIP) expression. Results showed that sAβ peptides suppress AKT phosphorylation and reduce GLUT1 expression by upregulating TXNIP levels in hCMEC/D3 monolayers. Co-incubation of resveratrol with sAβ peptides reduced TXNIP expression and rectified reductions in GLUT1 expression. In summary, toxic sAβ impairs BBB glucose transport by disrupting the insulin/AKT/TXNIP axis.
Collapse
Affiliation(s)
- Lushan Wang
- Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Geoffry L Curran
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Rui Zhong
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Zheng Xue
- Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Vaishnavi Veerareddy
- Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Josslen Thieschafer
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Paul H Min
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Karunya K Kandimalla
- Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Moiz B, Walls M, Alpizar Vargas V, Addepalli A, Weber C, Li A, Sriram G, Clyne AM. Instationary metabolic flux analysis reveals that NPC1 inhibition increases glycolysis and decreases mitochondrial metabolism in brain microvascular endothelial cells. Neurobiol Dis 2025; 204:106769. [PMID: 39706535 DOI: 10.1016/j.nbd.2024.106769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
Niemann Pick Disease Type C (NP-C), a rare neurogenetic disease with no known cure, is caused by mutations in the cholesterol trafficking protein NPC1. Brain microvascular endothelial cells (BMEC) are thought to play a critical role in the pathogenesis of several neurodegenerative diseases; however, little is known about how these cells are altered in NP-C. In this study, we investigated how NPC1 inhibition perturbs BMEC metabolism in human induced pluripotent stem cell-derived BMEC (hiBMEC). We incorporated extracellular metabolite and isotope labeling data into an instationary metabolic flux analysis (INST-MFA) model to estimate intracellular metabolic fluxes. We found that NPC1 inhibition significantly increased glycolysis and pentose phosphate pathway flux while decreasing mitochondrial metabolism. These changes may have been driven by gene expression changes due to increased cholesterol biosynthesis, in addition to mitochondrial cholesterol accumulation. We corroborated these findings in primary BMEC, an alternative in vitro human brain endothelial model. Finally, we found that co-treatment with hydroxypropyl-β cyclodextrin (HPβCD) partially restored metabolic phenotype in U18666A-treated BMECs, suggesting that this drug may have therapeutic effects on the brain endothelium in NP-C. Together, our data highlight the importance of NPC1 in BMEC metabolism and implicate brain endothelial dysfunction in NP-C pathogenesis.
Collapse
Affiliation(s)
- Bilal Moiz
- Department of Bioengineering, University of Maryland, College Park, MD 20742, United States of America
| | - Matthew Walls
- Department of Bioengineering, University of Maryland, College Park, MD 20742, United States of America
| | - Viviana Alpizar Vargas
- Department of Bioengineering, University of Maryland, College Park, MD 20742, United States of America
| | - Anirudh Addepalli
- Department of Bioengineering, University of Maryland, College Park, MD 20742, United States of America
| | - Callie Weber
- Department of Bioengineering, University of Maryland, College Park, MD 20742, United States of America
| | - Andrew Li
- Department of Bioengineering, University of Maryland, College Park, MD 20742, United States of America
| | - Ganesh Sriram
- Department of Chemical and Biochemical Engineering, University of Maryland, College Park, MD 20742, United States of America
| | - Alisa Morss Clyne
- Department of Bioengineering, University of Maryland, College Park, MD 20742, United States of America.
| |
Collapse
|
3
|
Pervaiz I, Mehta Y, Al-Ahmad AJ. Glucose Transporter 1 Deficiency Impairs Glucose Metabolism and Barrier Induction in Human Induced Pluripotent Stem Cell-Derived Astrocytes. J Cell Physiol 2025; 240:e31523. [PMID: 39807611 DOI: 10.1002/jcp.31523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025]
Abstract
Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake. A lot of effort has been made to characterize GLUT1DS at the BBB, but the impact on astrocytes remains unclear. In this study, we investigated the impact of GLUT1DS on astrocyte differentiation and function in vitro, using human induced pluripotent stem cells GLUT1DS (GLUT1DS-iPSCs) differentiated into astrocyte-like cells (iAstros). GLUT1 expression is decreased during the differentiation of iPSCs into astrocytes, with neural progenitor cells showing the lowest expression. The presence of a truncated GLUT1 did not compromise the differentiation of iPSCs into iAstros, as these cells could express several key markers representative of the astrocyte lineage. GLUT1DS-iAstros failed to express full-length GLUT1 at protein levels while showing no signs of impaired GLUT4 expression. However, GLUT1DS-iAstros showed decreased glucose uptake and lactate production compared to control-iAstros, reduced glycolysis, and mitochondrial activity as well as ATP deficit. In addition to reduced energy production, astrocytes displayed a reduced extracellular glutamate release. As previously observed, one iAstros clone (C7) showed the most severe phenotype from all groups. Our study provides an insightful view of the contribution of GLUT1 in astrocytes' energetic metabolism and raises the possible contribution of these cells in the astrocyte-neuron metabolic coupling. Our future direction is to understand better how GLUT1DS impacts astrocytes and neurons within their metabolic coupling.
