1
|
Mancuso C, Santangelo R. Ferulic acid: Pharmacological and toxicological aspects. Food Chem Toxicol 2014; 65:185-95. [DOI: 10.1016/j.fct.2013.12.024] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/11/2013] [Accepted: 12/18/2013] [Indexed: 01/16/2023]
|
2
|
Intranasal delivery of caspase-9 inhibitor reduces caspase-6-dependent axon/neuron loss and improves neurological function after stroke. J Neurosci 2011; 31:8894-904. [PMID: 21677173 DOI: 10.1523/jneurosci.0698-11.2011] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite extensive research to develop an effective neuroprotective strategy for the treatment of ischemic stroke, therapeutic options remain limited. Although caspase-dependent death is thought to play a prominent role in neuronal injury, direct evidence of active initiator caspases in stroke and the functional relevance of this activity have not previously been shown. Using an unbiased caspase-trapping technique in vivo, we isolated active caspase-9 from ischemic rat brain within 1 h of reperfusion. Pathogenic relevance of active caspase-9 was shown by intranasal delivery of a novel cell membrane-penetrating highly specific inhibitor for active caspase-9 at 4 h postreperfusion (hpr). Caspase-9 inhibition provided neurofunctional protection and established caspase-6 as its downstream target. The temporal and spatial pattern of expression demonstrates that neuronal caspase-9 activity induces caspase-6 activation, mediating axonal loss by 12 hpr followed by neuronal death within 24 hpr. Collectively, these results support selective inhibition of these specific caspases as an effective therapeutic strategy for stroke.
Collapse
|
3
|
Bertinaria M, Rolando B, Giorgis M, Montanaro G, Guglielmo S, Buonsanti MF, Carabelli V, Gavello D, Daniele PG, Fruttero R, Gasco A. Synthesis, Physicochemical Characterization, and Biological Activities of New Carnosine Derivatives Stable in Human Serum As Potential Neuroprotective Agents. J Med Chem 2010; 54:611-21. [DOI: 10.1021/jm101394n] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Massimo Bertinaria
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| | - Barbara Rolando
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| | - Marta Giorgis
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| | - Gabriele Montanaro
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| | - Stefano Guglielmo
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| | - M. Federica Buonsanti
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| | - Valentina Carabelli
- Dipartimento di Neuroscienze, Università degli Studi di Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Daniela Gavello
- Dipartimento di Neuroscienze, Università degli Studi di Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Pier Giuseppe Daniele
- Dipartimento di Chimica Analitica, Università degli Studi di Torino, Via Pietro Giuria 5, 10125 Torino, Italy
| | - Roberta Fruttero
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| | - Alberto Gasco
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| |
Collapse
|
4
|
Hu W, Lee SK, Jung MJ, Heo SI, Hur JH, Wang MH. Induction of cell cycle arrest and apoptosis by the ethyl acetate fraction of Kalopanax pictus leaves in human colon cancer cells. BIORESOURCE TECHNOLOGY 2010; 101:9366-9372. [PMID: 20659794 DOI: 10.1016/j.biortech.2010.06.091] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 06/14/2010] [Accepted: 06/22/2010] [Indexed: 05/29/2023]
Abstract
Kalopanax pictus is a deciduous tree used in traditional medicine; its leaves are also consumed as a vegetable. In this study, the ethyl acetate fraction of K. pictus leaves (EFK) was tested in vitro for anticancer activity against four cell lines: human colon cancer (HT-29) cells, human stomach cancer (NCI-N87) cells, human breast cancer (MDA-MB231) cells, and mouse melanoma (B16F1) cells. Results indicated that EFK showed the most potent tumor selective growth inhibitory activity against HT-29 cells with less cytotoxic effect on normal cell lines. Cytotoxicity of EFK on HT-29 cells was associated mainly with cell chromatin condensation, DNA fragmentation, and loss of membrane phospholipid asymmetry with appearance of G2/M phase arrest. Cell death induced by EFK displayed features characteristic of apoptosis, and was associated with generation of reactive oxygen species (ROS) and increase of Bax/Bcl-2 ratio. These findings suggest that K. pictus leaves have anticancer properties and may be valuable for application in pharmaceutical industry.
