1
|
Rhoades R, Solomon S, Johnson C, Teng S. Impact of SARS-CoV-2 on Host Factors Involved in Mental Disorders. Front Microbiol 2022; 13:845559. [PMID: 35444632 PMCID: PMC9014212 DOI: 10.3389/fmicb.2022.845559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/14/2022] [Indexed: 11/23/2022] Open
Abstract
COVID-19, caused by SARS-CoV-2, is a systemic illness due to its multiorgan effects in patients. The disease has a detrimental impact on respiratory and cardiovascular systems. One early symptom of infection is anosmia or lack of smell; this implicates the involvement of the olfactory bulb in COVID-19 disease and provides a route into the central nervous system. However, little is known about how SARS-CoV-2 affects neurological or psychological symptoms. SARS-CoV-2 exploits host receptors that converge on pathways that impact psychological symptoms. This systemic review discusses the ways involved by coronavirus infection and their impact on mental health disorders. We begin by briefly introducing the history of coronaviruses, followed by an overview of the essential proteins to viral entry. Then, we discuss the downstream effects of viral entry on host proteins. Finally, we review the literature on host factors that are known to play critical roles in neuropsychiatric symptoms and mental diseases and discuss how COVID-19 could impact mental health globally. Our review details the host factors and pathways involved in the cellular mechanisms, such as systemic inflammation, that play a significant role in the development of neuropsychological symptoms stemming from COVID-19 infection.
Collapse
Affiliation(s)
- Raina Rhoades
- Department of Biology, Howard University, Washington, DC, United States
| | - Sarah Solomon
- Department of Biology, Howard University, Washington, DC, United States
| | - Christina Johnson
- Department of Biology, Howard University, Washington, DC, United States
| | | |
Collapse
|
2
|
Aging-Related Phenotypic Conversion of Medullary Microglia Enhances Intraoral Incisional Pain Sensitivity. Int J Mol Sci 2020; 21:ijms21217871. [PMID: 33114176 PMCID: PMC7660637 DOI: 10.3390/ijms21217871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Activated microglia involved in the development of orofacial pain hypersensitivity have two major polarization states. The aim of this study was to assess the involvement of the aging-related phenotypic conversion of medullary microglia in the enhancement of intraoral pain sensitivity using senescence-accelerated mice (SAM)-prone/8 (SAMP8) and SAM-resistant/1 (SAMR1) mice. Mechanical head-withdrawal threshold (MHWT) was measured for 21 days post palatal mucosal incision. The number of CD11c-immunoreactive (IR) cells [affective microglia (M1)] and CD163-IR cells [protective microglia (M2)], and tumor-necrosis-factor-α (TNF-α)-IR M1 and interleukin (IL)-10-IR M2 were analyzed via immunohistochemistry on days 3 and 11 following incision. The decrease in MHWT observed following incision was enhanced in SAMP8 mice. M1 levels and the number of TNF-α-IR M1 were increased on day 3 in SAMP8 mice compared with those in SAMR1 mice. On day 11, M1 and M2 activation was observed in both groups, whereas IL-10-IR M2 levels were attenuated in SAMP8 mice, and the number of TNF-α-IR M1 cells increased, compared to those in SAMR1 mice. These results suggest that the mechanical allodynia observed following intraoral injury is potentiated and sustained in SAMP8 mice due to enhancement of TNF-α signaling, M1 activation, and an attenuation of M2 activation accompanying IL-10 release.
Collapse
|
3
|
Bubier JA, Sutphin GL, Reynolds TJ, Korstanje R, Fuksman-Kumpa A, Baker EJ, Langston MA, Chesler EJ. Integration of heterogeneous functional genomics data in gerontology research to find genes and pathway underlying aging across species. PLoS One 2019; 14:e0214523. [PMID: 30978202 PMCID: PMC6461221 DOI: 10.1371/journal.pone.0214523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/15/2019] [Indexed: 11/18/2022] Open
Abstract
Understanding the biological mechanisms behind aging, lifespan and healthspan is becoming increasingly important as the proportion of the world's population over the age of 65 grows, along with the cost and complexity of their care. BigData oriented approaches and analysis methods enable current and future bio-gerontologists to synthesize, distill and interpret vast, heterogeneous data from functional genomics studies of aging. GeneWeaver is an analysis system for integration of data that allows investigators to store, search, and analyze immense amounts of data including user-submitted experimental data, data from primary publications, and data in other databases. Aging related genome-wide gene sets from primary publications were curated into this system in concert with data from other model-organism and aging-specific databases, and applied to several questions in genrontology using. For example, we identified Cd63 as a frequently represented gene among aging-related genome-wide results. To evaluate the role of Cd63 in aging, we performed RNAi knockdown of the C. elegans ortholog, tsp-7, demonstrating that this manipulation is capable of extending lifespan. The tools in GeneWeaver enable aging researchers to make new discoveries into the associations between the genes, normal biological processes, and diseases that affect aging, healthspan, and lifespan.
