1
|
Strauss A, Swann P, Kigar SL, Christou R, Savinykh Yarkoni N, Turner L, Murley AG, Chouliaras L, Shapiro N, Ashton NJ, Savulich G, Bevan-Jones WR, Surendranthan A, Blennow K, Zetterberg H, O'Brien JT, Rowe JB, Malpetti M. Peripheral innate immunophenotype in neurodegenerative disease: blood-based profiles and links to survival. Mol Psychiatry 2025; 30:1985-1994. [PMID: 39472664 PMCID: PMC12015116 DOI: 10.1038/s41380-024-02809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 04/24/2025]
Abstract
The innate immune system plays an integral role in the progression of many neurodegenerative diseases. In addition to central innate immune cells (e.g., microglia), peripheral innate immune cells (e.g., blood monocytes, natural killer cells, and dendritic cells) may also differ in these conditions. However, the characterization of peripheral innate immune cell types across different neurodegenerative diseases remains incomplete. This study aimed to characterize peripheral innate immune profiles using flow cytometry for immunophenotyping of peripheral blood mononuclear cells in n = 148 people with Alzheimer's disease (AD), frontotemporal dementia (FTD), corticobasal syndrome (CBS), progressive supranuclear palsy (PSP), Lewy body dementia (LBD) as compared to n = 37 healthy controls. To compare groups, we used multivariate dissimilarity analysis and principal component analysis across 19 innate immune cell types. We identified pro-inflammatory profiles that significantly differ between patients with all-cause dementia and healthy controls, with some significant differences between patient groups. Regression analysis confirmed that time to death following the blood test correlated with the individuals' immune profile weighting, positively to TREM2+ and non-classical monocytes and negatively to classical monocytes. Taken together, these results describe transdiagnostic peripheral immune profiles and highlight the link between prognosis and the monocyte cellular subdivision and function (as measured by surface protein expression). The results suggest that blood-derived innate immune profiles can inform sub-populations of cells relevant for specific neurodegenerative diseases that are significantly linked to accelerated disease progression and worse survival outcomes across diagnoses. Blood-based innate immune profiles may contribute to enhanced precision medicine approaches in dementia, helping to identify and monitor therapeutic targets and stratify patients for candidate immunotherapies.
Collapse
Affiliation(s)
- Alexandra Strauss
- University of Cambridge Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Peter Swann
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Stacey L Kigar
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Medicine, University Cambridge, Cambridge, UK
| | - Rafailia Christou
- University of Cambridge Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, Cambridge, UK
| | | | - Lorinda Turner
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Medicine, University Cambridge, Cambridge, UK
| | - Alexander G Murley
- University of Cambridge Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, Cambridge, UK
| | | | - Noah Shapiro
- University of Cambridge Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
- Banner Alzheimer's Institute and University of Arizona, Phoenix, AZ, USA
- Banner Sun Health Research Institute, Sun City, AZ, USA
| | - George Savulich
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - James B Rowe
- University of Cambridge Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, Cambridge, UK
- Medical Research Council Cognition and Brain Sciences Unit, Cambridge, UK
| | - Maura Malpetti
- University of Cambridge Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, Cambridge, UK.
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Kostic M, Zivkovic N, Cvetanovic A, Basic J, Stojanovic I. Dissecting the immune response of CD4 + T cells in Alzheimer's disease. Rev Neurosci 2025; 36:139-168. [PMID: 39238424 DOI: 10.1515/revneuro-2024-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024]
Abstract
The formation of amyloid-β (Aβ) plaques is a neuropathological hallmark of Alzheimer's disease (AD), however, these pathological aggregates can also be found in the brains of cognitively unimpaired elderly population. In that context, individual variations in the Aβ-specific immune response could be key factors that determine the level of Aβ-induced neuroinflammation and thus the propensity to develop AD. CD4+ T cells are the cornerstone of the immune response that coordinate the effector functions of both adaptive and innate immunity. However, despite intensive research efforts, the precise role of these cells during AD pathogenesis is still not fully elucidated. Both pathogenic and beneficial effects have been observed in various animal models of AD, as well as in humans with AD. Although this functional duality of CD4+ T cells in AD can be simply attributed to the vast phenotype heterogeneity of this cell lineage, disease stage-specific effect have also been proposed. Therefore, in this review, we summarized the current understanding of the role of CD4+ T cells in the pathophysiology of AD, from the aspect of their antigen specificity, activation, and phenotype characteristics. Such knowledge is of practical importance as it paves the way for immunomodulation as a therapeutic option for AD treatment, given that currently available therapies have not yielded satisfactory results.