Collapse
Affiliation(s)
- Weicheng Hu
- Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon, Kangwon-Do 200-701, South Korea
| | | | | | | | | | | |
Collapse
|
5
|
Overexpression of Aldehyde Dehydrogenase-2 Attenuates Neurotoxicity Induced by 4-Hydroxynonenal in Cultured Primary Hippocampal Neurons. Neurotox Res 2010; 19:412-22. [DOI: 10.1007/s12640-010-9183-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 01/24/2010] [Accepted: 03/24/2010] [Indexed: 12/30/2022]
|
6
|
The "two-faced" effects of reactive oxygen species and the lipid peroxidation product 4-hydroxynonenal in the hallmarks of cancer. Cancers (Basel) 2010; 2:338-63. [PMID: 24281073 PMCID: PMC3835081 DOI: 10.3390/cancers2020338] [Citation(s) in RCA: 255] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 03/18/2010] [Accepted: 03/25/2010] [Indexed: 11/24/2022] Open
Abstract
Reacytive Oxygen Species (ROS) have long been considered to be involved in the initiation, progression and metastasis of cancer. However, accumulating evidence points to the benefical role of ROS. Moreover, ROS production, leading to apoptosis, is the mechanism by which many chemotherapeutic agents can act. Beside direct actions, ROS elicit lipid peroxidation, leading to the production of 4-hydroxynoneal (HNE). Interestingly, HNE also seems to have a dual behaviour with respect to cancer. In this review we present recent literature data which outline the "two-faced" character of oxidative stress and lipid peroxidation in carcinogenesis and in the hallmarks of cancer.
Collapse
|
7
|
Zhang M, Shoeb M, Goswamy J, Liu P, Xiao TL, Hogan D, Campbell GA, Ansari NH. Overexpression of aldehyde dehydrogenase 1A1 reduces oxidation-induced toxicity in SH-SY5Y neuroblastoma cells. J Neurosci Res 2010; 88:686-94. [PMID: 19774675 DOI: 10.1002/jnr.22230] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oxidative stress leading to lipid peroxidation is a problem in neurodegenerative diseases, because the brain is rich in polyunsaturated fatty acids and low in endogenous antioxidants. One of the most toxic byproducts of lipid peroxidation, 4-hydroxynonenal (HNE), is implicated in oxidative stress-induced damage in neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). In this study, the human neuroblastoma cell line SH-SY5Y was used to test the protective effects of increasing the detoxification of HNE by overexpressing the HNE-detoxifying enzyme aldehyde dehydrogenase 1A1 (ALDH1). Overexpression of ALDH1 in the SH-SY5Y cells acts to reduce production of protein-HNE adducts and activation of caspase-3. Our data suggest that detoxification of HNE could be therapeutic in preventing some of the toxic disruptions of the brain's redox systems found in many neurodegenerative diseases.
