1
|
Jangam TC, Desai SA, Patel VP, Pagare NB, Raut ND. Exosomes as Therapeutic and Diagnostic Tools: Advances, Challenges, and Future Directions. Cell Biochem Biophys 2025:10.1007/s12013-025-01730-5. [PMID: 40122928 DOI: 10.1007/s12013-025-01730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
Exosomes are tiny extracellular vesicles that are essential for intercellular communication and have shown great promise in the detection and treatment of disease. They are especially useful in the treatment of cancer, cardiovascular conditions, and neurological diseases because of their capacity to transport bioactive substances including proteins, lipids, and nucleic acids. Because of their low immunogenicity, ability to traverse biological barriers, and biocompatibility, exosome-based medicines have benefits over conventional treatments. Large-scale production, standardization of separation methods, possible immunological reactions, and worries about unforeseen biological effects are some of the obstacles that still need to be overcome. Furthermore, there are major barriers to the clinical use of exosomes due to their complex cargo sorting mechanisms and heterogeneity. Future studies should concentrate on enhancing separation and purification procedures, optimizing exosome engineering techniques, and creating plans to reduce immune system modifications. This review examines the most recent developments in exosome-based diagnostics and treatments, identifies current issues, and suggests ways to improve their clinical translation in the future.
Collapse
Affiliation(s)
- Tejas C Jangam
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Savitribai Phule Pune University, Kopargaon, Maharashtra, India
| | - Sharav A Desai
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Savitribai Phule Pune University, Kopargaon, Maharashtra, India.
| | - Vipul P Patel
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Savitribai Phule Pune University, Kopargaon, Maharashtra, India
| | - Nishant B Pagare
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Savitribai Phule Pune University, Kopargaon, Maharashtra, India
| | - Nikita D Raut
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Savitribai Phule Pune University, Kopargaon, Maharashtra, India
| |
Collapse
|
2
|
MicroRNAs as Candidate Biomarkers for Alzheimer's Disease. Noncoding RNA 2021; 7:ncrna7010008. [PMID: 33535543 PMCID: PMC7930943 DOI: 10.3390/ncrna7010008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
The neurological damage of Alzheimer’s disease (AD) is thought to be irreversible upon onset of dementia-like symptoms, as it takes years to decades for occult pathologic changes to become symptomatic. It is thus necessary to identify individuals at risk for the development of the disease before symptoms manifest in order to provide early intervention. Surrogate markers are critical for early disease detection, stratification of patients in clinical trials, prediction of disease progression, evaluation of response to treatment, and also insight into pathomechanisms. Here, we review the evidence for a number of microRNAs that may serve as biomarkers with possible mechanistic insights into the AD pathophysiologic processes, years before the clinical manifestation of the disease.
Collapse
|
3
|
Rastogi S, Sharma V, Bharti PS, Rani K, Modi GP, Nikolajeff F, Kumar S. The Evolving Landscape of Exosomes in Neurodegenerative Diseases: Exosomes Characteristics and a Promising Role in Early Diagnosis. Int J Mol Sci 2021; 22:E440. [PMID: 33406804 PMCID: PMC7795439 DOI: 10.3390/ijms22010440] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases (ND) remains to be one of the biggest burdens on healthcare systems and serves as a leading cause of disability and death. Alzheimer's disease (AD) is among the most common of such disorders, followed by Parkinson's disease (PD). The basic molecular details of disease initiation and pathology are still under research. Only recently, the role of exosomes has been linked to the initiation and progression of these neurodegenerative diseases. Exosomes are small bilipid layer enclosed extracellular vesicles, which were once considered as a cellular waste and functionless. These nano-vesicles of 30-150 nm in diameter carry specific proteins, lipids, functional mRNAs, and high amounts of non-coding RNAs (miRNAs, lncRNAs, and circRNAs). As the exosomes content is known to vary as per their originating and recipient cells, these vesicles can be utilized as a diagnostic biomarker for early disease detection. Here we review exosomes, their biogenesis, composition, and role in neurodegenerative diseases. We have also provided details for their characterization through an array of available techniques. Their updated role in neurodegenerative disease pathology is also discussed. Finally, we have shed light on a novel field of salivary exosomes as a potential candidate for early diagnosis in neurodegenerative diseases and compared the biomarkers of salivary exosomes with other blood/cerebrospinal fluid (CSF) based exosomes within these neurological ailments.