Collapse
Affiliation(s)
- Milos Kostic
- Department of Immunology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Nikola Zivkovic
- Department of Pathology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Ana Cvetanovic
- Department of Oncology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Jelena Basic
- Department of Biochemistry, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Ivana Stojanovic
- Department of Biochemistry, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| |
Collapse
|
3
|
Azargoonjahromi A. Immunotherapy in Alzheimer's disease: focusing on the efficacy of gantenerumab on amyloid-β clearance and cognitive decline. J Pharm Pharmacol 2024; 76:1115-1131. [PMID: 38767981 DOI: 10.1093/jpp/rgae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
Gantenerumab, a human monoclonal antibody (mAb), has been thought of as a potential agent to treat Alzheimer's disease (AD) by specifically targeting regions of the amyloid-β (Aβ) peptide sequence. Aβ protein accumulation in the brain leads to amyloid plaques, causing neuroinflammation, oxidative stress, neuronal damage, and neurotransmitter dysfunction, thereby causing cognitive decline in AD. Gantenerumab involves disrupting Aβ aggregation and promoting the breakdown of larger Aβ aggregates into smaller fragments, which facilitates the action of Aβ-degrading enzymes in the brain, thus slowing down the progression of AD. Moreover, Gantenerumab acts as an opsonin, coating Aβ plaques and enhancing their recognition by immune cells, which, combined with its ability to improve the activity of microglia, makes it an intriguing candidate for promoting Aβ plaque clearance. Indeed, the multifaceted effects of Gantenerumab, including Aβ disaggregation, enhanced immune recognition, and improved microglia activity, may position it as a promising therapeutic approach for AD. Of note, reports suggest that Gantenerumab, albeit its capacity to reduce or eliminate Aβ, has not demonstrated effectiveness in reducing cognitive decline. This review, after providing an overview of immunotherapy approaches that target Aβ in AD, explores the efficacy of Gantenerumab in reducing Aβ levels and cognitive decline.
Collapse
|
4
|
Hussain A, Rafeeq H, Munir N, Jabeen Z, Afsheen N, Rehman KU, Bilal M, Iqbal HMN. Dendritic Cell-Targeted Therapies to Treat Neurological Disorders. Mol Neurobiol 2022; 59:603-619. [PMID: 34743292 DOI: 10.1007/s12035-021-02622-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/26/2021] [Indexed: 02/08/2023]
Abstract
Dendritic cells (DCs) are the immune system's highly specialized antigen-presenting cells. When DCs are sluggish and mature, self-antigen presentation results in tolerance; however, when pathogen-associated molecular patterns stimulate mature DCs, antigen presentation results in the development of antigen-specific immunity. DCs have been identified in various vital organs of mammals (e.g., the skin, heart, lungs, intestines, and spleen), but the brain has long been thought to be devoid of DCs in the absence of neuroinflammation. However, neuroinflammation is becoming more recognized as a factor in a variety of brain illnesses. DCs are present in the brain parenchyma in trace amounts under healthy circumstances, but their numbers rise during neuroinflammation. New therapeutics are being developed that can reduce dendritic cell immunogenicity by inhibiting pro-inflammatory cytokine production and T cell co-stimulatory pathways. Additionally, innovative ways of regulating dendritic cell growth and differentiation and harnessing their tolerogenic capability are being explored. Herein, we described the function of dendritic cells in neurological disorders and discussed the potential for future therapeutic techniques that target dendritic cells and dendritic cell-related targets in the treatment of neurological disorders.