Collapse
Affiliation(s)
- Jason A. Bubier
- The Jackson Laboratory, Bar Harbor ME, United States of America
| | - George L. Sutphin
- The University of Arizona, Molecular and Cellular Biology, United States of America
| | | | - Ron Korstanje
- The Jackson Laboratory Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory, Bar Harbor, ME, United States of America
| | | | | | | | - Elissa J. Chesler
- The Jackson Laboratory, Bar Harbor ME, United States of America
- The Jackson Laboratory Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory, Bar Harbor, ME, United States of America
- * E-mail:
| |
Collapse
|
4
|
Cosín-Tomás M, Álvarez-López MJ, Companys-Alemany J, Kaliman P, González-Castillo C, Ortuño-Sahagún D, Pallàs M, Griñán-Ferré C. Temporal Integrative Analysis of mRNA and microRNAs Expression Profiles and Epigenetic Alterations in Female SAMP8, a Model of Age-Related Cognitive Decline. Front Genet 2018; 9:596. [PMID: 30619445 PMCID: PMC6297390 DOI: 10.3389/fgene.2018.00596] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/15/2018] [Indexed: 01/05/2023] Open
Abstract
A growing body of research shows that epigenetic mechanisms are critically involved in normal and pathological aging. The Senescence-Accelerated Mouse Prone 8 (SAMP8) can be considered a useful tool to better understand the dynamics of the global epigenetic landscape during the aging process since its phenotype is not fully explained by genetic factors. Here we investigated dysfunctional age-related transcriptional profiles and epigenetic programming enzymes in the hippocampus of 2- and 9-month-old SAMP8 female mice using the Senescent-Accelerated Resistant 1 (SAMR1) mouse strain as control. SAMP8 mice presented 1,062 genes dysregulated at 2 months of age, and 1,033 genes at 9 months, with 92 genes concurrently dysregulated at both ages compared to age-matched SAMR1. SAMP8 mice showed a significant decrease in global DNA methylation (5-mC) at 2 months while hydroxymethylation (5-hmC) levels were increased in SAMP8 mice at 2 and 9 months of age compared to SAMR1. These changes were accompanied by changes in the expression of several enzymes that regulate 5-mC and methylcytosine oxidation. Acetylated H3 and H4 histone levels were significantly diminished in SAMP8 mice at 2-month-old compared to SAMR1 and altered Histone DeACetylase (HDACs) profiles were detected in both young and old SAMP8 mice. We analyzed 84 different mouse miRNAs known to be altered in neurological diseases or involved in neuronal development. Compared with SAMR1, SAMP8 mice showed 28 and 17 miRNAs differentially expressed at 2 and 9 months of age, respectively; 6 of these miRNAs overlapped at both ages. We used several bioinformatic approaches to integrate our data in mRNA:miRNA regulatory networks and functional predictions for young and aged animals. In sum, our study reveals interplay between epigenetic mechanisms and gene networks that seems to be relevant for the progression toward a pathological aging and provides several potential markers and therapeutic candidates for Alzheimer's Disease (AD) and age-related cognitive impairment.
Collapse
Affiliation(s)
- Marta Cosín-Tomás
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Departments of Human Genetics and Pediatrics, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - María Jesús Álvarez-López
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Júlia Companys-Alemany
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Perla Kaliman
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | | | - Daniel Ortuño-Sahagún
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Guadalajara, Mexico
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Wang J, Liu Y, Cheng X, Zhang X, Liu F, Liu G, Qiao S, Ni M, Zhou W, Zhang Y, Li F. The Effects of LW-AFC on the Hippocampal Transcriptome in Senescence-Accelerated Mouse Prone 8 Strain, a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2018; 57:227-240. [PMID: 28222521 DOI: 10.3233/jad-161079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The senescence-accelerated mouse prone 8 (SAMP8) strain is considered a robust experimental model for developing preventative and therapeutic treatments for Alzheimer's disease (AD), a neurodegenerative disease which cannot be effectively prevented, halted, or cured. Our previous studies showed that LW-AFC, a new formula derived from the classical traditional Chinese medicinal prescription Liuwei Dihuang decoction, ameliorates cognitive deterioration in PrP-hAβPPswe/PS1ΔE9 transgenic mice and SAMP8 mice. This study aims to investigate the mechanism that mediates how LW-AFC improves cognitive deficit on the basis of the transcriptome. We conducted a genome-wide survey of gene expression in the hippocampus in mice from the senescence accelerated mouse resistant 1 (SAMR1) strain, from SAMP8 and from LW-AFC treated SAMP8. The results showed that LW-AFC reversed the transcriptome in the hippocampus of SAMP8 mice. The specific investigation of altered gene expression in subtypes defined by cognitive profiles indicated that the systemic lupus erythematosus pathway, spliceosomes, amyotrophic lateral sclerosis, and the insulin signaling were involved in the improvement of cognitive ability by LW-AFC. The expression of genes Enpp2, Etnk1, Epdr1, and Gm5900 in the hippocampus were correlated with that of LW-AFC's ameliorating cognitive impairment in SAMP8 mice. Because LW-AFC is composed of polysaccharides, glycosides, and oligosaccharides, we infer that LW-AFC has direct or indirect effects on altering gene expressions and regulating pathways in the hippocampus of SAMP8 mice. These data are helpful for the enhanced identification of LW-AFC as new therapeutic modalities to AD.
Collapse
Affiliation(s)
- Jianhui Wang
- Department of TCM and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Yang Liu
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaorui Cheng
- Department of TCM and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Xiaorui Zhang
- Department of TCM and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Feng Liu
- Department of TCM and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Gang Liu
- Department of TCM and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Shanyi Qiao
- Department of TCM and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ming Ni
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wenxia Zhou
- Department of TCM and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Yongxiang Zhang
- Department of TCM and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Fei Li
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
6
|
Wang J, Li Q, Kong Y, Zhou F, Li J, Li W, Wang K, Wu T, Guan Y, Xie J, Wen T. Biosystems Study of the Molecular Networks Underlying Hippocampal Aging Progression and Anti-aging Treatment in Mice. Front Aging Neurosci 2018; 9:393. [PMID: 29311893 PMCID: PMC5735351 DOI: 10.3389/fnagi.2017.00393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/13/2017] [Indexed: 12/22/2022] Open
Abstract
Aging progression is a process that an individual encounters as they become older, and usually results from a series of normal physiological changes over time. The hippocampus, which contributes to the loss of spatial and episodic memory and learning in older people, is closely related to the detrimental effects of aging at the morphological and molecular levels. However, age-related genetic changes in hippocampal molecular mechanisms are not yet well-established. To provide additional insight into the aging process, differentially-expressed genes of 3- versus 24- and 29-month old mice were re-analyzed. The results revealed that a large number of immune and inflammatory response-related genes were up-regulated in the aged hippocampus, and membrane receptor-associated genes were down-regulated. The down-regulation of transmembrane receptors may indicate the weaker perception of environmental exposure in older people, since many transmembrane proteins participate in signal transduction. In addition, molecular interaction analysis of the up-regulated immune genes indicated that the hub gene, Ywhae, may play essential roles in immune and inflammatory responses during aging progression, as well as during hippocampal development. Our biological experiments confirmed the conserved roles of Ywhae and its partners between human and mouse. Furthermore, comparison of microarray data between advanced-age mice treated with human umbilical cord blood plasma protein and the phosphate-buffered saline control showed that the genes that contribute to the revitalization of advanced-age mice are different from the genes induced by aging. These results implied that the revitalization of advanced-age mice is not a simple reverse process of normal aging progression. Our data assigned novel roles of genes during aging progression and provided further theoretic evidence for future studies exploring the underlying mechanisms of aging and anti-aging-related disease therapy.
