1
|
Zhou G, Zhao X, Lou Z, Zhou S, Shan P, Zheng N, Yu X, Ma L. Impaired Cerebral Autoregulation in Alzheimer's Disease: A Transcranial Doppler Study. J Alzheimers Dis 2020; 72:623-631. [PMID: 31594219 DOI: 10.3233/jad-190296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Vasculature changes have been observed in Alzheimer's disease (AD). AD-related vascular pathology might impair cerebral autoregulation (CA). OBJECTIVE This study was designed to evaluate CA of AD patients by using transcranial doppler (TCD). METHODS A total of 61 participants were included in the study, including 31 AD patients and 30 controls. The trend curves of cerebral blood flow velocities (CBFV), pulsatility index, and resistance index were obtained using TCD during supine-to-standing posture changes. CA was measured by the changes of CBFV curves during supine-to-standing test. RESULTS There were two spikes named X spike and W spike that appeared in the CBFV curve when the subjects stood abruptly. The slope of the X spike descending branch, the slope of the W spike ascending branch, and the angle between X and W spikes (α angle), showed significant differences between the experimental and control groups (2.34±0.99 versus 3.15±1.61 cm/s2, p = 0.021; 2.31±0.81 versus 3.38±1.18 cm/s2, p < 0.001; and 52.71±20.26 versus 41.4±12.87 degrees, p = 0.012, respectively). ROC analysis showed that AUCαangle is 0.664 (p = 0.028) and that AUCSAB and AUCadjustedSAB are 0.775 and 0.738, respectively (both p < 0.001). CONCLUSIONS Our study demonstrated that supine-to-standing TCD test is a valuable tool for the evaluation of CA in AD patients. Impaired CA in AD patients manifested as decreased efficiency of changes in the CBFV curve. Neurovascular units were involved in the pathogenesis of AD.
Collapse
Affiliation(s)
- Guoyu Zhou
- Department of Geriatric Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinjing Zhao
- Department of Geriatric Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhiyin Lou
- Department of Neurology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shengnian Zhou
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Peiyan Shan
- Department of Geriatric Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Ning Zheng
- School of Physics, Beijing Institute of Technology, Beijing, China
| | - Xiaolin Yu
- Department of Geriatric Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Ma
- Department of Geriatric Neurology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
2
|
Calvin CM, de Boer C, Raymont V, Gallacher J, Koychev I. Prediction of Alzheimer's disease biomarker status defined by the 'ATN framework' among cognitively healthy individuals: results from the EPAD longitudinal cohort study. Alzheimers Res Ther 2020; 12:143. [PMID: 33168064 PMCID: PMC7650169 DOI: 10.1186/s13195-020-00711-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/20/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND The Amyloid/Tau/Neurodegeneration (ATN) framework has been proposed as a means of evidencing the biological state of Alzheimer's disease (AD). Predicting ATN status in pre-dementia individuals therefore provides an important opportunity for targeted recruitment into AD interventional studies. We investigated the extent to which ATN-defined biomarker status can be predicted by known AD risk factors as well as vascular-related composite risk scores. METHODS One thousand ten cognitively healthy older adults were allocated to one of five ATN-defined biomarker categories. Multinomial logistic regression tested risk factors including age, sex, education, APOE4, family history of dementia, cognitive function, vascular risk indices (high systolic blood pressure, body mass index (BMI), high cholesterol, physical inactivity, ever smoked, blood pressure medication, diabetes, prior cardiovascular disease, atrial fibrillation and white matter lesion (WML) volume), and three vascular-related composite scores, to predict five ATN subgroups; ROC curve models estimated their added value in predicting pathology. RESULTS Age, APOE4, family history, BMI, MMSE and white matter lesions (WML) volume differed between ATN biomarker groups. Prediction of Alzheimer's disease pathology (versus normal AD biomarkers) improved by 7% after adding family history, BMI, MMSE and WML to a ROC curve that included age, sex and APOE4. Risk composite scores did not add value. CONCLUSIONS ATN-defined Alzheimer's disease biomarker status prediction among cognitively healthy individuals is possible through a combination of constitutional and cardiovascular risk factors but established dementia composite risk scores do not appear to add value in this context.