Collapse
Affiliation(s)
- Asim Hussain
- Department of Biochemistry, Riphah International University, Faisalabad, 38040, Pakistan
| | - Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad, 38040, Pakistan
| | - Nimra Munir
- Department of Biochemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Zara Jabeen
- Department of Biochemistry, Riphah International University, Faisalabad, 38040, Pakistan
| | - Nadia Afsheen
- Department of Biochemistry, Riphah International University, Faisalabad, 38040, Pakistan
| | - Khalil Ur Rehman
- Department of Biochemistry, Riphah International University, Faisalabad, 38040, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
| |
Collapse
|
5
|
Ano Y, Ikado K, Uchida K, Nakayama H. Amyloid β-induced Mesenteric Inflammation in an Alzheimer's Disease Transgenic Mouse Model. Curr Alzheimer Res 2021; 17:52-59. [PMID: 32048974 DOI: 10.2174/1567205017666200212160343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder histopathologically characterized by the accumulation of amyloid β (Aβ) peptides and inflammation associated with activated microglia. These features are well investigated in the central nervous system using AD-model mice; however, peripheral inflammation in these mice has not been investigated well. OBJECTIVE We evaluated the inflammatory responses, especially myeloid dendritic cells (mDCs), in peripheral lymphoid tissues in AD-model mice to determine their association with Aβ deposition. METHODS We collected lymphocytes from mesenteric lymphoid nodes (MLNs) and Peyer's patches (PPs) of 5×FAD transgenic mice used as an AD model. Lymphocytes were analyzed using a flow cytometer to characterize mDCs and T cells. Collected lymphocytes were treated with Aβ1-42 ex vivo to evaluate the inflammatory response. RESULTS We observed elevated levels of inflammatory cytokines and chemokines including interleukin (IL)-12 and macrophage inflammatory protein-1α in mDCs from MLNs and PPs and reduced levels of programmed death-ligand-1, an immunosuppressive co-stimulatory molecule, on the surface of mDCs from 5×FAD mice. Additionally, we found increases in interferon (IFN)-γ-producing CD4- or CD8- positive T cells in MLNs were increased in 5×FAD mice. Moreover, ex vivo treatment with Aβ peptides increased the production of IL-12 and IFN-γ by lymphocytes from 5×FAD mice. CONCLUSION The present study showed that pro-inflammatory mDC and T cells were induced in MLNs and PPs of 5×FAD mice.
Collapse
Affiliation(s)
- Yasuhisa Ano
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Central Laboratories for Key Technologies, Kirin Company Ltd, Yokohama-shi, Kanagawa, Japan
| | - Kumiko Ikado
- Central Laboratories for Key Technologies, Kirin Company Ltd, Yokohama-shi, Kanagawa, Japan
| | - Kazuyuki Uchida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Nakayama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
6
|
Modification of Glial Cell Activation through Dendritic Cell Vaccination: Promises for Treatment of Neurodegenerative Diseases. J Mol Neurosci 2021; 71:1410-1424. [PMID: 33713321 DOI: 10.1007/s12031-021-01818-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/15/2021] [Indexed: 02/07/2023]
Abstract
Accumulation of misfolded tau, amyloid β (Aβ), and alpha-synuclein (α-syn) proteins is the fundamental contributor to many neurodegenerative diseases, namely Parkinson's (PD) and AD. Such protein aggregations trigger activation of immune mechanisms in neuronal and glial, mainly M1-type microglia cells, leading to release of pro-inflammatory mediators, and subsequent neuronal dysfunction and apoptosis. Despite the described neurotoxic features for glial cells, recruitment of peripheral leukocytes to the brain and their conversion to neuroprotective M2-type microglia can mitigate neurodegeneration by clearing extracellular protein accumulations or residues. Based on these observations, it was speculated that Dendritic cell (DC)-based vaccination, by making use of DCs as natural adjuvants, could be used for treatment of neurodegenerative disorders. DCs potentiated by disease-specific antigens can also enhance T helper 2 (Th2)-specific immune response and by production of specific antibodies contribute to clearance of intracellular aggregations, as well as enhancing regulatory T cell response. Thus, enhancement of immune response by DC vaccine therapy can potentially augment glial polarization into the neuroprotective phenotype, enhance antibody production, and at the same time balance neuronal cells' repair, renewal, and protection. The characteristic feature of this method of treatment is to maintain the equilibrium in the immune response rather than targeting a single mediator in the disease and their application in other neurodegenerative diseases should be addressed. However, the safety of these methods should be investigated by clinical trials.
Collapse
|
7
|
Rahman SO, Singh RK, Hussain S, Akhtar M, Najmi AK. A novel therapeutic potential of cysteinyl leukotrienes and their receptors modulation in the neurological complications associated with Alzheimer's disease. Eur J Pharmacol 2018; 842:208-220. [PMID: 30389631 DOI: 10.1016/j.ejphar.2018.10.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/16/2018] [Accepted: 10/29/2018] [Indexed: 01/28/2023]
Abstract
Cysteinyl leukotrienes (cysLTs) are member of eicosanoid inflammatory lipid mediators family produced by oxidation of arachidonic acid by action of the enzyme 5-lipoxygenase (5-LOX). 5-LOX is activated by enzyme 5-Lipoxygenase-activating protein (FLAP), which further lead to production of cysLTs i.e. leukotriene C4 (LTC4), leukotriene D4 (LTD4) and leukotriene E4 (LTE4). CysLTs then produce their potent inflammatory actions by activating CysLT1 and CysLT2 receptors. Inhibitors of cysLTs are indicated in asthma, allergic rhinitis and other inflammatory disorders. Earlier studies have associated cysLTs and their receptors in several neurodegenerative disorders diseases like, multiple sclerosis, Parkinson's disease, Huntington's disease, epilepsy and Alzheimer's disease (AD). These inflammatory lipid mediators have previously shown effects on various aggravating factors of AD. However, not much data has been elucidated to test their role against AD clinically. Herein, through this review, we have provided the current and emerging information on the role of cysLTs and their receptors in various neurological complications responsible for the development of AD. In addition, literature evidences for the effect of cysLT inhibitors on distinct aspects of abnormalities in AD has also been reviewed. Promising advancement in understanding on the role of cysLTs on the various neuromodulatory processes and mechanisms may contribute to the development of newer and safer therapy for the treatment of AD in future.