Collapse
Affiliation(s)
- Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Qian Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yanyan Kong
- Position Emission Computed Tomography Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Fangfang Zhou
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jie Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Weihao Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Kai Wang
- Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ting Wu
- Shanghai Stem Cell Group, Shanghai, China
| | - Yihui Guan
- Position Emission Computed Tomography Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiang Xie
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Tieqiao Wen
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
7
|
Yang Y, Wu GY, Li X, Huang H, Hu B, Yao J, Wu B, Sui JF. Limited impairments of associative learning in a mouse model of accelerated senescence. Behav Brain Res 2013; 257:140-7. [PMID: 24076384 DOI: 10.1016/j.bbr.2013.09.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/14/2013] [Accepted: 09/17/2013] [Indexed: 01/20/2023]
Abstract
Research concerning impairment of associative learning during aging remains limited. The senescence-accelerated mice (SAM) prone/8 (P8) has been proposed as a useful model for the study of aging, and SAM resistant/1(SAMR1) is its control as a normal aging strain. Classical eyeblink conditioning has long been served as a model of associative learning. In order to explore the effects of aging on associative learning in SAM, the present study successively tested three paradigms of eyeblink conditioning in SAMP8 and SAMR1: classical single cue trace eyeblink conditioning (TEC), discriminative trace eyeblink conditioning and reversal learning of TEC. Behavioral performance indicated that SAMP8 could acquire limited single-cue trace eyeblink conditioning task and two-tone discrimination trace eyeblink conditioning with a relative lower acquisition rate compared to SAMR1. Both SAMP8 and SAMR1 failed to acquire reversal learning of discriminative TEC, and SAMP8' startle reflex to tone CS was lower than SAMR1. These results indicated that the impairments of aging on associative learning were incomplete in SAMP8.
Collapse
Affiliation(s)
- Yi Yang
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China; Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Cheng XR, Cui XL, Zheng Y, Zhang GR, Li P, Huang H, Zhao YY, Bo XC, Wang SQ, Zhou WX, Zhang YX. Nodes and biological processes identified on the basis of network analysis in the brain of the senescence accelerated mice as an Alzheimer's disease animal model. Front Aging Neurosci 2013; 5:65. [PMID: 24194717 PMCID: PMC3810591 DOI: 10.3389/fnagi.2013.00065] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 10/10/2013] [Indexed: 12/11/2022] Open
Abstract
Harboring the behavioral and histopathological signatures of Alzheimer's disease (AD), senescence accelerated mouse-prone 8 (SAMP8) mice are currently considered a robust model for studying AD. However, the underlying mechanisms, prioritized pathways and genes in SAMP8 mice linked to AD remain unclear. In this study, we provide a biological interpretation of the molecular underpinnings of SAMP8 mice. Our results were derived from differentially expressed genes in the hippocampus and cerebral cortex of SAMP8 mice compared to age-matched SAMR1 mice at 2, 6, and 12 months of age using cDNA microarray analysis. On the basis of PPI, MetaCore and the co-expression network, we constructed a distinct genetic sub-network in the brains of SAMP8 mice. Next, we determined that the regulation of synaptic transmission and apoptosis were disrupted in the brains of SAMP8 mice. We found abnormal gene expression of RAF1, MAPT, PTGS2, CDKN2A, CAMK2A, NTRK2, AGER, ADRBK1, MCM3AP, and STUB1, which may have initiated the dysfunction of biological processes in the brains of SAMP8 mice. Specifically, we found microRNAs, including miR-20a, miR-17, miR-34a, miR-155, miR-18a, miR-22, miR-26a, miR-101, miR-106b, and miR-125b, that might regulate the expression of nodes in the sub-network. Taken together, these results provide new insights into the biological and genetic mechanisms of SAMP8 mice and add an important dimension to our understanding of the neuro-pathogenesis in SAMP8 mice from a systems perspective.