Collapse
Affiliation(s)
- Catherine M. Calvin
- grid.4991.50000 0004 1936 8948Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX UK
| | - Casper de Boer
- Alzheimer Center Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Vanessa Raymont
- grid.4991.50000 0004 1936 8948Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX UK
| | - John Gallacher
- grid.4991.50000 0004 1936 8948Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX UK
| | - Ivan Koychev
- grid.4991.50000 0004 1936 8948Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX UK
| | | |
Collapse
|
3
|
Zhu Z, Zhong C, Guo D, Bu X, Xu T, Guo L, Liu J, Zhang J, Li D, Zhang J, Ju Z, Chen CS, Chen J, He J, Zhang Y. Multiple biomarkers covering several pathways improve predictive ability for cognitive impairment among ischemic stroke patients with elevated blood pressure. Atherosclerosis 2019; 287:30-37. [PMID: 31185379 DOI: 10.1016/j.atherosclerosis.2019.05.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/16/2019] [Accepted: 05/29/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND AIMS We aimed to evaluate the ability of multiple novel biomarkers representing several pathophysiological pathways to improve risk prediction of post-stroke cognitive impairment. METHODS We conducted a prospective multicenter study in 638 ischemic stroke patients with elevated blood pressure based on a random subsample from China Antihypertensive Trial in Acute Ischemic Stroke and measured 12 circulating biomarkers in these participants. Cognitive impairment was assessed at 3 months after stroke with definitions of Mini-Mental State Examination (MMSE) score <27 or Montreal Cognitive Assessment (MoCA) score <25. RESULTS According to MMSE score, 1 SD increase of rheumatoid factor (odds ratio [OR] 1.22, 95% confidence interval [CI] 1.02-1.46), matrix metalloproteinase-9 (OR 1.47, 95% CI 1.22-1.77) and total homocysteine (OR 1.22, 95% CI 1.01-1.49) after log transformation was significantly associated with the risk of post-stroke cognitive impairment. The ORs associated with their simultaneously high levels were 4.89 (95% CI, 2.31-10.35; ptrend<0.001) and 3.09 (95% CI, 1.60-5.98; ptrend<0.001) for cognitive impairment and the severity of cognitive impairment, respectively. Adding these 3 biomarkers to conventional model significantly improved the risk prediction of cognitive impairment (C statistic 0.729 vs. 0.688, p = 0.004; net reclassification improvement = 33.67%, p < 0.001; integrated discrimination index = 4.61%; p < 0.001). Similar significant findings were observed when cognitive impairment was defined by MoCA score. CONCLUSIONS Combination of rheumatoid factor, matrix metalloproteinase-9 and total homocysteine can improve the risk prediction of cognitive impairment among ischemic stroke patients with elevated blood pressure. Further studies are warranted to validate our findings and explore their roles as potential therapeutic targets.
Collapse
Affiliation(s)
- Zhengbao Zhu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China; Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Chongke Zhong
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China; Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Daoxia Guo
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Xiaoqing Bu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China; Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Tan Xu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Libing Guo
- Department of Neurology, Siping Central Hospital, Jilin, China
| | - Jiale Liu
- Department of Neurology, Jilin Central Hospital, Jilin, China
| | - Jintao Zhang
- Department of Neurology, The 88th Hospital of PLA, Shandong, China
| | - Dong Li
- Department of Internal Medicine, Feicheng City People's Hospital, Shandong, China
| | - Jianhui Zhang
- Department of Neurology, Tongliao Municipal Hospital, Inner Mongolia, China
| | - Zhong Ju
- Department of Neurology, Kerqin District First People's Hospital of Tongliao City, Inner Mongolia, China
| | - Chung-Shiuan Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Jing Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA; Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA; Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA.