Collapse
Affiliation(s)
- Simran Rastogi
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.R.); (V.S.); (P.S.B.)
| | - Vaibhav Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.R.); (V.S.); (P.S.B.)
| | - Prahalad Singh Bharti
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.R.); (V.S.); (P.S.B.)
| | - Komal Rani
- Department of Biotechnology, Amity University, Mumbai 410206, India;
| | - Gyan P. Modi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India;
| | - Fredrik Nikolajeff
- Department of Health Science, Lulea Technical University, 97187 Lulea, Sweden
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.R.); (V.S.); (P.S.B.)
| |
Collapse
|
4
|
Manczak M, Kandimalla R, Fry D, Sesaki H, Reddy PH. Protective effects of reduced dynamin-related protein 1 against amyloid beta-induced mitochondrial dysfunction and synaptic damage in Alzheimer's disease. Hum Mol Genet 2017; 25:5148-5166. [PMID: 27677309 DOI: 10.1093/hmg/ddw330] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/23/2016] [Indexed: 12/12/2022] Open
Abstract
The purpose of our study was to understand the protective effects of reduced expression of dynamin-related protein (Drp1) against amyloid beta (Aβ) induced mitochondrial and synaptic toxicities in Alzheimer's disease (AD) progression and pathogenesis. Our recent molecular and biochemical studies revealed that impaired mitochondrial dynamics-increased mitochondrial fragmentation and decreased fusion-in neurons from autopsy brains of AD patients and from transgenic AD mice and neurons expressing Aβ, suggesting that Aβ causes mitochondrial fragmentation in AD. Further, our recent co-immunoprecipitation and immunostaining analysis revealed that the mitochondrial fission protein Drp1 interacted with Aβ, and this interaction increased as AD progressed. Based on these findings, we hypothesize that a partial deficiency of Drp1 inhibits Drp1-Aβ interactions and protects Aβ-induced mitochondrial and synaptic toxicities, and maintains mitochondrial dynamics and neuronal function in AD neurons. We crossed Drp1+/- mice with APP transgenic mice (Tg2576 line) and created double mutant (APPXDrp1+/-) mice. Using real-time RT-PCR and immunoblotting analyses, we measured mRNA expressions and protein levels of genes related to the mitochondrial dynamics, mitochondrial biogenesis and synapses from 6-month-old Drp1+/-, APP, APPXDrp1+/- and wild-type (WT) mice. Using biochemical methods, we also studied mitochondrial function and measured soluble Aβ in brain tissues from all lines of mice in our study. Decreased mRNA expressions and protein levels of Drp1 and Fis1 (fission) and CypD (matrix) genes, and increased levels of Mfn1, Mfn2 and Opa1 (fusion), Nrf1, Nrf2, PGC1α, TFAM (biogenesis) and synaptophysin, PSD95, synapsin 1, synaptobrevin 1, neurogranin, GAP43 and synaptopodin (synaptic) were found in 6-month-old APPXDrp1+/- mice relative to APP mice. Mitochondrial functional assays revealed that mitochondrial dysfunction is reduced in APPXDrp1+/- mice relative to APP mice, suggesting that reduced Drp1enhances mitochondrial function in AD neurons. Sandwich ELISA assay revealed that soluble Aβ levels were significantly reduced in APPXDrp1+/- mice relative to APP mice, indicating that reduced Drp1 decreases soluble Aβ production in AD progression. These findings suggest that a partial reduction of Drp1 reduces Aβ production, reduces mitochondrial dysfunction, and maintains mitochondrial dynamics, enhances mitochondrial biogenesis and synaptic activity in APP mice. These findings may have implications for the development of Drp1 based therapeutics for AD patients.