Collapse
Affiliation(s)
- Xiao-Rui Cheng
- Department of Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Armbrecht HJ, Siddiqui AM, Green M, Farr SA, Kumar VB, Banks WA, Patrick P, Shah GN, Morley JE. SAMP8 mice have altered hippocampal gene expression in long term potentiation, phosphatidylinositol signaling, and endocytosis pathways. Neurobiol Aging 2013; 35:159-68. [PMID: 23969180 DOI: 10.1016/j.neurobiolaging.2013.07.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 06/11/2013] [Accepted: 07/19/2013] [Indexed: 11/25/2022]
Abstract
The senescence-accelerated mouse (SAMP8) strain exhibits decreased learning and memory and increased amyloid beta (Aβ) peptide accumulation at 12 months. To detect differences in gene expression in SAMP8 mice, we used a control mouse that was a 50% cross between SAMP8 and CD-1 mice and which showed no memory deficits (50% SAMs). We then compared gene expression in the hippocampus of 4- and 12-month-old SAMP8 and control mice using Affymetrix gene arrays. At 12 months, but not at 4 months, pathway analysis revealed significant differences in the long term potentiation (6 genes), phosphatidylinositol signaling (6 genes), and endocytosis (10 genes) pathways. The changes in long term potentiation included mitogen-activated protein kinase (MAPK) signaling (N-ras, cAMP responsive element binding protein [CREB], protein phosphatase inhibitor 1) and Ca-dependent signaling (inositol triphosphate [ITP] receptors 1 and 2 and phospholipase C). Changes in phosphatidylinositol signaling genes suggested altered signaling through phosphatidylinositol-3-kinase, and Western blotting revealed phosphorylation changes in serine/threonine protein kinase AKT and 70S6K. Changes in the endocytosis pathway involved genes related to clathrin-mediated endocytosis (dynamin and clathrin). Endocytosis is required for receptor recycling, is involved in Aβ metabolism, and is regulated by phosphatidylinositol signaling. In summary, these studies demonstrate altered gene expression in 3 SAMP8 hippocampal pathways associated with memory formation and consolidation. These pathways might provide new therapeutic targets in addition to targeting Aβ metabolism itself.
Collapse
Affiliation(s)
- Harvey J Armbrecht
- Geriatric Research, Education and Clinical Center (GRECC), St Louis Veterans Affairs Medical Center, St Louis, MO, USA; Division of Geriatric Medicine, Saint Louis University School of Medicine, St Louis, MO, USA; Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Guo SJ, Qi CH, Zhou WX, Zhang YX, Zhang XM, Wang J, Wang HX. Proteomic data show an increase in autoantibodies and alpha-fetoprotein and a decrease in apolipoprotein A-II with time in sera from senescence-accelerated mice. Braz J Med Biol Res 2013; 46:417-25. [PMID: 23588375 PMCID: PMC3854399 DOI: 10.1590/1414-431x20132663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 01/04/2013] [Indexed: 11/22/2022] Open
Abstract
We evaluated changes in levels by comparing serum proteins in
senescence-accelerated mouse-prone 8 (SAMP8) mice at 2, 6, 12, and 15 months of
age (SAMP8-2 m, -6 m, -12 m, -15 m) to age-matched
SAM-resistant 1 (SAMR1) mice. Mice were sacrificed, and blood was analyzed by
2-dimensional electrophoresis combined with mass spectrometry. Five protein
spots were present in all SAMP8 serum samples, but only appeared in SAMR1
samples at 15 months of age except for spot 3, which also showed a slight
expression in SAMR1-12 m sera. Two proteins decreased in the sera from
SAMP8-2 m, -6 m, and -12 m mice, and divided into 2 spots
each in SAMP8-15 m sera. Thus, the total number of altered spots in SAMP8
sera was 7; of these, 4 were identified as Ig kappa chain V region (M-T413),
chain A of an activity suppressing Fab fragment to cytochrome P450 aromatase
(32C2_A), alpha-fetoprotein, and apolipoprotein A-II. M-T413 is a monoclonal CD4
antibody, which inhibits T cell proliferation. We found that M-T413 RNA level
was significantly enhanced in splenocytes from SAMP8-2 m mice. This
agreed with serum M-T413 protein alterations and a strikingly lower blood
CD4+ T cell count in SAMP8 mice when compared to the
age-matched SAMR1 mice, with the latter negatively correlating with serum M-T413
protein volume. Age-related changes in serum proteins favored an increase in
autoantibodies and alpha-fetoprotein and a decrease of apolipoprotein A-II,
which occurred in SAMP8 mice at 2 months of age and onwards. These proteins may
serve as candidate biomarkers for early aging.
Collapse
Affiliation(s)
- S J Guo
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Pallàs M. Senescence-Accelerated Mice P8: A Tool to Study Brain Aging and Alzheimer's Disease in a Mouse Model. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/917167] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The causes of aging remain unknown, but they are probably intimately linked to a multifactorial process that affects cell networks to varying degrees. Although a growing number of aging and Alzheimer’s disease (AD) animal models are available, a more comprehensive and physiological mouse model is required. In this context, the senescence-accelerated mouse prone 8 (SAMP8) has a number of advantages, since its rapid physiological senescence means that it has about half the normal lifespan of a rodent. In addition, according to data gathered over the last five years, some of its behavioral traits and histopathology resemble AD human dementia. SAMP8 has remarkable pathological similarities to AD and may prove to be an excellent model for acquiring more in-depth knowledge of the age-related neurodegenerative processes behind brain senescence and AD in particular. We review these facts and particularly the data on parameters related to neurodegeneration. SAMP8 also shows signs of aging in the immune, vascular, and metabolic systems, among others.
Collapse
Affiliation(s)
- Mercè Pallàs
- Unitat de Farmacologia i Farmacognòosia, Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona y Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Nucli Universitari de Pedralbes, 08028 Barcelona, Spain
| |
Collapse
|
12
|
Yang Y, Cheng XR, Zhang GR, Zhou WX, Zhang YX. Autocrine motility factor receptor is involved in the process of learning and memory in the central nervous system. Behav Brain Res 2012; 229:412-8. [PMID: 22313999 DOI: 10.1016/j.bbr.2012.01.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 01/17/2012] [Accepted: 01/23/2012] [Indexed: 10/14/2022]
Abstract
The autocrine motility factor receptor (AMFR) is a multifunctional protein involved in cellular adhesion, proliferation, motility and apoptosis. Our study showed that increased AMFR protein expression in the hippocampus of KM mice correlated with enhanced capacity for learning and memory following the shuttle-box test and was significantly elevated in the highest score group. Also, AMF and AMFR mRNA expression positively correlates with the mRNA expression of the synapse marker synaptophysin (Syp). Aging studies in the senescence-accelerated mouse strain (SAM) prone/8 (SAMP8), an animal model of Alzheimer's disease (AD), revealed significantly decreased mRNA and protein expression of AMF and AMFR in the hippocampus. This is especially true for AMFR and AMF protein expression compared with age-matched SAM resistant/1 (SAMR1) mouse strain as the control. Additionally, the low mRNA expression of AMFR could be up-regulated by the four nootropic traditional Chinese medicinal prescriptions (TCMPs): Ba-Wei-Di-Huang decoction (BW), Huang-Lian-Jie-Du decoction (HL), Dang-Gui-Shao-Yao-San (DSS) and Tiao-Xin-Fang decoction (TXF). AMFR protein expression could be up-regulated by two TCMPs, Liu-Wei-Di-Huang decoction (LW) and BW. This indicated that AMFR is involved in the process of learning and memory in the central nervous system. These results may provide useful clues for understanding the etiology of AD.