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Serum Rheumatoid Factor Levels at Acute Phase of Ischemic Stroke are Associated with Poststroke Cognitive Impairment. J Stroke Cerebrovasc Dis 2019; 28:1133-1140. [DOI: 10.1016/j.jstrokecerebrovasdis.2018.12.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/28/2018] [Accepted: 12/31/2018] [Indexed: 12/22/2022] Open
|
5
|
Tu J, Wang LX, Wen HF, Xu YC, Wang PF. The association of different types of cerebral infarction with post-stroke depression and cognitive impairment. Medicine (Baltimore) 2018; 97:e10919. [PMID: 29879031 PMCID: PMC5999486 DOI: 10.1097/md.0000000000010919] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The aim of this study was to investigate post-stroke depression (PSD) and cognitive impairments in patients with different types of cerebral infarction.A total of 110 patients with cerebral infarction treated in our hospital from January 2015 to February 2016 were included in present study. Forty-seven patients were PSD patients and 63 patients were non-PSD patients. The Hamilton Depression Rating Scale (HAMD) and Mini-Mental State Examination (MMSE) were employed to assess depression and cognition of patientsAmong PSD patients, the proportion of patients with partial anterior circulation infarction (PACI, 68.75%) was significantly higher than patients with lacunar circulation infarction (LACI, 29.17%) and posterior circulation infarction (POCI, 26.67%) (P < .05). No significant difference was found in PSD patients with LACI and POCI (P > .05). The MMSE score of patients with PACI (18.05 ± 2.61) was lower than patients with POCI and LACI (P < .05), however, no significant difference was found in patients with LACI and POCI (P > 0.05). The incidences of cognitive impairment in patients with PACI, LACI, and POCI were 12.50%, 14.58%, and 13.33%, respectively. The MMSE score of PSD patients (21.23 ± 2.12) was significantly lower than non-PSD patients (P < .05).Compared with LACI and POCI patients, PACI patients had a higher incidence of PSD and impaired cognitive functions. In addition, affective disorders such as depression may be correlated with cognitive impairment in patients with cerebral infarction.
Collapse
|
6
|
Kehoe PG, Blair PS, Howden B, Thomas DL, Malone IB, Horwood J, Clement C, Selman LE, Baber H, Lane A, Coulthard E, Passmore AP, Fox NC, Wilkinson IB, Ben-Shlomo Y. The Rationale and Design of the Reducing Pathology in Alzheimer's Disease through Angiotensin TaRgeting (RADAR) Trial. J Alzheimers Dis 2018; 61:803-814. [PMID: 29226862 DOI: 10.3233/jad-170101] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Anti-hypertensives that modify the renin angiotensin system may reduce Alzheimer's disease (AD) pathology and reduce the rate of disease progression. OBJECTIVE To conduct a phase II, two arm, double-blind, placebo-controlled, randomized trial of losartan to test the efficacy of Reducing pathology in Alzheimer's Disease through Angiotensin TaRgeting (RADAR). METHODS Men and women aged at least 55 years with mild-to-moderate AD will be randomly allocated 100 mg encapsulated generic losartan or placebo once daily for 12 months after successful completion of a 2-week open-label phase and 2-week placebo washout to establish drug tolerability. 228 participants will provide at least 182 subjects with final assessments to provide 84% power to detect a 25% difference in atrophy rate (therapeutic benefit) change over 12 months at an alpha level of 0.05. We will use intention-to-treat analysis, estimating between-group differences in outcomes derived from appropriate (linear or logistic) multivariable regression models adjusting for minimization variables. RESULTS The primary outcome will be rate of whole brain atrophy as a surrogate measure of disease progression. Secondary outcomes will include changes to 1) white matter hyperintensity volume and cerebral blood flow; 2) performance on a standard series of assessments of memory, cognitive function, activities of daily living, and quality of life. Major assessments (for all outcomes) and relevant safety monitoring of blood pressure and bloods will be at baseline and 12 months. Additional cognitive assessment will also be conducted at 6 months along with safety blood pressure and blood monitoring. Monitoring of blood pressure, bloods, and self-reported side effects will occur during the open-label phase and during the majority of the post-randomization dispensing visits. CONCLUSION This study will identify whether losartan is efficacious in the treatment of AD and whether definitive Phase III trials are warranted.