Collapse
Affiliation(s)
- Syed Obaidur Rahman
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Rakesh Kumar Singh
- School of Pharmaceutical Sciences, Apeejay Stya University, Sohna-Palwal Road, Sohna, Gurgaon 122013, Haryana, India.
| | - Salman Hussain
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
8
|
Agrawal S, Abud EM, Snigdha S, Agrawal A. IgM response against amyloid-beta in aging: a potential peripheral protective mechanism. ALZHEIMERS RESEARCH & THERAPY 2018; 10:81. [PMID: 30115117 PMCID: PMC6097437 DOI: 10.1186/s13195-018-0412-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/23/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND The immune system plays a major role in the pathogenesis of age-related dementia, including Alzheimer's disease (AD). An insight into age-associated changes in the immune response to amyloid-beta (Aβ) in individuals without AD may be beneficial in identifying mechanisms preventing accumulation of Aβ. METHODS We examined the response of human monocyte-derived dendritic cells (DCs), T cells, and peripheral blood mononuclear cells (PBMCs) from healthy aged and young subjects to Aβ peptide 1-42, Aβ fibrils, and recombinant, nonaggregated tau-4 protein with a view to understand the role of peripheral immunity in AD. RESULTS Our studies revealed that DCs from healthy aged subjects display weak reactivity towards the Aβ peptide and no reactivity towards Aβ fibrils and tau compared with their young counterparts. An analysis of old and young PBMCs revealed that there is no significant T-cell memory against Aβ peptide, fibrils, or tau. Remarkably, the plasma levels of IgM antibodies specific to Aβ peptide 1-42 were significantly increased in aged subjects compared with young subjects, while IgG levels were comparable. Aβ peptide-specific IgM and IgG levels were also determined in the plasma of AD subjects compared with age-matched controls to demonstrate that the immune response against Aβ is stronger in AD patients. A decline in Aβ peptide-specific IgM antibodies was observed in AD patients compared with age-matched controls. In contrast, the levels of IgG as well as interleukin-21, the major cytokine involved in class switching, were increased in AD and patients with mild cognitive impairment, indicating a strong immune response against Aβ. CONCLUSIONS Collectively, low immunogenicity of Aβ in healthy controls may prevent inflammation while the generation of specific IgM antibodies may help in the clearance of Aβ in healthy subjects.
Collapse
Affiliation(s)
- Sudhanshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
| | - Edsel M Abud
- UCI-MIND, University of California, Irvine, Irvine, CA, 92697, USA
| | - Shikha Snigdha
- UCI-MIND, University of California, Irvine, Irvine, CA, 92697, USA
| | - Anshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
9
|
T Lymphocytes and Inflammatory Mediators in the Interplay between Brain and Blood in Alzheimer's Disease: Potential Pools of New Biomarkers. J Immunol Res 2017; 2017:4626540. [PMID: 28293644 PMCID: PMC5331319 DOI: 10.1155/2017/4626540] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/22/2016] [Accepted: 01/23/2017] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the main cause of dementia. The disease is among the leading medical concerns of the modern world, because only symptomatic therapies are available, and no reliable, easily accessible biomarkers exist for AD detection and monitoring. Therefore extensive research is conducted to elucidate the mechanisms of AD pathogenesis, which seems to be heterogeneous and multifactorial. Recently much attention has been given to the neuroinflammation and activation of glial cells in the AD brain. Reports also highlighted the proinflammatory role of T lymphocytes infiltrating the AD brain. However, in AD molecular and cellular alterations involving T cells and immune mediators occur not only in the brain, but also in the blood and the cerebrospinal fluid (CSF). Here we review alterations concerning T lymphocytes and related immune mediators in the AD brain, CSF, and blood and the mechanisms by which peripheral T cells cross the blood brain barrier and the blood-CSF barrier. This knowledge is relevant for better AD therapies and for identification of novel biomarkers for improved AD diagnostics in the blood and the CSF. The data will be reviewed with the special emphasis on possibilities for development of AD biomarkers.