Collapse
Affiliation(s)
- Maria Manczak
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA
| | - Ramesh Kandimalla
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA
| | - David Fry
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA
| | - Hiromi Sesaki
- Cell Biology Department, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA.,Cell Biology & Biochemistry Department.,Pharmacology & Neuroscience Department.,Neurology Department.,Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
5
|
Hassan WM, Dostal V, Huemann BN, Yerg JE, Link CD. Identifying Aβ-specific pathogenic mechanisms using a nematode model of Alzheimer's disease. Neurobiol Aging 2014; 36:857-66. [PMID: 25457027 DOI: 10.1016/j.neurobiolaging.2014.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 09/25/2014] [Accepted: 10/12/2014] [Indexed: 01/18/2023]
Abstract
Multiple gene expression alterations have been linked to Alzheimer's disease (AD), implicating multiple metabolic pathways in its pathogenesis. However, a clear distinction between AD-specific gene expression changes and those resulting from nonspecific responses to toxic aggregating proteins has not been made. We investigated alterations in gene expression induced by human beta-amyloid peptide (Aβ) in a Caenorhabditis elegans AD model. Aβ-induced gene expression alterations were compared with those caused by a synthetic aggregating protein to identify Aβ-specific effects. Both Aβ-specific and nonspecific alterations were observed. Among Aβ-specific genes were those involved in aging, proteasome function, and mitochondrial function. An intriguing observation was the significant overlap between gene expression changes induced by Aβ and those induced by Cry5B, a bacterial pore-forming toxin. This led us to hypothesize that Aβ exerts its toxic effect, at least in part, by causing damage to biological membranes. We provide in vivo evidence consistent with this hypothesis. This study distinguishes between Aβ-specific and nonspecific mechanisms and provides potential targets for therapeutics discovery.
Collapse
Affiliation(s)
- Wail M Hassan
- Department of Biomedical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA; Department of Integrative Physiology, Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO, USA.
| | - Vishantie Dostal
- Department of Integrative Physiology, Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO, USA
| | - Brady N Huemann
- Department of Biomedical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - John E Yerg
- Department of Integrative Physiology, Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO, USA
| | - Christopher D Link
- Department of Integrative Physiology, Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO, USA
| |
Collapse
|
6
|
Bouter Y, Kacprowski T, Weissmann R, Dietrich K, Borgers H, Brauß A, Sperling C, Wirths O, Albrecht M, Jensen LR, Kuss AW, Bayer TA. Deciphering the molecular profile of plaques, memory decline and neuron loss in two mouse models for Alzheimer's disease by deep sequencing. Front Aging Neurosci 2014; 6:75. [PMID: 24795628 PMCID: PMC3997018 DOI: 10.3389/fnagi.2014.00075] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/02/2014] [Indexed: 12/23/2022] Open
Abstract
One of the central research questions on the etiology of Alzheimer’s disease (AD) is the elucidation of the molecular signatures triggered by the amyloid cascade of pathological events. Next-generation sequencing allows the identification of genes involved in disease processes in an unbiased manner. We have combined this technique with the analysis of two AD mouse models: (1) The 5XFAD model develops early plaque formation, intraneuronal Aβ aggregation, neuron loss, and behavioral deficits. (2) The Tg4–42 model expresses N-truncated Aβ4–42 and develops neuron loss and behavioral deficits albeit without plaque formation. Our results show that learning and memory deficits in the Morris water maze and fear conditioning tasks in Tg4–42 mice at 12 months of age are similar to the deficits in 5XFAD animals. This suggested that comparative gene expression analysis between the models would allow the dissection of plaque-related and -unrelated disease relevant factors. Using deep sequencing differentially expressed genes (DEGs) were identified and subsequently verified by quantitative PCR. Nineteen DEGs were identified in pre-symptomatic young 5XFAD mice, and none in young Tg4–42 mice. In the aged cohort, 131 DEGs were found in 5XFAD and 56 DEGs in Tg4–42 mice. Many of the DEGs specific to the 5XFAD model belong to neuroinflammatory processes typically associated with plaques. Interestingly, 36 DEGs were identified in both mouse models indicating common disease pathways associated with behavioral deficits and neuron loss.