Collapse
Affiliation(s)
- Yong Yang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | | | | | | | | |
Collapse
|
13
|
Paban V, Chambon C, Manrique C, Touzet C, Alescio-Lautier B. Neurotrophic signaling molecules associated with cholinergic damage in young and aged rats: Environmental enrichment as potential therapeutic agent. Neurobiol Aging 2011; 32:470-85. [DOI: 10.1016/j.neurobiolaging.2009.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 03/16/2009] [Accepted: 03/18/2009] [Indexed: 10/20/2022]
|
14
|
Tsvetkov P, Adamovich Y, Elliott E, Shaul Y. E3 ligase STUB1/CHIP regulates NAD(P)H:quinone oxidoreductase 1 (NQO1) accumulation in aged brain, a process impaired in certain Alzheimer disease patients. J Biol Chem 2011; 286:8839-45. [PMID: 21220432 DOI: 10.1074/jbc.m110.193276] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
NAD(P)H:quinone oxidoreductase 1 (NQO1) is a flavoenzyme that is important in maintaining the cellular redox state and regulating protein degradation. The NQO1 polymorphism C609T has been associated with increased susceptibility to various age-related pathologies. We show here that NQO1 protein level is regulated by the E3 ligase STUB1/CHIP (C terminus of Hsc70-interacting protein). NQO1 binds STUB1 via the Hsc70-interacting domain (tetratricopeptide repeat domain) and undergoes ubiquitination and degradation. We demonstrate here that the product of the C609T polymorphism (P187S) is a stronger STUB1 interactor with increased susceptibility to ubiquitination by the E3 ligase STUB1. Furthermore, age-dependent decrease of STUB1 correlates with increased NQO1 accumulation. Remarkably, examination of hippocampi from Alzheimer disease patients revealed that in half of the cases examined the NQO1 protein level was undetectable due to C609T polymorphism, suggesting that the age-dependent accumulation of NQO1 is impaired in certain Alzheimer disease patients.
Collapse
Affiliation(s)
- Peter Tsvetkov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
15
|
Laimer M, Kocher T, Chiocchetti A, Trost A, Lottspeich F, Richter K, Hintner H, Bauer JW, Onder K. Proteomic profiling reveals a catalogue of new candidate proteins for human skin aging. Exp Dermatol 2011; 19:912-8. [PMID: 20849533 DOI: 10.1111/j.1600-0625.2010.01144.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Studies of skin aging are usually performed at the genomic level by investigating differentially regulated genes identified through subtractive hybridization or microarray analyses. In contrast, relatively few studies have investigated changes in protein expression of aged skin using proteomic profiling by two-dimensional (2-D) gel electrophoresis and mass spectrometry, although this approach at the protein level is suggested to reflect more accurately the aging phenotype. We undertook such a proteomic analysis of intrinsic human skin aging by quantifying proteins extracted and fluorescently labeled from sun-protected human foreskin samples pooled from 'young' and 'old' men. In addition, we analyzed these candidate gene products by 1-D and 2-D western blotting to obtain corroborative protein expression data, and by both real-time PCR (RT-PCR) and microarray analyses to confirm expression at the mRNA level. We discovered 30 putative proteins for skin aging, including previously unrecognized, post-translationally regulated candidates such as phosphatidyl-ethanolamine binding protein (PEBP) and carbonic anhydrase 1 (CA1).
Collapse
Affiliation(s)
- Martin Laimer
- Division of Molecular Dermatology, Department of Dermatology, Paracelsus Private Medical University Salzburg, Salzburg, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Burger C. Region-specific genetic alterations in the aging hippocampus: implications for cognitive aging. Front Aging Neurosci 2010; 2:140. [PMID: 21048902 PMCID: PMC2967426 DOI: 10.3389/fnagi.2010.00140] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 08/17/2010] [Indexed: 01/31/2023] Open
Abstract
Aging is associated with cognitive decline in both humans and animals and of all brain regions, the hippocampus appears to be particularly vulnerable to senescence. Age-related spatial learning deficits result from alterations in hippocampal connectivity and plasticity. These changes are differentially expressed in each of the hippocampal fields known as cornu ammonis 1 (CA1), cornu ammonis 3 (CA3), and the dentate gyrus. Each sub-region displays varying degrees of susceptibility to aging. For example, the CA1 region is particularly susceptible in Alzheimer's disease while the CA3 region shows vulnerability to stress and glucocorticoids. Further, in animals, aging is the main factor associated with the decline in adult neurogenesis in the dentate gyrus. This review discusses the relationship between region-specific hippocampal connectivity, morphology, and gene expression alterations and the cognitive deficits associated with senescence. In particular, data are reviewed that illustrate how the molecular changes observed in the CA1, CA3, and dentate regions are associated with age-related learning deficits. This topic is of importance because increased understanding of how gene expression patterns reflect individual differences in cognitive performance is critical to the process of identifying new and clinically useful biomarkers for cognitive aging.