Collapse
Affiliation(s)
- Iqra Pervaiz
- Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| | - Yash Mehta
- Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| | - Abraham Jacob Al-Ahmad
- Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| |
Collapse
|
4
|
Weber CM, Moiz B, Clyne AM. Brain microvascular endothelial cell metabolism and its ties to barrier function. VITAMINS AND HORMONES 2024; 126:25-75. [PMID: 39029976 PMCID: PMC11756814 DOI: 10.1016/bs.vh.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Brain microvascular endothelial cells, which lie at the interface between blood and brain, are critical to brain energetics. These cells must precisely balance metabolizing nutrients for their own demands with transporting nutrients into the brain to sustain parenchymal cells. It is essential to understand this integrated metabolism and transport so that we can develop better diagnostics and therapeutics for neurodegenerative diseases such as Alzheimer's disease, multiple sclerosis, and traumatic brain injury. In this chapter, we first describe brain microvascular endothelial cell metabolism and how these cells regulate both blood flow and nutrient transport. We then explain the impact of brain microvascular endothelial cell metabolism on the integrity of the blood-brain barrier, as well as how metabolites produced by the endothelial cells impact other brain cells. We detail some ways that cell metabolism is typically measured experimentally and modeled computationally. Finally, we describe changes in brain microvascular endothelial cell metabolism in aging and neurodegenerative diseases. At the end of the chapter, we highlight areas for future research in brain microvascular endothelial cell metabolism. The goal of this chapter is to underscore the importance of nutrient metabolism and transport at the brain endothelium for cerebral health and neurovascular disease treatment.
Collapse
Affiliation(s)
- Callie M Weber
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Bilal Moiz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Alisa Morss Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States.
| |
Collapse
|
5
|
Raut S, Bhalerao A, Powers M, Gonzalez M, Mancuso S, Cucullo L. Hypometabolism, Alzheimer's Disease, and Possible Therapeutic Targets: An Overview. Cells 2023; 12:2019. [PMID: 37626828 PMCID: PMC10453773 DOI: 10.3390/cells12162019] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/19/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
The brain is a highly dynamic organ that requires a constant energy source to function normally. This energy is mostly supplied by glucose, a simple sugar that serves as the brain's principal fuel source. Glucose transport across the blood-brain barrier (BBB) is primarily controlled via sodium-independent facilitated glucose transport, such as by glucose transporter 1 (GLUT1) and 3 (GLUT3). However, other glucose transporters, including GLUT4 and the sodium-dependent transporters SGLT1 and SGLT6, have been reported in vitro and in vivo. When the BBB endothelial layer is crossed, neurons and astrocytes can absorb the glucose using their GLUT1 and GLUT3 transporters. Glucose then enters the glycolytic pathway and is metabolized into adenosine triphosphate (ATP), which supplies the energy to support cellular functions. The transport and metabolism of glucose in the brain are impacted by several medical conditions, which can cause neurological and neuropsychiatric symptoms. Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, traumatic brain injury (TBI), schizophrenia, etc., are a few of the most prevalent disorders, characterized by a decline in brain metabolism or hypometabolism early in the course of the disease. Indeed, AD is considered a metabolic disorder related to decreased brain glucose metabolism, involving brain insulin resistance and age-dependent mitochondrial dysfunction. Although the conventional view is that reduced cerebral metabolism is an effect of neuronal loss and consequent brain atrophy, a growing body of evidence points to the opposite, where hypometabolism is prodromal or at least precedes the onset of brain atrophy and the manifestation of clinical symptoms. The underlying processes responsible for these glucose transport and metabolic abnormalities are complicated and remain poorly understood. This review article provides a comprehensive overview of the current understanding of hypometabolism in AD and potential therapeutic targets.