Collapse
Affiliation(s)
- Yvonne Bouter
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen , Goettingen , Germany
| | - Tim Kacprowski
- Department of Bioinformatics, Institute of Biometrics and Medical Informatics, University Medicine Greifswald , Greifswald , Germany ; Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald , Greifswald , Germany
| | - Robert Weissmann
- Human Molecular Genetics, Department for Human Genetics of the Institute for Genetics and Functional Genomics, Institute for Human Genetics, University Medicine Greifswald, Ernst-Moritz-Arndt University Greifswald , Greifswald , Germany
| | - Katharina Dietrich
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen , Goettingen , Germany
| | - Henning Borgers
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen , Goettingen , Germany
| | - Andreas Brauß
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen , Goettingen , Germany
| | - Christian Sperling
- Human Molecular Genetics, Department for Human Genetics of the Institute for Genetics and Functional Genomics, Institute for Human Genetics, University Medicine Greifswald, Ernst-Moritz-Arndt University Greifswald , Greifswald , Germany
| | - Oliver Wirths
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen , Goettingen , Germany
| | - Mario Albrecht
- Department of Bioinformatics, Institute of Biometrics and Medical Informatics, University Medicine Greifswald , Greifswald , Germany ; Institute for Knowledge Discovery, Graz University of Technology , Graz , Austria
| | - Lars R Jensen
- Human Molecular Genetics, Department for Human Genetics of the Institute for Genetics and Functional Genomics, Institute for Human Genetics, University Medicine Greifswald, Ernst-Moritz-Arndt University Greifswald , Greifswald , Germany
| | - Andreas W Kuss
- Human Molecular Genetics, Department for Human Genetics of the Institute for Genetics and Functional Genomics, Institute for Human Genetics, University Medicine Greifswald, Ernst-Moritz-Arndt University Greifswald , Greifswald , Germany
| | - Thomas A Bayer
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen , Goettingen , Germany
| |
Collapse
|
7
|
Crosstalk between Endoplasmic Reticulum Stress and Protein Misfolding in Neurodegenerative Diseases. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/256404] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Under physiological conditions, the endoplasmic reticulum (ER) is a central subcellular compartment for protein quality control in the secretory pathway that prevents protein misfolding and aggregation. Instrumental in protein quality control in the ER is the unfolded protein response (UPR), which is activated upon ER stress to reestablish homeostasis through a sophisticated transcriptionally and translationally regulated signaling network. However, this response can lead to apoptosis if the stress cannot be alleviated. The presence of abnormal protein aggregates containing specific misfolded proteins is recognized as the basis of numerous human conformational disorders, including neurodegenerative diseases. Here, I will highlight the overwhelming evidence that the presence of specific aberrant proteins in Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), prion diseases, and Amyotrophic Lateral Sclerosis (ALS) is intimately associated with perturbations in the ER protein quality control machinery that become incompetent to restore protein homeostasis and shift adaptive programs toward the induction of apoptotic signaling to eliminate irreversibly damaged neurons. Increasing our understanding about the deadly crosstalk between ER dysfunction and protein misfolding in these neurodegenerative diseases may stimulate the development of novel therapeutic strategies able to support neuronal survival and ameliorate disease progression.
Collapse
|
8
|
Cortical beta amyloid protein triggers an immune response, but no synaptic changes in the APPswe/PS1dE9 Alzheimer's disease mouse model. Neurobiol Aging 2012; 34:1328-42. [PMID: 23245294 DOI: 10.1016/j.neurobiolaging.2012.11.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 11/14/2012] [Accepted: 11/16/2012] [Indexed: 01/06/2023]
Abstract
Using microarray technology we studied the genome-wide gene expression profiles in the frontal cortex of APPswe/PS1dE9 mice and age and sex-matched littermates at the age of 2, 3, 6, 9, 12, and 15-18 months to investigate transcriptional changes that are associated with beta amyloid protein (Aβ) plaque formation and buildup. We observed the occurrence of an immune response with glial activation, but no changes in genes involved in synaptic transmission or plasticity. Comparison of the mouse gene expression data set with a human data set representing the course of Alzheimer's disease revealed a strikingly limited overlap between gene expression in the APPswe/PS1dE9 and human Alzheimer's disease prefrontal cortex. Only plexin domain containing 2, complement component 4b, and solute carrier family 14 (urea transporter) member 1 were significantly upregulated in the mouse and human brain which might suggest a function in Aβ pathology for these 3 genes. In both data sets we detected clusters of upregulated genes involved in immune-related processes. We conclude that the APPswe/PS1dE9 mouse can be a good model to study the immune response associated with cortical Aβ plaques.