Collapse
|
10
|
Wang F, Shen X, Li S, Chen L, Wang Y, Qin J, Zhou G, Peng Y, Feng X, Li R, Liang C. Splenocytes derived from young WT mice prevent AD progression in APPswe/PSENldE9 transgenic mice. Oncotarget 2016; 6:20851-62. [PMID: 26317549 PMCID: PMC4673234 DOI: 10.18632/oncotarget.4930] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/24/2015] [Indexed: 12/28/2022] Open
Abstract
Immunosenescence contributes to pathogenesis of Alzheimer's disease (AD) in the elderly. In this study, we explored the effects of young wild type (WT) splenocytes (ySCs) on Alzheimer's disease by transplanting ySCs into APPswe/PSENldE9 transgenic mice. Young WT splenocytes not only prevented AD, but also improved the spatial learning and memory of APPswe/PSENldE9 transgenic mice. Young WT splenocytes enhanced Aβ clearance, decreased astrogliosis and increased systemic growth differentiation factor 11 (GDF11) levels. Splenocytes derived from old AD mouse promoted AD. There was an increased number of regulatory T cells (Tregs) among old AD splenocytes. We suggest that alterations of GDF11 and Tregs are involved in AD progression and that rejuvenation of the immune system is a potential therapeutic strategy in AD.
Collapse
Affiliation(s)
- Fei Wang
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, Shanghai, P. R. China
| | - Xueyan Shen
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, Shanghai, P. R. China
| | - Shuping Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, P. R. China.,Department of Radiology, PLA No. 455 Hospital, Shanghai, P. R. China
| | - Long Chen
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, Shanghai, P. R. China
| | - Yanru Wang
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, Shanghai, P. R. China
| | - Jie Qin
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, Shanghai, P. R. China
| | - Guomin Zhou
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, Shanghai, P. R. China
| | - Yuwen Peng
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, Shanghai, P. R. China
| | - Xiaoyuan Feng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Ruixi Li
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, Shanghai, P. R. China
| | - Chunmin Liang
- Department of Anatomy and Histology & Embryology, Shanghai Medical College of Fudan University, Shanghai, P. R. China
| |
Collapse
|
11
|
Ciaramella A, Salani F, Bizzoni F, Orfei MD, Caltagirone C, Spalletta G, Bossù P. Myeloid dendritic cells are decreased in peripheral blood of Alzheimer's disease patients in association with disease progression and severity of depressive symptoms. J Neuroinflammation 2016; 13:18. [PMID: 26811068 PMCID: PMC4727381 DOI: 10.1186/s12974-016-0483-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/16/2016] [Indexed: 12/22/2022] Open
Abstract
Background Dendritic cells (DCs) are major orchestrators of immune responses and inflammation. They are migratory cells, which may play a role in Alzheimer’s disease (AD), as suggested by prior in vitro studies. With the intent to investigate the clinical relevance of DC modifications in vivo, the present study was aimed to evaluate the levels of blood DCs in AD patients, in relation to the progression of the disease, the severity of its symptoms, and the treatment with acetylcholinesterase inhibitors (AChEIs), a class of drugs used to improve cognitive functioning in people with dementia. Methods The two main subpopulations of immature blood DCs, namely myeloid (mDCs) and plasmacytoid (pDCs) cells, were evaluated by flow cytometry analysis in 106 AD patients, in comparison with the same cells from 65 individuals with mild cognitive impairment (MCI) and 73 healthy control subjects (HC). The relationship between blood DC levels and symptom severity was also assessed in AD patients, and their blood DC frequency was considered both in the absence or presence of treatment with AChEIs. Results A significant depletion in blood mDCs was observed in AD patients, as compared to HC and MCI subjects. At variance, pDC levels were comparable among the three groups of subjects. The mDC decrease was evident only after the emergence of AD clinical symptoms, as confirmed by the follow-up analysis of a subgroup of MCI subjects who exhibited a significant decline in mDCs after their conversion to AD. Notably, the mDC decline was inversely correlated in AD patients with the frequency and severity of depressive symptoms. Eventually, the mDC depletion was not observable in patients treated with AChEIs. Conclusions Our results provide the first evidence that blood mDC levels are dysregulated in AD. This phenomenon appears mainly linked to AD progression, associated with stronger severity of AD-related symptoms, and influenced by AChEI treatment. Taken all together, these data suggest that blood mDCs may serve as a cell source to test disease-induced and treatment-related changes and support the innovative notion that DCs play a role in AD, as ultimate evidence of the immune system participation in disease progression.