Collapse
Affiliation(s)
- M Zhang
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-0647, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Shuto M, Higuchi K, Sugiyama C, Yoneyama M, Kuramoto N, Nagashima R, Kawada K, Ogita K. Endogenous and Exogenous Glucocorticoids Prevent Trimethyltin From Causing Neuronal Degeneration of the Mouse Brain In Vivo: Involvement of Oxidative Stress Pathways. J Pharmacol Sci 2009; 110:424-36. [DOI: 10.1254/jphs.09107fp] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
9
|
Hayashi T, Shishido N, Nakayama K, Nunomura A, Smith MA, Perry G, Nakamura M. Lipid peroxidation and 4-hydroxy-2-nonenal formation by copper ion bound to amyloid-beta peptide. Free Radic Biol Med 2007; 43:1552-9. [PMID: 17964426 DOI: 10.1016/j.freeradbiomed.2007.08.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 08/10/2007] [Accepted: 08/20/2007] [Indexed: 10/22/2022]
Abstract
The lipid peroxidation product 4-hydroxy-2-nonenal (HNE) is proposed to be a toxic factor in the pathogenesis of Alzheimer disease. The primary products of lipid peroxidation are phospholipid hydroperoxides, and degraded reactive aldehydes, such as HNE, are considered secondary peroxidation products. In this study, we investigated the role of amyloid-beta peptide (A beta) in the formation of phospholipid hydroperoxides and HNE by copper ion bound to A beta. The A beta1-42-Cu2+ (1:1 molar ratio) complex showed an activity to form phospholipid hydroperoxides from a phospholipid, 1-palmitoyl-2-linoleoyl phosphatidylcholine, through Cu2+ reduction in the presence of ascorbic acid. The phospholipid hydroperoxides were considered to be a racemic mixture of 9-hydroperoxide and 13-hydroperoxide of the linoleoyl residue. When Cu2+ was bound to 2 molar equivalents of A beta(1-42) (2 A beta1-42-Cu2+), lipid peroxidation was inhibited. HNE was generated from one of the phospholipid hydroperoxides, 1-palmitoyl-2-(13-hydroperoxy-cis-9, trans-11-octadecadienoyl) phosphatidylcholine (PLPC-OOH), by free Cu2+ in the presence of ascorbic acid through Cu2+ reduction and degradation of PLPC-OOH. HNE generation was markedly inhibited by equimolar concentrations of A beta(1-40) (92%) and A beta(1-42) (92%). However, A beta(1-42) binding 2 or 3 molar equivalents of Cu2+ (A beta1-42-2Cu2+, A beta1-42-3Cu2+) acted as a pro-oxidant to form HNE from PLPC-OOH. These findings suggest that, at moderate concentrations of copper, A beta acts primarily as an antioxidant to prevent Cu2+-catalyzed oxidation of biomolecules, but that, in the presence of excess copper, pro-oxidant complexes of A beta with Cu2+ are formed.
Collapse
Affiliation(s)
- Takaaki Hayashi
- Hokkaido Institute of Public Health, Kita 19, Nishi 12, Kita-ku, Sapporo 060-0819, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Barrera G, Pizzimenti S, Dianzani MU. Lipid peroxidation: control of cell proliferation, cell differentiation and cell death. Mol Aspects Med 2007; 29:1-8. [PMID: 18037483 DOI: 10.1016/j.mam.2007.09.012] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 09/28/2007] [Indexed: 10/22/2022]
Abstract
In recent years, it has become evident that lipid peroxidation is not only a mechanism for deterioration of alimentary oils and fats, but can occur even in living cells, both in pathological and physiological conditions. Through its aldehydic products, it can regulate several cellular processes, as proliferation, differentiation and apoptosis of normal and neoplastic cells. In this review we describe some recent findings obtained in these fields.
Collapse
Affiliation(s)
- Giuseppina Barrera
- Dipartimento di Medicina e Oncologia Sperimentale, Corso Raffaello 30, Torino, Italy
| | | | | |
Collapse
|
11
|
Plataki M, Tzortzaki E, Rytila P, Demosthenes M, Koutsopoulos A, Siafakas NM. Apoptotic mechanisms in the pathogenesis of COPD. Int J Chron Obstruct Pulmon Dis 2006; 1:161-71. [PMID: 18046893 PMCID: PMC2706617 DOI: 10.2147/copd.2006.1.2.161] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
COPD is a leading cause of morbidity and mortality, characterized by a chronic abnormal inflammatory response to noxious agents. Apoptosis is a physiologic process, critical to cellular homeostasis, in which cell death follows a programmed sequence of events. Apoptosis has been recognized to play an important role in clinical and experimental models of lung diseases. Abnormal apoptotic events in smokers' and in emphysematous lungs have been shown in epithelial and endotheliallung cells, neutrophils, lymphocytes, and myocytes. Many factors associated with COPD, including cigarette smoke, have the potential to cause apoptosis of alveolar epithelial cells, the main sites of vascular endothelial growth factor (VEGF) production. The decreased expression of VEGF, a known survival factor for endothelial cells, and its receptor, results in lung septal endothelial cell death, leading perhaps to the emphysema observed in COPD. In smokers who develop COPD there is an activation of adaptive immunity, with an infiltration of CD4+ and, especially, CD8 + cells. CD8 + cells are cytotoxic to epithelial cells through the release of granzymes and perforin, which can further induce apoptosis of alveolar cells. Moreover, any reduction in neutrophil apoptosis or dysregulation of macrophage uptake of apoptotic neutrophils could lead to chronic inflammation and tissue injury. Increased rates of T-cell apoptosis may lead to a defective immune response to infective organisms, contributing to the high frequency of infections seen in COPD. Increased apoptosis of skeletal muscle could be responsible for the skeletal muscle atrophy, the main cause of unexplained weight loss in patients with COPD. This paper is a review of the current knowledge on the apoptotic pathways involved in COPD pathogenesis and their interaction with other known contributing factors.