Collapse
Affiliation(s)
- Snehal Raut
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| | - Aditya Bhalerao
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| | - Michael Powers
- Department of Biological and Biomedical Sciences, Oakland University, Rochester, MI 48309, USA;
| | - Minelly Gonzalez
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| | - Salvatore Mancuso
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| | - Luca Cucullo
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| |
Collapse
|
6
|
Jiang G, Long Z, Wang Y, Wang Y, Xue P, Chen M, Yang K, Li W. Inhibition of mammalian target of rapamycin complex 1 in the brain microvascular endothelium ameliorates diabetic Aβ brain deposition and cognitive impairment via the sterol-regulatory element-binding protein 1/lipoprotein receptor-associated protein 1 signaling pathway. CNS Neurosci Ther 2023. [PMID: 36890627 DOI: 10.1111/cns.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/02/2022] [Accepted: 02/15/2023] [Indexed: 03/10/2023] Open
Abstract
AIMS Mammalian target of rapamycin complex 1 (mTORC1) is highly activated in diabetes, and the decrease of low-density lipoprotein receptor-associated protein 1 (LRP1) in brain microvascular endothelial cells (BMECs) is a key factor leading to amyloid-β (Aβ) deposition in the brain and diabetic cognitive impairment, but the relationship between them is still unknown. METHODS In vitro, BMECs were cultured with high glucose, and the activation of mTORC1 and sterol-regulatory element-binding protein 1 (SREBP1) was observed. mTORC1 was inhibited by rapamycin and small interfering RNA (siRNA) in BMECs. Betulin and siRNA inhibited SREBP1, observed the mechanism of mTORC1-mediated effects on Aβ efflux in BMECs through LRP1 under high-glucose conditions. Constructed cerebrovascular endothelial cell-specific Raptor-knockout (Raptorfl/+ ) mice to investigate the role of mTORC1 in regulating LRP1-mediated Aβ efflux and diabetic cognitive impairment at the tissue level. RESULTS mTORC1 activation was observed in HBMECs cultured in high glucose, and this change was confirmed in diabetic mice. Inhibiting mTORC1 corrected the reduction in Aβ efflux under high-glucose stimulation. In addition, high glucose activated the expression of SREBP1, and inhibiting of mTORC1 reduced the activation and expression of SREBP1. After inhibiting the activity of SREBP1, the presentation of LRP1 was improved, and the decrease of Aβ efflux mediated by high glucose was corrected. Raptorfl/+ diabetic mice had significantly inhibited activation of mTORC1 and SREBP1, increased LRP1 expression, increased Aβ efflux, and improved cognitive impairment. CONCLUSION Inhibiting mTORC1 in the brain microvascular endothelium ameliorates diabetic Aβ brain deposition and cognitive impairment via the SREBP1/LRP1 signaling pathway, suggesting that mTORC1 may be a potential target for the treatment of diabetic cognitive impairment.
Collapse
Affiliation(s)
- Gege Jiang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenzhen Long
- Xiang Yang No. 1 People Hospital, Affiliated Hospital of Hubei University Medicine, XiangYang, China
| | - Yaoling Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaofeng Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Xue
- Department of Geriatrics, Li-Yuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minfang Chen
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Yang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Li
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Al-Ahmad AJ. Human-Induced Pluripotent Stem Cell-Based Model of the Blood-Brain at 10 Years: A Retrospective on Past and Current Disease Models. Handb Exp Pharmacol 2023; 281:141-156. [PMID: 36943490 DOI: 10.1007/164_2023_645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The initial discovery and derivation of induced pluripotent stem cells (iPSCs) by Yamanaka and colleagues in 2006 revolutionized the field of personalized medicine, as it opened the possibility to model diseases using patient-derived stem cells. A decade of adoption of iPSCs within the community of the blood-brain barrier (BBB) significantly opened the door for modeling diseases at the BBB, a task until then considered challenging, if not impossible.In this book chapter, we provided an extensive review of the literature on the use of iPSC-based models of the human BBB to model neurological diseases including infectious diseases (COVID-19, Streptococcus, Neisseria) neurodevelopmental diseases (adrenoleukodystrophy, Allan-Herndon-Dudley Syndrome, Batten's disease, GLUT1 deficiency syndrome), and neurodegenerative diseases (Alzheimer's disease, the current findings and observations, but also the challenges and limitations inherent to the use of iPSC-based models in reproducing the human BBB during health and diseases in a Petri dish.
Collapse
Affiliation(s)
- Abraham J Al-Ahmad
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.