Collapse
Affiliation(s)
- Antonio Ciaramella
- Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Experimental Neuro-psychobiology Lab, Via Ardeatina 306, 00179, Rome, Italy.
| | - Francesca Salani
- Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Experimental Neuro-psychobiology Lab, Via Ardeatina 306, 00179, Rome, Italy.
| | - Federica Bizzoni
- Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Experimental Neuro-psychobiology Lab, Via Ardeatina 306, 00179, Rome, Italy.
| | - Maria Donata Orfei
- Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Experimental Neuro-psychobiology Lab, Via Ardeatina 306, 00179, Rome, Italy.
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Experimental Neuro-psychobiology Lab, Via Ardeatina 306, 00179, Rome, Italy. .,Department of Neuroscience, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| | - Gianfranco Spalletta
- Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Experimental Neuro-psychobiology Lab, Via Ardeatina 306, 00179, Rome, Italy. .,Neuropsychology Unit, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy. .,Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.
| | - Paola Bossù
- Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Experimental Neuro-psychobiology Lab, Via Ardeatina 306, 00179, Rome, Italy.
| |
Collapse
|
12
|
Bossù P, Spalletta G, Caltagirone C, Ciaramella A. Myeloid Dendritic Cells are Potential Players in Human Neurodegenerative Diseases. Front Immunol 2015; 6:632. [PMID: 26734003 PMCID: PMC4679857 DOI: 10.3389/fimmu.2015.00632] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/02/2015] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s diseases (AD) and Parkinson’s diseases (PD) are devastating neurodegenerative disturbances, wherein neuroinflammation is a chronic pathogenic process with high therapeutic potential. Major mediators of AD/PD neuroimmune processes are resident immune cells, but immune cells derived from periphery may also participate and to some extent modify neuroinflammation. Specifically, blood borne myeloid cells emerge as crucial components of AD/PD progression and susceptibility. Among these, dendritic cells (DCs) are key immune orchestrators and players of brain immune surveillance; we candidate them as potential mediators of both AD and PD and as relevant cell model for unraveling myeloid cell role in neurodegeneration. Hence, we recapitulate and discuss emerging data suggesting that blood-derived DCs play a role in experimental and human neurodegenerative diseases. In humans, in particular, DCs are modified by in vitro culture with neurodegeneration-associated pathogenic factors and dysregulated in AD patients, while the levels of DC precursors are decreased in AD and PD patients’ blood, possibly as an index of their recruitment to the brain. Overall, we emphasize the need to explore the impact of DCs on neurodegeneration to uncover peripheral immune mechanisms of pathogenic importance, recognize potential biomarkers, and improve therapeutic approaches for neurodegenerative diseases.
Collapse
Affiliation(s)
- Paola Bossù
- Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation , Rome , Italy
| | - Gianfranco Spalletta
- Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Neuroscience, University of Rome Tor Vergata, Rome, Italy
| | - Antonio Ciaramella
- Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation , Rome , Italy
| |
Collapse
|
13
|
Ludewig P, Gallizioli M, Urra X, Behr S, Brait VH, Gelderblom M, Magnus T, Planas AM. Dendritic cells in brain diseases. Biochim Biophys Acta Mol Basis Dis 2015; 1862:352-67. [PMID: 26569432 DOI: 10.1016/j.bbadis.2015.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mattia Gallizioli
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Xabier Urra
- Functional Unit of Cerebrovascular Diseases, Hospital Clínic, Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Sarah Behr
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vanessa H Brait
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna M Planas
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
14
|
Ciaramella A, Salani F, Bizzoni F, Orfei MD, Langella R, Angelucci F, Spalletta G, Taddei AR, Caltagirone C, Bossù P. The stimulation of dendritic cells by amyloid beta 1-42 reduces BDNF production in Alzheimer's disease patients. Brain Behav Immun 2013; 32:29-32. [PMID: 23578995 DOI: 10.1016/j.bbi.2013.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 03/12/2013] [Accepted: 04/01/2013] [Indexed: 11/26/2022] Open
Abstract
Dendritic cells (DCs), the main actors of immune responses and inflammation, may play a role in Alzheimer's disease (AD). Recent studies demonstrate that monocyte-derived DCs (MDDCs), generated in vitro in the presence of amyloid β1-42 peptide (Aβ1-42), show a functional alteration and an increased production of inflammatory molecules. Accordingly, MDDCs from AD patients show a more pronounced pro-inflammatory profile than DCs obtained from control subjects. In this study, we aimed at further investigating DC role in AD. Thus, we analyzed the in vitro effect of Aβ1-42 treatment on already differentiated DCs from AD patients, as compared to control subjects. We found that Aβ1-42 significantly decreases the expression of brain-derived neurotrophic factor (BDNF) in DCs derived from AD patients but not from control subjects. Thus, possibly due to their Aβ-induced reduction of neurotrophic support to neurons, DCs from AD patients might contribute to brain damage by playing a part in Aβ-dependent neuronal toxicity.