Collapse
Affiliation(s)
- Patrick G Kehoe
- Dementia Research Group, Translational Health Sciences, Bristol Medical School, University of Bristol, Faculty of Health Sciences, Level 1 Learning and Research>, Southmead Hospital, Bristol, UK
| | - Peter S Blair
- Bristol Randomised Trials Collaboration (BRTC), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Beth Howden
- Bristol Randomised Trials Collaboration (BRTC), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - David L Thomas
- Leonard Wolfson Experimental Neurology Centre, UCL Institute of Neurology, Queen Square, London, UK
- Dementia Research Centre (DRC), Institute of Neurology, University College London, Queen Square, London, UK
| | - Ian B Malone
- Dementia Research Centre (DRC), Institute of Neurology, University College London, Queen Square, London, UK
| | - Jeremy Horwood
- Bristol Randomised Trials Collaboration (BRTC), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Clare Clement
- Bristol Randomised Trials Collaboration (BRTC), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Lucy E Selman
- Bristol Randomised Trials Collaboration (BRTC), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Hannah Baber
- Bristol Randomised Trials Collaboration (BRTC), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Athene Lane
- Bristol Randomised Trials Collaboration (BRTC), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Elizabeth Coulthard
- ReMemBr Group, Translational Health Sciences, Bristol Medical School, University of Bristol, Faculty of Health Sciences, Brain Centre, Southmead Hospital, Bristol, UK
| | - Anthony Peter Passmore
- Institute of Clinical Sciences, Queens University Belfast, Royal Victoria Hospital, Belfast, UK
| | - Nick C Fox
- Dementia Research Centre (DRC), Institute of Neurology, University College London, Queen Square, London, UK
| | - Ian B Wilkinson
- Division of Experimental Medicine and Immunotherapeutics, School of Clinical Medicine, University of Cambridge, and Clinical Trials Unit, Addenbrookes Hospital, Cambridge, UK
| | - Yoav Ben-Shlomo
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
7
|
Akinyemi RO, Allan LM, Oakley A, Kalaria RN. Hippocampal Neurodegenerative Pathology in Post-stroke Dementia Compared to Other Dementias and Aging Controls. Front Neurosci 2017; 11:717. [PMID: 29311794 PMCID: PMC5742173 DOI: 10.3389/fnins.2017.00717] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/08/2017] [Indexed: 12/14/2022] Open
Abstract
Neuroimaging evidence from older stroke survivors in Nigeria and Northeast England showed medial temporal lobe atrophy (MTLA) to be independently associated with post-stroke cognitive impairment and dementia. Given the hypothesis ascribing MTLA to neurodegenerative processes, we assessed Alzheimer pathology in the hippocampal formation and entorhinal cortex of autopsied brains from of post-stroke demented and non-demented subjects in comparison with controls and other dementias. We quantified markers of amyloid β (total Aβ, Aβ-40, Aβ-42, and soluble Aβ) and hyperphosphorylated tau in the hippocampal formation and entorhinal cortex of 94 subjects consisting of normal controls (n = 12), vascular dementia, VaD (17), post-stroke demented, PSD (n = 15), and post-stroke non-demented, PSND (n = 23), Alzheimer's disease, AD (n = 14), and mixed AD and vascular dementia, AD_VAD (n = 13) using immunohistochemical techniques. We found differential expression of amyloid and tau across the disease groups, and across hippocampal sub-regions. Among amyloid markers, the pattern of Aβ-42 immunoreactivity was similar to that of total Aβ. Tau immunoreactivity showed highest expression in the AD and mixed AD and vascular dementia, AD_VaD, which was higher than in control, post - stroke and VaD groups (p < 0.05). APOE ε4 allele positivity was associated with higher expression of amyloid and tau pathology in the subiculum and entorhinal cortex of post-stroke cases (p < 0.05). Comparison between PSND and PSD revealed higher total Aβ immunoreactivity in PSND compared to PSD in the CA1, subiculum and entorhinal cortex (p < 0.05) but no differences between PSND and PSD in Aβ-42, Aβ-40, soluble Aβ or tau immunoreactivities (p > 0.05). Correlation of MMSE and CAMCOG scores with AD pathological measures showed lack of correlation with amyloid species although tau immunoreactivity demonstrated correlation with memory scores (p < 0.05). Our findings suggest hippocampal AD pathology does not necessarily differ between demented and non-demented post-stroke subjects. The dissociation of cognitive performance with hippocampal AD pathological burden suggests more dominant roles for non-Alzheimer neurodegenerative and / or other non-neurodegenerative substrates for dementia following stroke.