Collapse
Affiliation(s)
- Maria Plataki
- Deparment of Thoracic Medicine, Medical School, University of Crete, Heraklion, Greece
| | - Eleni Tzortzaki
- Deparment of Thoracic Medicine, Medical School, University of Crete, Heraklion, Greece
| | - Paula Rytila
- Department of Allergy, Helsinki University Central Hospital, Helsinki, Finland
| | - Makris Demosthenes
- Deparment of Thoracic Medicine, Medical School, University of Crete, Heraklion, Greece
| | | | - Nikolaos M Siafakas
- Deparment of Thoracic Medicine, Medical School, University of Crete, Heraklion, Greece
| |
Collapse
|
12
|
Williams TI, Lynn BC, Markesbery WR, Lovell MA. Increased levels of 4-hydroxynonenal and acrolein, neurotoxic markers of lipid peroxidation, in the brain in Mild Cognitive Impairment and early Alzheimer's disease. Neurobiol Aging 2005; 27:1094-9. [PMID: 15993986 DOI: 10.1016/j.neurobiolaging.2005.06.004] [Citation(s) in RCA: 280] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 05/27/2005] [Accepted: 06/06/2005] [Indexed: 10/25/2022]
Abstract
Previous studies show increased levels of lipid peroxidation and neurotoxic by-products of lipid peroxidation including 4-hydroxynonenal (HNE) and acrolein in vulnerable regions of the Alzheimer's disease (AD) brain. To determine if lipid peroxidation occurs early in progression of AD, we analyzed levels of HNE and acrolein in the hippocampus/parahippocampal gyrus (HPG), superior and middle temporal gyrus (SMTG) and cerebellum (CER) of 7 subjects with Mild Cognitive Impairment (MCI), six subjects with early AD (EAD) and sevem age-matched control subjects using liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI/MS/MS). Our data show that there is a statistically significant (P<0.05) increase in HNE in HPG, SMTG and CER in MCI compared to age-matched control subjects. Specimens of SMTG also showed a significant increase in levels of acrolein in MCI. Comparison of EAD and control subjects showed a statistically significant increase in HNE in HPG and SMTG and a significant increase in acrolein in all three brain regions studied. We did not observe any statistically significant differences between MCI and EAD specimens. These results suggest that lipid peroxidation occurs early in the pathogenesis of AD.
Collapse
Affiliation(s)
- Taufika Islam Williams
- Department of Chemistry, University of Kentucky, 135 Sanders-Brown Center on Aging, Lexington, KY 40506, USA
| | | | | | | |
Collapse
|
13
|
Davidson TJ, Harel S, Arboleda VA, Prunell GF, Shelanski ML, Greene LA, Troy CM. Highly efficient small interfering RNA delivery to primary mammalian neurons induces MicroRNA-like effects before mRNA degradation. J Neurosci 2005; 24:10040-6. [PMID: 15537872 PMCID: PMC6730191 DOI: 10.1523/jneurosci.3643-04.2004] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The study of protein function in neurons has been hindered by the lack of highly efficient, nontoxic methods of inducing RNA interference in such cells. Here we show that application of synthetic small interfering RNA (siRNA) linked to the vector peptide Penetratin1 results in rapid, highly efficient uptake of siRNA by entire populations of cultured primary mammalian hippocampal and sympathetic neurons. This treatment leads to specific knock-down of targeted proteins within hours without the toxicity associated with transfection. In contrast to current methods, our technique permits study of protein function across entire populations with minimal disturbance of complex cellular networks. Using this technique, we found that protein knock-down (evident after 6 hr) precedes any decrease in targeted message (evident after 24 hr), suggesting an early, translational repression by perfectly targeted siRNAs.