Collapse
Affiliation(s)
- Corinna Burger
- Department of Neurology, Medical Sciences Center, University of WisconsinMadison, USA
| |
Collapse
|
17
|
Chen SC, Lu G, Chan CY, Chen Y, Wang H, Yew DTW, Feng ZT, Kung HF. Microarray Profile of Brain Aging-Related Genes in the Frontal Cortex of SAMP8. J Mol Neurosci 2009; 41:12-6. [DOI: 10.1007/s12031-009-9215-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 06/30/2009] [Indexed: 12/23/2022]
|
18
|
Li Q, Zhao H, Zhang Z, Liu Z, Pei X, Wang J, Li Y. Long-term green tea catechin administration prevents spatial learning and memory impairment in senescence-accelerated mouse prone-8 mice by decreasing Aβ1-42 oligomers and upregulating synaptic plasticity–related proteins in the hippocampus. Neuroscience 2009; 163:741-9. [DOI: 10.1016/j.neuroscience.2009.07.014] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 06/18/2009] [Accepted: 07/07/2009] [Indexed: 11/26/2022]
|
19
|
Fernández-Gómez FJ, Muñoz-Delgado E, Montenegro MF, Campoy FJ, Vidal CJ, Jordán J. Cholinesterase activity in brain of senescence-accelerated-resistant mouse SAMR1 and its variation in brain of senescence-accelerated-prone mouse SAMP8. J Neurosci Res 2009; 88:155-66. [DOI: 10.1002/jnr.22177] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
20
|
Amelina H, Cristobal S. Proteomic study on gender differences in aging kidney of mice. Proteome Sci 2009; 7:16. [PMID: 19358702 PMCID: PMC2673210 DOI: 10.1186/1477-5956-7-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 04/09/2009] [Indexed: 11/23/2022] Open
Abstract
Background This study aims to analyze sex differences in mice aging kidney. We applied a proteomic technique based on subfractionation, and liquid chromatography coupled with 2-DE. Samples from male and female CD1-Swiss outbred mice from 28 weeks, 52 weeks, and 76 weeks were analysed by 2-DE, and selected proteins were identified by matrix assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS). Results This proteomic analysis detected age-related changes in protein expression in 55 protein-spots, corresponding to 22 spots in males and 33 spots in females. We found a protein expression signature (PES) of aging composed by 8 spots, common for both genders. The identified proteins indicated increases in oxidative and proteolytic proteins and decreases in glycolytic proteins, and antioxidant enzymes. Conclusion Our results provide insights into the gender differences associated to the decline of kidney function in aging. Thus, we show that proteomics can provide valuable information on age-related changes in expression levels of proteins and related modifications. This pilot study is still far from providing candidates for aging-biomarkers. However, we suggest that the analysis of these proteins could suggest mechanisms of cellular aging in kidney, and improve the kidney selection for transplantation.
Collapse
Affiliation(s)
- Hanna Amelina
- Department of Biochemistry and Biophysics, Stockholm University, Sweden.
| | | |
Collapse
|
21
|
Neurochemistry, neuropathology, and heredity in SAMP8: a mouse model of senescence. Neurochem Res 2009; 34:660-9. [PMID: 19247832 DOI: 10.1007/s11064-009-9923-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2008] [Indexed: 01/17/2023]
Abstract
The SAMP8 strain spontaneously develops learning and memory deficits with characteristics of aging, and is a good model for studying the mechanism of cognitive dysfunction with age. Oxidative stress occurs systemically in SAMP8 from early on in life and increases with aging. Neuropathological changes such as the deposition of A beta, hyperphosphorylation of tau, impaired development of dendritic spines, and sponge formation, and neurochemical changes were found in the SAMP8 brain. These changes may be partially mediated by oxidative stress. Oxidative damage is a major factor in neurodegenerative disorders and aging. A decline in the respiratory control ratio suggesting mitochondrial dysfunction was found in the brain of SAMP8. The rise in oxidative stress following mitochondrial dysfunction may trigger neuropathological and neurochemical changes, disrupting the development of neural networks in the brain in SAMP8.
Collapse
|
22
|
Takeda T. Senescence-accelerated mouse (SAM) with special references to neurodegeneration models, SAMP8 and SAMP10 mice. Neurochem Res 2009; 34:639-59. [PMID: 19199030 DOI: 10.1007/s11064-009-9922-y] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2008] [Indexed: 12/16/2022]
Abstract
The SAM strains, a group of related inbred strains consisting of senescence-prone inbred strains (SAMP) and senescence-resistant inbred strains (SAMR), have been successfully developed by selective inbreeding of the AKR/J strain of mice donated by the Jackson laboratory in 1968. The characteristic feature of aging common to the SAMP and SAMR is accelerated senescence and normal aging, respectively. Furthermore, SAMP and SAMR strains of mice manifest various pathobiological phenotypes spontaneously. Among SAMP strains, SAMP8 and SAMP10 mice show age-related behavioral deterioration such as deficits in learning and memory, emotional disorders (reduced anxiety-like behavior and depressive behavior) and altered circadian rhythm associated with certain pathological, biochemical and pharmacological changes. Here, the previous and recent literature on SAM mice are reviewed with an emphasis on SAMP8 and SAMP10 mice. A spontaneous model like SAM with distinct advantages over the gene-modified model is hoped by investigators to be used more widely as a biogerontological resource to explore the etiopathogenesis of accelerated senescence and neurodegenerative disorders.