| |
Collapse
|
8
|
Pervaiz I, Zahra FT, Mikelis C, Al-Ahmad AJ. An in vitro model of glucose transporter 1 deficiency syndrome at the blood-brain barrier using induced pluripotent stem cells. J Neurochem 2022; 162:483-500. [PMID: 35943296 DOI: 10.1111/jnc.15684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/08/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
Abstract
Glucose is an important source of energy for the central nervous system. Its uptake at the blood-brain barrier (BBB) is mostly mediated via glucose transporter 1 (GLUT1), a facilitated transporter encoded by the SLC2A1 gene. GLUT1 Deficiency Syndrome (GLUT1DS) is a haploinsufficiency characterized by mutations in the SLC2A1 gene, resulting in impaired glucose uptake at the BBB and clinically characterized by epileptic seizures and movement disorder. A major limitation is an absence of in vitro models of the BBB reproducing the disease. This study aimed to characterize an in vitro model of GLUT1DS using human pluripotent stem cells (iPSCs). Two GLUT1DS clones were generated (GLUT1-iPSC) from their original parental clone iPS(IMR90)-c4 by CRISPR/Cas9 and differentiated into brain microvascular endothelial cells (iBMECs). Cells were characterized in terms of SLC2A1 expression, changes in the barrier function, glucose uptake and metabolism, and angiogenesis. GLUT1DS iPSCs and iBMECs showed comparable phenotype to their parental control, with exception of reduced GLUT1 expression at the protein level. Although no major disruption in the barrier function was reported in the two clones, a significant reduction in glucose uptake accompanied by an increase in glycolysis and mitochondrial respiration was reported in both GLUT1DS-iBMECs. Finally, impaired angiogenic features were reported in such clones compared to the parental clone. Our study provides the first documented characterization of GLUT1DS-iBMECs generated by CRISPR-Cas9, suggesting that GLUT1 truncation appears detrimental to brain angiogenesis and brain endothelial bioenergetics, but maybe not be detrimental to iBMECs differentiation and barriergenesis. Our future direction is to further characterize the functional outcome of such truncated product, as well as its impact on other cells of the neurovascular unit.
Collapse
Affiliation(s)
- Iqra Pervaiz
- Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Department of Pharmaceutical Sciences, Amarillo, Texas, United States of America
| | - Fatema Tuz Zahra
- Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Department of Pharmaceutical Sciences, Amarillo, Texas, United States of America
| | - Constantinos Mikelis
- Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Department of Pharmaceutical Sciences, Amarillo, Texas, United States of America
| | - Abraham Jacob Al-Ahmad
- Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Department of Pharmaceutical Sciences, Amarillo, Texas, United States of America
| |
Collapse
|
9
|
Zlotnik D, Rabinski T, Halfon A, Anzi S, Plaschkes I, Benyamini H, Nevo Y, Gershoni OY, Rosental B, Hershkovitz E, Ben-Zvi A, Vatine GD. P450 oxidoreductase regulates barrier maturation by mediating retinoic acid metabolism in a model of the human BBB. Stem Cell Reports 2022; 17:2050-2063. [PMID: 35961311 PMCID: PMC9481905 DOI: 10.1016/j.stemcr.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022] Open
Abstract
The blood-brain barrier (BBB) selectively regulates the entry of molecules into the central nervous system (CNS). A crosstalk between brain microvascular endothelial cells (BMECs) and resident CNS cells promotes the acquisition of functional tight junctions (TJs). Retinoic acid (RA), a key signaling molecule during embryonic development, is used to enhance in vitro BBB models’ functional barrier properties. However, its physiological relevance and affected pathways are not fully understood. P450 oxidoreductase (POR) regulates the enzymatic activity of microsomal cytochromes. POR-deficient (PORD) patients display impaired steroid homeostasis and cognitive disabilities. Here, we used both patient-specific POR-deficient and CRISPR-Cas9-mediated POR-depleted induced pluripotent stem cell (iPSC)-derived BMECs (iBMECs) to study the role of POR in the acquisition of functional barrier properties. We demonstrate that POR regulates cellular RA homeostasis and that POR deficiency leads to the accumulation of RA within iBMECs, resulting in the impaired acquisition of TJs and, consequently, to dysfunctional development of barrier properties. Retinoic acid (RA) promotes functional barrier properties POR-deficient iPS-brain endothelial-like cells display impaired barrier development POR mediates CYP26-dependent cellular RA catabolism RA accumulation induces a pro-inflammatory response
Collapse
Affiliation(s)
- Dor Zlotnik
- The Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Tatiana Rabinski
- The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Aviv Halfon
- Department of Developmental Biology and Cancer Research, the Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Shira Anzi
- Department of Developmental Biology and Cancer Research, the Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Inbar Plaschkes
- Bioinformatics Unit of the I-CORE Computation Center, the Hebrew University, Jerusalem 91120, Israel
| | - Hadar Benyamini
- Bioinformatics Unit of the I-CORE Computation Center, the Hebrew University, Jerusalem 91120, Israel
| | - Yuval Nevo
- Bioinformatics Unit of the I-CORE Computation Center, the Hebrew University, Jerusalem 91120, Israel
| | - Orly Yahalom Gershoni
- The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Benyamin Rosental
- The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Eli Hershkovitz
- Israel Pediatric Endocrinology and Diabetes Unit, Soroka University Medical Center, Beer Sheva, Israel
| | - Ayal Ben-Zvi
- Department of Developmental Biology and Cancer Research, the Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Gad D Vatine
- The Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|