Collapse
Affiliation(s)
- Antonio Ciaramella
- Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Daulatzai MA. Neurotoxic Saboteurs: Straws that Break the Hippo’s (Hippocampus) Back Drive Cognitive Impairment and Alzheimer’s Disease. Neurotox Res 2013; 24:407-59. [DOI: 10.1007/s12640-013-9407-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/06/2013] [Accepted: 06/17/2013] [Indexed: 12/29/2022]
|
16
|
Development of a transgenic mouse model with immune tolerance for human coagulation factor VIIa. Pharm Res 2013; 30:2855-67. [PMID: 23775444 DOI: 10.1007/s11095-013-1115-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 06/04/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE Human factor VIIa (FVIIa) is commonly used as bypassing therapy to treat bleeding episodes in hemophilia patients with neutralizing antibodies to factors VIII (FVIII) or IX (FIX). There is a need for a suitable animal model to assess the immunogenicity of new FVIIa products during preclinical development. The aim of this study was the design of a novel transgenic mouse model with immune tolerance to human FVIIa. METHODS The model was generated by transgenic expression of human F7 cDNA. FVIIa-specific immune responses after treatment with human FVIIa were assessed by analyzing circulating antibodies, antibody producing plasma cells and CD4(+) T cells. RESULTS In contrast to wild-type mice, human FVII transgenic mice did not develop antibodies when treated with human FVIIa. The immune tolerance was specific and could be broken by application of human FVIIa together with a strong stimulus of the innate immune system. Break of tolerance was associated with increased numbers of pro-inflammatory FVIIa-specific CD4(+) T cells. CONCLUSIONS The new mouse model is suitable to study the influence of the innate immune system on maintenance and break of immune tolerance against FVIIa and could be used to assess the immunogenicity of new FVIIa products during pre-clinical development.
Collapse
|
17
|
Sutinen EM, Pirttilä T, Anderson G, Salminen A, Ojala JO. Pro-inflammatory interleukin-18 increases Alzheimer's disease-associated amyloid-β production in human neuron-like cells. J Neuroinflammation 2012; 9:199. [PMID: 22898493 PMCID: PMC3458954 DOI: 10.1186/1742-2094-9-199] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 07/28/2012] [Indexed: 11/10/2022] Open
Abstract
Background Alzheimer’s disease (AD) involves increased accumulation of amyloid-β (Aβ) plaques and neurofibrillary tangles as well as neuronal loss in various regions of the neocortex. Neuroinflammation is also present, but its role in AD is not fully understood. We previously showed increased levels of pro-inflammatory cytokine interleukin-18 (IL-18) in different regions of AD brains, where it co-localized with Aβ-plaques, as well as the ability of IL-18 to increase expression of glycogen synthase kinase-3β (GSK-3β) and cyclin dependent kinase 5, involved in hyperphosphorylation of tau-protein. Elevated IL-18 has been detected in several risk conditions for AD, including obesity, type-II diabetes, and cardiovascular diseases as well as in stress. Methods We differentiated SH-SY5Y neuroblastoma cells as neuron-like and exposed them to IL-18 for various times. We examined the protein levels of amyloid-β precursor protein (APP) and its processing products, its cleaving enzymes, involved in amyloidogenic processing of APP, and markers of apoptosis. Results IL-18 increased protein levels of the β-site APP-cleaving enzyme BACE-1, the N-terminal fragment of presenilin-1 and slightly presenilin enhancer 2, both of which are members of the γ-secretase complex, as well as Fe65, which is a binding protein of the C-terminus of APP and one regulator for GSK-3β. IL-18 also increased APP expression and phosphorylation, which preceded increased BACE-1 levels. Further, IL-18 altered APP processing, increasing Aβ40 production in particular, which was inhibited by IL-18 binding protein. Increased levels of soluble APPβ were detected in culture medium after the IL-18 exposure. IL-18 also increased anti-apoptotic bcl-xL levels, which likely counteracted the minor increase of the pro-apoptotic caspase-3. Lactate dehydrogenase activity in culture medium was unaffected. Conclusions The IL-18 induction of BACE-1, APP processing, and Aβ is likely to be linked to stress-associated adaptations in neurons during the course of normal functioning and development. However, in the course of wider changes in the aging brain, and particularly in AD, the effects of heightened or prolonged levels of IL-18 may contribute to the process of AD, including via increased Aβ.