Collapse
|
9
|
Musiek ES, Holtzman DM. Origins of Alzheimer's disease: reconciling cerebrospinal fluid biomarker and neuropathology data regarding the temporal sequence of amyloid-beta and tau involvement. Curr Opin Neurol 2012; 25:715-20. [PMID: 23041958 PMCID: PMC3682920 DOI: 10.1097/wco.0b013e32835a30f4] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review aims to address the temporal sequencing of involvement of amyloid-beta (Aβ) and tau in the pathogenesis of Alzheimer's disease and reconcile apparently conflicting neuropathologic and biomarker data. RECENT FINDINGS Although neuropathologic studies show that limbic system tau disease occurs ubiquitously in middle-aged individuals before the appearance of amyloid plaques, biomarker studies in living individuals suggest that Aβ disease is the initiating event in Alzheimer's disease and precedes cerebrospinal fluid tau changes. Evidence from neuropathologic, biomarker, genetic and cellular/mouse studies shows that tau accumulation in limbic regions occurs slowly with age and does not induce widespread neurodegeneration, but that Aβ interacts with tau in some way to accelerate neurofibrillary disease and induce neurodegeneration. SUMMARY Aβ aggregation is the key initial trigger of Alzheimer's disease pathologic changes and interacts with tau to exacerbate age-related tauopathy and induce neurodegeneration.
Collapse
Affiliation(s)
- Erik S Musiek
- Department of Neurology, Hope Center for Neurologic Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
10
|
Costa RO, Lacor PN, Ferreira IL, Resende R, Auberson YP, Klein WL, Oliveira CR, Rego AC, Pereira CMF. Endoplasmic reticulum stress occurs downstream of GluN2B subunit of N-methyl-d-aspartate receptor in mature hippocampal cultures treated with amyloid-β oligomers. Aging Cell 2012; 11:823-33. [PMID: 22708890 DOI: 10.1111/j.1474-9726.2012.00848.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting both the hippocampus and the cerebral cortex. Reduced synaptic density that occurs early in the disease process seems to be partially due to the overactivation of N-methyl-d-aspartate receptors (NMDARs) leading to excitotoxicity. Recently, we demonstrated that amyloid-beta oligomers (AβO), the species implicated in synaptic loss during the initial disease stages, induce endoplasmic reticulum (ER) stress in cultured neurons. Here, we investigated whether AβO trigger ER stress by an NMDAR-dependent mechanism leading to neuronal dysfunction and analyzed the contribution of GluN2A and GluN2B subunits of this glutamate receptor. Our data revealed that AβO induce ER stress in mature hippocampal cultures, activating ER stress-associated sensors and increasing the levels of the ER chaperone GRP78. We also showed that AβO induce NADPH oxidase (NOX)-mediated superoxide production downstream of GluN2B and impairs ER and cytosolic Ca2+ homeostasis. These events precede changes in cell viability and activation of the ER stress-mediated apoptotic pathway, which was associated with translocation of the transcription factor GADD153 / CHOP to the nucleus and occurred by a caspase-12-independent mechanism. Significantly, ER stress took place after AβO interaction with GluN2B subunits. In addition, AβO-induced ER stress and hippocampal dysfunction were prevented by ifenprodil, an antagonist of GluN2B subunits, while the GluN2A antagonist NVP-AAM077 only slightly attenuated AβO-induced neurotoxicity. Taken together, our results highlight the role of GluN2B subunit of NMDARs on ER stress-mediated hippocampal dysfunction caused by AβO suggesting that it might be a potential therapeutic target during the early stages of AD.