Collapse
Affiliation(s)
- Rufus O Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Oyo, Nigeria.,Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Louise M Allan
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Arthur Oakley
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rajesh N Kalaria
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
8
|
The diabetic brain and cognition. J Neural Transm (Vienna) 2017; 124:1431-1454. [PMID: 28766040 DOI: 10.1007/s00702-017-1763-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/13/2017] [Indexed: 12/20/2022]
Abstract
The prevalence of both Alzheimer's disease (AD) and vascular dementia (VaD) is increasing with the aging of the population. Studies from the last several years have shown that people with diabetes have an increased risk for dementia and cognitive impairment. Therefore, the authors of this consensus review tried to elaborate on the role of diabetes, especially diabetes type 2 (T2DM) in both AD and VaD. Based on the clinical and experimental work of scientists from 18 countries participating in the International Congress on Vascular Disorders and on literature search using PUBMED, it can be concluded that T2DM is a risk factor for both, AD and VaD, based on a pathology of glucose utilization. This pathology is the consequence of a disturbance of insulin-related mechanisms leading to brain insulin resistance. Although the underlying pathological mechanisms for AD and VaD are different in many aspects, the contribution of T2DM and insulin resistant brain state (IRBS) to cerebrovascular disturbances in both disorders cannot be neglected. Therefore, early diagnosis of metabolic parameters including those relevant for T2DM is required. Moreover, it is possible that therapeutic options utilized today for diabetes treatment may also have an effect on the risk for dementia. T2DM/IRBS contribute to pathological processes in AD and VaD.
Collapse
|
9
|
Multiple Factors Involved in the Pathogenesis of White Matter Lesions. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9372050. [PMID: 28316994 PMCID: PMC5339523 DOI: 10.1155/2017/9372050] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 01/09/2017] [Accepted: 01/26/2017] [Indexed: 12/19/2022]
Abstract
White matter lesions (WMLs), also known as leukoaraiosis (LA) or white matter hyperintensities (WMHs), are characterized mainly by hyperintensities on T2-weighted or fluid-attenuated inversion recovery (FLAIR) images. With the aging of the population and the development of imaging technology, the morbidity and diagnostic rates of WMLs are increasing annually. WMLs are not a benign process. They clinically manifest as cognitive decline and the subsequent development of dementia. Although WMLs are important, their pathogenesis is still unclear. This review elaborates on the advances in the understanding of the pathogenesis of WMLs, focusing on anatomy, cerebral blood flow autoregulation, venous collagenosis, blood brain barrier disruption, and genetic factors. In particular, the attribution of WMLs to chronic ischemia secondary to venous collagenosis and cerebral blood flow autoregulation disruption seems reasonable. With the development of gene technology, the effect of genetic factors on the pathogenesis of WMLs is gaining gradual attention.