Collapse
Affiliation(s)
- Elina M Sutinen
- University of Eastern Finland, Institute of Clinical Medicine/ Neurology, Canthia, FI-70211, Kuopio, Finland
| | | | | | | | | |
Collapse
|
18
|
Shi JQ, Chen J, Wang BR, Zhu YW, Xu Y, Wang J, Xiao H, Shi JP, Zhang YD, Xu J. Short amyloid-beta immunogens show strong immunogenicity and avoid stimulating pro-inflammatory pathways in bone marrow-derived dendritic cells from C57BL/6J mice in vitro. Peptides 2011; 32:1617-25. [PMID: 21722679 DOI: 10.1016/j.peptides.2011.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/14/2011] [Accepted: 06/14/2011] [Indexed: 12/25/2022]
Abstract
Amyloid beta peptide 1-15 (Aβ1-15) and its derivatives have attracted the attention of the scientific community as candidate vaccines for Alzheimer's disease (AD) immunotherapy. Recent studies suggested that Aβ1-42 modulated the immune system by inducing pro-inflammatory dendritic cells (DCs) with reduced antigen-presenting function. However, it remains elusive how Aβ1-15 impacts DCs function. We therefore investigated the modulation by short Aβ peptides of DCs from C57Bl/6J mice. Two new immunogens, a tandem repeat of two-lysine-linked Aβ1-15 sequences with or without an addition of a RGD motif, were tested. Chemotaxis, endocytosis, antigen presenting function and producing cytokines were measured. Both peptides increased migration/endocytosis of immature DCs and MHC II molecule expression/alloreactive T cell activation in TNF-α-matured DCs. In addition, they exhibited decreased production of Th1/Th2 cytokines and pro-inflammatory cytokines. Overall, the two peptides demonstrated strong immunogenicity but did not stimulate pro-inflammatory pathways. These results support the use of short Aβ immunogens in AD immunotherapy.
Collapse
Affiliation(s)
- Jian-Quan Shi
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu Province 210029, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Effect of age on surface molecules and cytokine expression in human dendritic cells. Cell Immunol 2011; 269:82-9. [DOI: 10.1016/j.cellimm.2011.04.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 04/08/2011] [Accepted: 04/20/2011] [Indexed: 11/21/2022]
|
20
|
Bossù P, Ciaramella A, Salani F, Bizzoni F, Varsi E, Di Iulio F, Giubilei F, Gianni W, Trequattrini A, Moro ML, Bernardini S, Caltagirone C, Spalletta G. Interleukin-18 produced by peripheral blood cells is increased in Alzheimer's disease and correlates with cognitive impairment. Brain Behav Immun 2008; 22:487-92. [PMID: 17988833 DOI: 10.1016/j.bbi.2007.10.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 10/02/2007] [Accepted: 10/02/2007] [Indexed: 10/22/2022] Open
Abstract
A body of evidence indicates that inflammation plays a pivotal role in AD pathogenesis. IL-18 is a pro-inflammatory cytokine produced in the brain, emerging to be implicated in AD. Although no differences in circulating IL-18 levels were measured between AD patients and controls, a significant increased production of IL-18 was obtained from stimulated blood mononuclear cells of AD patients. This was true particularly in AD subjects carrying the C/C genotype at the -607 position of IL-18 gene promoter. Furthermore, a significant correlation between IL-18 production and cognitive decline was observed in AD patients. Overall, these data indicate that IL-18-related inflammatory pathways, probably also in virtue of polymorphic IL-18 gene influence, are exacerbated in AD patients, and that this cytokine may indeed participate in pathogenic processes leading to dementia.
Collapse
Affiliation(s)
- Paola Bossù
- IRCCS Santa Lucia Foundation, Department of Clinical and Behavioural Neurology, Via Ardeatina 306, 00179 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|