Collapse
Affiliation(s)
- Rui O Costa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ferreiro E, Baldeiras I, Ferreira IL, Costa RO, Rego AC, Pereira CF, Oliveira CR. Mitochondrial- and endoplasmic reticulum-associated oxidative stress in Alzheimer's disease: from pathogenesis to biomarkers. Int J Cell Biol 2012; 2012:735206. [PMID: 22701485 PMCID: PMC3373122 DOI: 10.1155/2012/735206] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/06/2012] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in the elderly, affecting several million of people worldwide. Pathological changes in the AD brain include the presence of amyloid plaques, neurofibrillary tangles, loss of neurons and synapses, and oxidative damage. These changes strongly associate with mitochondrial dysfunction and stress of the endoplasmic reticulum (ER). Mitochondrial dysfunction is intimately linked to the production of reactive oxygen species (ROS) and mitochondrial-driven apoptosis, which appear to be aggravated in the brain of AD patients. Concomitantly, mitochondria are closely associated with ER, and the deleterious crosstalk between both organelles has been shown to be involved in neuronal degeneration in AD. Stimuli that enhance expression of normal and/or folding-defective proteins activate an adaptive unfolded protein response (UPR) that, if unresolved, can cause apoptotic cell death. ER stress also induces the generation of ROS that, together with mitochondrial ROS and decreased activity of several antioxidant defenses, promotes chronic oxidative stress. In this paper we discuss the critical role of mitochondrial and ER dysfunction in oxidative injury in AD cellular and animal models, as well as in biological fluids from AD patients. Progress in developing peripheral and cerebrospinal fluid biomarkers related to oxidative stress will also be summarized.
Collapse
Affiliation(s)
- E. Ferreiro
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal 3004-517, Coimbra, Portugal
| | - I. Baldeiras
- Faculty of Medicine, University of Coimbra, Rua Larga 3004-504, Coimbra, Portugal
- University Coimbra Hospital, 3000-075, Coimbra, Portugal
| | - I. L. Ferreira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal 3004-517, Coimbra, Portugal
| | - R. O. Costa
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal 3004-517, Coimbra, Portugal
| | - A. C. Rego
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal 3004-517, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Rua Larga 3004-504, Coimbra, Portugal
| | - C. F. Pereira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal 3004-517, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Rua Larga 3004-504, Coimbra, Portugal
| | - C. R. Oliveira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal 3004-517, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Rua Larga 3004-504, Coimbra, Portugal
| |
Collapse
|
12
|
Kwong R, Lupton MK, Janitz M. Single-cell and regional gene expression analysis in Alzheimer's disease. Cell Mol Neurobiol 2012; 32:477-89. [PMID: 22271178 PMCID: PMC11498600 DOI: 10.1007/s10571-012-9797-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 01/03/2012] [Indexed: 01/22/2023]
Abstract
The clinical manifestations of Alzheimer's disease (AD) are secondary to the substantial loss of cortical neurons. To be effective, neuroprotective strategies will need to target the primary pathogenic mechanisms of AD prior to cell loss. The differences between neurons are largely determined by their specific repertoire of mRNAs. Thus, transcriptomic analyses that do not assume a priori etiological hypotheses are potentially powerful tools that can be used to understand the pathogenesis of complex diseases, including AD. The human brain comprises thousands of different cell types of both neuronal and non-neuronal origins. Information about individual cell-type-specific gene expression patterns will allow for a better understanding of the mechanisms that govern the progression of AD, which may lead to new therapeutic targets for prevention and treatment of the disease. This review provides an overview of the current technologies in use and the developments for single-cell extraction and transcriptome analysis. Recent transcriptome profiling studies on individual AD-afflicted brain cells are also discussed.