Collapse
Affiliation(s)
- Toshio Takeda
- The Council for SAM Research, 24 Nishi-ohtake-cho Mibu, Nakagyo-ku, Kyoto, 604-8856, Japan.
| |
Collapse
|
23
|
Cavallaro S. Genomic analysis of serotonin receptors in learning and memory. Behav Brain Res 2008; 195:2-6. [DOI: 10.1016/j.bbr.2007.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2007] [Revised: 12/03/2007] [Accepted: 12/03/2007] [Indexed: 10/22/2022]
|
24
|
García-Matas S, Gutierrez-Cuesta J, Coto-Montes A, Rubio-Acero R, Díez-Vives C, Camins A, Pallàs M, Sanfeliu C, Cristòfol R. Dysfunction of astrocytes in senescence-accelerated mice SAMP8 reduces their neuroprotective capacity. Aging Cell 2008; 7:630-40. [PMID: 18616637 DOI: 10.1111/j.1474-9726.2008.00410.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Early onset increases in oxidative stress and tau pathology are present in the brain of senescence-accelerated mice prone (SAMP8). Astrocytes play an essential role, both in determining the brain's susceptibility to oxidative damage and in protecting neurons. In this study, we examine changes in tau phosphorylation, oxidative stress and glutamate uptake in primary cultures of cortical astrocytes from neonatal SAMP8 mice and senescence-accelerated-resistant mice (SAMR1). We demonstrated an enhancement of abnormally phosphorylated tau in Ser(199) and Ser(396) in SAMP8 astrocytes compared with that of SAMR1 control mice. Gsk3beta and Cdk5 kinase activity, which regulate tau phosphorylation, was also increased in SAMP8 astrocytes. Inhibition of Gsk3beta by lithium or Cdk5 by roscovitine reduced tau phosphorylation at Ser(396). Moreover, we detected an increase in radical superoxide generation, which may be responsible for the corresponding increase in lipoperoxidation and protein oxidation. We also observed a reduced mitochondrial membrane potential in SAMP8 mouse astrocytes. Glutamate uptake in astrocytes is a critical neuroprotective mechanism. SAMP8 astrocytes showed a decreased glutamate uptake compared with those of SAMR1 controls. Interestingly, survival of SAMP8 or SAMR1 neurons cocultured with SAMP8 astrocytes was significantly reduced. Our results indicate that alterations in astrocyte cultures from SAMP8 mice are similar to those detected in whole brains of SAMP8 mice at 1-5 months. Moreover, our findings suggest that this in vitro preparation is suitable for studying the molecular and cellular processes underlying early aging in this murine model. In addition, our study supports the contention that astrocytes play a key role in neurodegeneration during the aging process.
Collapse
Affiliation(s)
- Silvia García-Matas
- Department of Pharmacology and Toxicology, Institut d'Investigacions Biomèdiques de Barcelona, CSIC-IDIBAPS, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
The level of butyrylcholinesterase activity increases and the content of the mRNA remains unaffected in brain of senescence-accelerated mouse SAMP8. Chem Biol Interact 2008; 175:332-5. [DOI: 10.1016/j.cbi.2008.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 05/07/2008] [Accepted: 05/08/2008] [Indexed: 11/22/2022]
|
26
|
Zhang GR, Cheng XR, Zhou WX, Zhang YX. Age-related expression of calcium/calmodulin-dependent protein kinase II A in the hippocampus and cerebral cortex of senescence accelerated mouse prone/8 mice is modulated by anti-Alzheimer's disease drugs. Neuroscience 2008; 159:308-15. [PMID: 18721865 DOI: 10.1016/j.neuroscience.2008.06.068] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 06/18/2008] [Accepted: 06/19/2008] [Indexed: 11/25/2022]
Abstract
Senescence-accelerated mouse (SAM) prone/8 (SAMP8) is a good animal model to investigate the fundamental mechanisms of age-related learning and memory deficits such as Alzheimer's disease (AD) at the gene and protein levels, and SAM resistant/1 (SAMR1) is its normal control. Calcium/calmodulin-dependent protein kinase II-alpha (CaMKIIalpha) is one of the most abundant subunits of calcium/calmodulin-dependent protein kinase II in cerebral cortex and hippocampus, and is closely linked to AD. In this study, we used real time fluorescence quantitative PCR (RT-PCR) and Western blot techniques to examine the expression of CaMKIIalpha mRNA and protein in the cerebral cortex and hippocampus of SAMP8 both with aging and following treatment with anti-AD drugs (for example, natural product huperzine A (HupA) and traditional Chinese medicinal prescription Liu-Wei-Di-Huang decoction (LW), Ba-Wei-Di-Huang decoction (BW), Huang-Lian-Jie-Du decoction (HL), Dang-Gui-Shao-Yao-San (DSS) and Tiao-Xin-Fang decoction (TXF)). The results showed that the levels of both CaMKIIalpha mRNA and protein decreased significantly in the cerebral cortex of SAMR1 with aging, but increased significantly in the cerebral cortex of SAMP8. Compared with age-matched SAMR1, the expression of mRNA and protein of CaMKIIalpha significantly increased in the cerebral cortex and hippocampus of SAMP8 after 10 months of age. After SAMP8 was treated with the previously mentioned drugs, the abnormally high expression of CaMKIIalpha was relatively down-regulated. These results indicated that the expression of CaMKIIalpha in the brain of SAMP8 was abnormal and that this abnormality could be reversed with anti-AD drugs. These data suggest that CaMKIIalpha may play an important role in the age-related cognitive deterioration in AD, and may be a potential targets for anti-AD drugs.