Collapse
Affiliation(s)
- Thomas J Davidson
- Department of Pathology, Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Ostergren A, Svensson AL, Lindquist NG, Brittebo EB. Dopamine melanin-loaded PC12 cells: a model for studies on pigmented neurons. ACTA ACUST UNITED AC 2005; 18:306-14. [PMID: 16029423 DOI: 10.1111/j.1600-0749.2005.00239.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The most conspicuous feature in idiopathic parkinsonism is the degeneration of pigmented neurons in the substantia nigra. A major problem for the study of the significance of neuromelanin for the development of parkinsonism is that common experimental animals lack neuromelanin in substantia nigra. The aim of this study was to develop an in vitro model that could be used to study the role of neuromelanin in chemically induced toxicity in dopaminergic cells. Cultured neuron-like PC12 cells were exposed to synthetic dopamine melanin (0-1.0 mg/ml) for 48 h, resulting in uptake of dopamine melanin particles into the cells. The intracellular distribution of dopamine melanin granules was similar to that found in neuromelanin-containing neurons. Dopamine melanin, up to 0.5 mg/ml, had negligible effects on ultrastructure, induction of the endoplasmic reticulum-stress protein glucose regulating protein 78, activation of caspase-3 and cell viability. The decreased cell viability in response to the cytotoxic peptide amyloid-beta25-35 was similar in melanin-loaded cells and in control cells without melanin. The results of the studies suggest that melanin-loaded PC12 cells can serve as an in vitro model for studies on the role of neuromelanin for the toxicity of chemicals, in particular neurotoxicants with melanin affinity, in pigmented neurons.
Collapse
Affiliation(s)
- Anna Ostergren
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
15
|
Kaarniranta K, Ryhänen T, Karjalainen HM, Lammi MJ, Suuronen T, Huhtala A, Kontkanen M, Teräsvirta M, Uusitalo H, Salminen A. Geldanamycin increases 4-hydroxynonenal (HNE)-induced cell death in human retinal pigment epithelial cells. Neurosci Lett 2005; 382:185-90. [PMID: 15911146 DOI: 10.1016/j.neulet.2005.03.009] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 02/16/2005] [Accepted: 03/04/2005] [Indexed: 11/17/2022]
Abstract
Development of age-related macular degeneration (AMD) is associated with functional abnormalities and cell death in retinal pigment epithelial (RPE) cells attributable to oxidative stress. To minimize the adverse effects of oxidative stress, cells activate their defence systems, e.g., via increased expression of heat shock protein (Hsp), activation of stress sensitive AP-1 and NF-kappaB transcription factors. In this study, we examined the accumulation of Hsp70 protein, activation of AP-1 and NF-kappaB transcription factors in human ARPE-19 cells subjected to a 4-hydroxynonenal (HNE)-induced oxidative stress. In addition, the influence of Hsp90 inhibitor geldanamycin (GA) was studied in HNE-treated cells. Mitochondrial metabolic activity and apoptosis were determined to evaluate cell death in the ARPE-19 cells. The ARPE-19 cells showed increased accumulation of Hsp70 protein before of the cytotoxic hallmarks appearing in response to HNE. In contrast, increased DNA-binding activities of AP-1 or NF-kappaB transcription factors were not seen under HNE insults. Interestingly, GA significantly increased cell death in the HNE-treated cells, which was involved in caspase-3 independent apoptosis. This study reveals that the Hsps have an important role in the cytoprotection of RPE cells subjected to HNE-derived oxidative stress.
Collapse
Affiliation(s)
- Kai Kaarniranta
- Department of Ophthalmology, University of Kuopio, 70211 Kuopio, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|