Collapse
Affiliation(s)
- Ruby Kwong
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - Michelle K. Lupton
- Institute of Psychiatry, Kings College London, De Crespigny Park, London, UK
| | - Michal Janitz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| |
Collapse
|
13
|
Abstract
Advances in high-throughput biology and computer science are driving an exponential increase in the number of hypothesis tests in genomics and other scientific disciplines. Studies using current genotyping platforms frequently include a million or more tests. In addition to the monetary cost, this increase imposes a statistical cost owing to the multiple testing corrections needed to avoid large numbers of false-positive results. To safeguard against the resulting loss of power, some have suggested sample sizes on the order of tens of thousands that can be impractical for many diseases or may lower the quality of phenotypic measurements. This study examines the relationship between the number of tests on the one hand and power, detectable effect size or required sample size on the other. We show that once the number of tests is large, power can be maintained at a constant level, with comparatively small increases in the effect size or sample size. For example at the 0.05 significance level, a 13% increase in sample size is needed to maintain 80% power for ten million tests compared with one million tests, whereas a 70% increase in sample size is needed for 10 tests compared with a single test. Relative costs are less when measured by increases in the detectable effect size. We provide an interactive Excel calculator to compute power, effect size or sample size when comparing study designs or genome platforms involving different numbers of hypothesis tests. The results are reassuring in an era of extreme multiple testing.
Collapse
|
14
|
microRNA-34c is a novel target to treat dementias. EMBO J 2011; 30:4299-308. [PMID: 21946562 DOI: 10.1038/emboj.2011.327] [Citation(s) in RCA: 260] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 08/09/2011] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs are key regulators of transcriptome plasticity and have been implicated with the pathogenesis of brain diseases. Here, we employed massive parallel sequencing and provide, at an unprecedented depth, the complete and quantitative miRNAome of the mouse hippocampus, the prime target of neurodegenerative diseases such as Alzheimer's disease (AD). Using integrative genetics, we identify miR-34c as a negative constraint of memory consolidation and show that miR-34c levels are elevated in the hippocampus of AD patients and corresponding mouse models. In line with this, targeting miR-34 seed rescues learning ability in these mouse models. Our data suggest that miR-34c could be a marker for the onset of cognitive disturbances linked to AD and indicate that targeting miR-34c could be a suitable therapy.
Collapse
|
15
|
Costa RO, Ferreiro E, Martins I, Santana I, Cardoso SM, Oliveira CR, Pereira CMF. Amyloid β-induced ER stress is enhanced under mitochondrial dysfunction conditions. Neurobiol Aging 2011; 33:824.e5-16. [PMID: 21704433 DOI: 10.1016/j.neurobiolaging.2011.04.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 04/13/2011] [Accepted: 04/29/2011] [Indexed: 01/10/2023]
Abstract
Previously we reported that endoplasmic reticulum (ER)-mitochondria crosstalk is involved in amyloid-β (Aβ)-induced apoptosis. Now we show that mitochondrial dysfunction affects the ER stress response triggered by Aβ using cybrids that recreate the defect in mitochondrial cytochrome c oxidase (COX) activity detected in platelets from Alzheimer's disease (AD) patients. AD and control cybrids were treated with Aβ or classical ER stressors and the ER stress-mediated apoptotic cell death pathway was accessed. Upon treatment, we found increased glucose-regulated protein 78 (GRP78) levels and caspase-4 activation (ER stress markers) which were more pronounced in AD cybrids. Treated AD cybrids also exhibited decreased cell survival as well as increased caspase-3-like activity, poli-ADP-ribose-polymerase (PARP) levels and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive apoptotic cells. Finally, we showed that Aβ-induced caspase-3 activation in both cybrid cell lines was prevented by dantrolene, thus implicating ER Ca(2+) release in ER stress-mediated apoptosis. Our results demonstrate that mitochondrial dysfunction occurring in AD patients due to COX inhibition potentiates cell susceptibility to Aβ-induced ER stress. This study further supports the close communication between ER and mitochondria during apoptosis in AD.