Collapse
Affiliation(s)
- G-R Zhang
- Department of Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | | | | | | |
Collapse
|
27
|
Zhang GR, Cheng XR, Zhou WX, Zhang YX. Age-related expression of STUB1 in senescence-accelerated mice and its response to anti-Alzheimer's disease traditional Chinese medicine. Neurosci Lett 2008; 438:371-5. [PMID: 18495342 DOI: 10.1016/j.neulet.2008.04.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 04/18/2008] [Accepted: 04/23/2008] [Indexed: 11/30/2022]
Abstract
Increasing evidences have indicated that STUB1 may be closely linked to Alzheimer's disease (AD). Senescence-accelerated mice (SAM) prone/8 (SAMP8) is a generally acknowledged animal model for senescence and AD, and SAM resistant/1 (SAMR1) is its control. In this study, we investigated the detailed expression of STUB1 in the brain of SAMP8 with aging and its responses to five anti-AD traditional Chinese medicinal (TCM), using real-time fluorescence quantitative PCR and Western blot technique. Results showed that with the aging process, both mRNA and protein expression of STUB1 in the cerebral cortex and hippocampus from SAMR1 increased after 2 months, while they decreased in brain tissues from SAMP8 after 6 months. Compared with SAMR1, the mRNA and protein expression of STUB1 decreased after 10 months in SAMP8 but could be up-regulated by the five anti-AD TCM used in this study. These results indicated that the expression of STUB1 in the brain of SAMP8 was abnormal and this abnormality could be reversed by anti-AD TCM. The data suggested that a deficiency in STUB1 may lead to a reduction in aberrant protein scavenging, causing abnormal protein accumulation in the brain of SAMP8. Thus, STUB1 might be a potential target for anti-AD TCM.
Collapse
Affiliation(s)
- Gui-Rong Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | | | | | | |
Collapse
|
28
|
Zheng Y, Cheng XR, Zhou WX, Zhang YX. Gene expression patterns of hippocampus and cerebral cortex of senescence-accelerated mouse treated with Huang-Lian-Jie-Du decoction. Neurosci Lett 2008; 439:119-24. [PMID: 18524483 DOI: 10.1016/j.neulet.2008.04.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 04/04/2008] [Accepted: 04/04/2008] [Indexed: 11/27/2022]
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative disease, which primarily affects the elderly. Clinical signs of AD are characterized by the neuron loss and cognitive impairment. At gene and protein levels, the senescence-accelerated mouse/prone 8 (SAMP8) is a suitable animal model to investigate the fundamental mechanisms of age-related learning and memory deficits. Huang-Lian-Jie-Du decoction (HL), a well-known traditional Chinese medicinal prescription, has been employed in the treatment of wide range of disease conditions. Modern pharmacological studies have showed that HL possesses many effects, which include amelioration of learning and memory function of CNS. This paper investigated the gene expression patterns of hippocampus and cerebral cortex of SAMP8, which were treated with HL employing the cDNA microarray and real time quantitative RT-PCR techniques. The results showed that HL has the significant modulating effects on age-related changes of the gene expressions in the hippocampus and cerebral cortex in SAMP8, which include genes that involved in signal transduction (Dusp12, Rps6ka1, Rab26, Penk1, Nope, Leng8, Syde1, Phb, Def8, Ihpk1, Tac2, Pik3c2a), protein metabolism (Ttc3, Amfr, Prr6, Ube2d2), cell growth and development (Ngrn, Anln, Dip3b, Acrbp), nucleic acid metabolism (Fhit, Itm2c, Cstf2t, Ddx3x, Ercc5, Pcgfr6), energy metabolism (Stub1, Uqcr, Nsf), immune response (C1qb), regulation of transcription (D1ertd161e, Gcn5l2, Ssu72), transporter (Slc17a7, mt-Co1), nervous system development (Trim3), neurogila cell differentiation (Tspan2) and 24 genes whose biological function and process were still unknown. It was suggested by the changes of the 62 genes with HL treatment that the ameliorating effect of HL on the cognitive impairments of SAMP8 might be achieved by multi-mechanism and multi-targets.
Collapse
Affiliation(s)
- Yue Zheng
- Department of Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | | | | | | |
Collapse
|
29
|
The Hippocampal Proteomic Analysis of Senescence-Accelerated Mouse: Implications of Uchl3 and Mitofilin in Cognitive Disorder and Mitochondria Dysfunction in SAMP8. Neurochem Res 2008; 33:1776-82. [DOI: 10.1007/s11064-008-9628-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 01/15/2008] [Indexed: 01/26/2023]
|
30
|
Aenlle KK, Kumar A, Cui L, Jackson TC, Foster TC. Estrogen effects on cognition and hippocampal transcription in middle-aged mice. Neurobiol Aging 2007; 30:932-45. [PMID: 17950954 DOI: 10.1016/j.neurobiolaging.2007.09.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 09/06/2007] [Accepted: 09/12/2007] [Indexed: 10/22/2022]
Abstract
Young and middle-aged female mice were ovariectomized and given cyclic injections of either estradiol or vehicle treatments. During the fifth week after surgery the Morris water maze was used to assess cognitive function. Age and treatment effects emerged over the course of spatial training such that middle-aged vehicle treated mice exhibited deficits in acquiring a spatial search strategy compared to younger vehicle treated mice and middle-age estradiol treated mice. Following behavioral characterization, mice were maintained on their injection schedule until week seven and hippocampi were collected 24h after the last injection. Hippocampal RNA was extracted and genes responsive to age and estrogen were identified using cDNA microarrays. Estradiol treatment in middle-aged mice altered the expression of genes related to transcriptional regulation, biosynthesis, growth, neuroprotection, and elements of cell signaling pathways. Expression profiles for representative genes were confirmed in a separate set of animals using oligonucleotide arrays and RT-PCR. Our results indicate that estrogen treatment in middle-aged animals may promote hippocampal health during the aging process.
Collapse
Affiliation(s)
- Kristina K Aenlle
- Department of Neuroscience, McKnight Brain Institute, University of Florida, P.O. Box 100244, Gainesville, FL 32610-0244, USA
| | | | | | | | | |
Collapse
|
31
|
Braddock M. 14th Annual Meeting of the Psychoneuroimmunology Research Society. Expert Opin Investig Drugs 2007; 16:1725-34. [DOI: 10.1517/13543784.16.10.1725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|