Collapse
Affiliation(s)
- Rui O Costa
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | |
Collapse
|
16
|
Matus S, Glimcher LH, Hetz C. Protein folding stress in neurodegenerative diseases: a glimpse into the ER. Curr Opin Cell Biol 2011; 23:239-52. [PMID: 21288706 DOI: 10.1016/j.ceb.2011.01.003] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/05/2011] [Accepted: 01/11/2011] [Indexed: 01/19/2023]
Abstract
Several neurodegenerative diseases share common neuropathology, primarily featuring the presence in the brain of abnormal protein inclusions containing specific misfolded proteins. Recent evidence indicates that alteration in organelle function is a common pathological feature of protein misfolding disorders, highlighting perturbations in the homeostasis of the endoplasmic reticulum (ER). Signs of ER stress have been detected in most experimental models of neurological disorders and more recently in brain samples from human patients with neurodegenerative disease. To cope with ER stress, cells activate an integrated signaling response termed the unfolded protein response (UPR), which aims to reestablish homeostasis in part through regulation of genes involved in protein folding, quality control and degradation pathways. Here we discuss the particular mechanisms currently proposed to be involved in the generation of protein folding stress in different neurodegenerative conditions and speculate about possible therapeutic interventions.
Collapse
Affiliation(s)
- Soledad Matus
- Center for Molecular Studies of Cell, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | |
Collapse
|
17
|
Abstract
Exploiting the potential of omics for clinical diagnosis, prognosis, and therapeutic purposes has currently been receiving a lot of attention. In recent years, most of the effort has been put into demonstrating the possible clinical applications of the various omics fields. The cost-effectiveness analysis has been, so far, rather neglected. The cost of omics-derived applications is still very high, but future technological improvements are likely to overcome this problem. In this chapter, we will give a general background of the main omics fields and try to provide some examples of the most successful applications of omics that might be used in clinical diagnosis and in a therapeutic context.
Collapse
Affiliation(s)
- Ewa Gubb
- Bioinformatics, Parque Technológico de Bizkaia, Derio, Spain
| | | |
Collapse
|
18
|
Zhang X, Le W. Pathological role of hypoxia in Alzheimer's disease. Exp Neurol 2009; 223:299-303. [PMID: 19679125 DOI: 10.1016/j.expneurol.2009.07.033] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2009] [Revised: 06/23/2009] [Accepted: 07/24/2009] [Indexed: 11/16/2022]
Abstract
The majority cases of Alzheimer's disease (AD) are sporadic late-onset form not being linked to APP and PS1 gene mutations. It is believed that the environmental risk factors play an important role in the onset and development of AD. Patients suffering from cerebral ischemia and stroke in which hypoxic conditions occur are much more susceptible to AD. Increasing evidence suggests that hypoxia facilitates the pathogenesis of AD through accelerating the accumulation of Abeta, increasing the hyperphosphorylation of tau, impairing the normal functions of blood-brain barrier, and promoting the degeneration of neurons. Further investigations into the relationship between hypoxia and AD may open the avenue for effective preservation and pharmacological treatments of this neurodegenerative disease.
Collapse
Affiliation(s)
- Xin Zhang
- Institute of Neurology, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | | |
Collapse
|
19
|
Götz J, Ittner LM. Animal models of Alzheimer's disease and frontotemporal dementia. Nat Rev Neurosci 2008; 9:532-44. [PMID: 18568014 DOI: 10.1038/nrn2420] [Citation(s) in RCA: 492] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insoluble protein aggregates have been linked to Alzheimer's disease (AD) and frontotemporal dementia (FTD). Recent work in transgenic mice has shed light on the role of these aggregates by identifying soluble oligomeric species that may interfere with essential cellular mechanisms at an early disease stage. This review summarizes what we have learned about the roles of these proteins from transgenic mice and invertebrate species such as flies and worms. Proteomic and transcriptomic analyses of tissue from these animal models have identified new molecules with crucial roles in disease. Moreover, transgenic animals have been instrumental in defining drug targets and designing novel therapeutic strategies. With advanced imaging techniques that can be used in both humans and mice an early, preclinical diagnosis of AD and FTD could be within reach.
Collapse
Affiliation(s)
- Jürgen Götz
- Alzheimer's & Parkinson's Disease Laboratory, Brain & Mind Research Institute, University of Sydney, 100 Mallett Street, Camperdown, NSW 2050, Australia.
| | | |
Collapse
|