Collapse
|
10
|
Tadic M, Cuspidi C, Hering D. Hypertension and cognitive dysfunction in elderly: blood pressure management for this global burden. BMC Cardiovasc Disord 2016; 16:208. [PMID: 27809779 PMCID: PMC5093934 DOI: 10.1186/s12872-016-0386-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/26/2016] [Indexed: 12/17/2022] Open
Abstract
Arterial hypertension and stroke are strong independent risk factors for the development of cognitive impairment and dementia. Persistently elevated blood pressure (BP) is known to impair cognitive function, however onset of new cognitive decline is common following a large and multiple mini strokes. Among various forms of dementia the most prevalent include Alzheimer’s disease (AD) and vascular dementia (VaD) which often present with similar clinical symptoms and challenging diagnosis. While hypertension is the most important modifiable vascular risk factor with antihypertensive therapy reducing the risk of stroke and potentially slowing cognitive decline, optimal BP levels for maintaining an ideal age-related mental performance are yet to be established. Cognition has improved following the use of at least one representative agent of the major drug classes with further neuroprotection with renin angiotensin inhibitors and calcium channel blockers in the hypertensive elderly. However, a reduction in BP may worsen cerebral perfusion causing an increased risk of CV complications due to the J-curve phenomenon. Given the uncertainties and conflicting results from randomized trials regarding the hypertension management in the elderly, particularly octogenarians, antihypertensive approaches are primarily based on expert opinion. Herein, we summarize available data linking arterial hypertension to cognitive decline and antihypertensive approach with potential benefits in improving cognitive function in elderly hypertensive patients.
Collapse
Affiliation(s)
- Marijana Tadic
- University Clinical Hospital Centre "Dr. Dragisa Misovic", Heroja Milana Tepica 1, 11000, Belgrade, Serbia.
| | - Cesare Cuspidi
- University of Milan-Bicocca and Istituto Auxologico Italiano, Clinical Research Unit, Viale della Resistenza 23, 20036, Meda, Italy
| | - Dagmara Hering
- Dobney Hypertension Centre, School of Medicine and Pharmacology-Royal Perth, Hospital Unit, The University of Western Australia, Rear 50 Murray Street, 6000, Perth, Australia
| |
Collapse
|
11
|
De Vis JB, Hendrikse J, Bhogal A, Adams A, Kappelle LJ, Petersen ET. Age-related changes in brain hemodynamics; A calibrated MRI study. Hum Brain Mapp 2015; 36:3973-87. [PMID: 26177724 DOI: 10.1002/hbm.22891] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2015] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Blood oxygenation-level dependent (BOLD) magnetic resonance imaging signal changes in response to stimuli have been used to evaluate age-related changes in neuronal activity. Contradictory results from these types of experiments have been attributed to differences in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2 ). To clarify the effects of these physiological parameters, we investigated the effect of age on baseline CBF and CMRO2 . MATERIALS AND METHODS Twenty young (mean ± sd age, 28 ± 3 years), and 45 older subjects (66 ± 4 years) were investigated. A dual-echo pseudocontinuous arterial spin labeling (ASL) sequence was performed during normocapnic, hypercapnic, and hyperoxic breathing challenges. Whole brain and regional gray matter values of CBF, ASL cerebrovascular reactivity (CVR), BOLD CVR, oxygen extraction fraction (OEF), and CMRO2 were calculated. RESULTS Whole brain CBF was 49 ± 14 and 40 ± 9 ml/100 g/min in young and older subjects respectively (P < 0.05). Age-related differences in CBF decreased to the point of nonsignificance (B=-4.1, SE=3.8) when EtCO2 was added as a confounder. BOLD CVR was lower in the whole brain, in the frontal, in the temporal, and in the occipital of the older subjects (P<0.05). Whole brain OEF was 43 ± 8% in the young and 39 ± 6% in the older subjects (P = 0.066). Whole brain CMRO2 was 181 ± 60 and 133 ± 43 µmol/100 g/min in young and older subjects, respectively (P<0.01). DISCUSSION Age-related differences in CBF could potentially be explained by differences in EtCO2 . Regional CMRO2 was lower in older subjects. BOLD studies should take this into account when investigating age-related changes in neuronal activity.
Collapse
Affiliation(s)
- J B De Vis
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J Hendrikse
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - A Bhogal
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - A Adams
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - L J Kappelle
- Department of Neurology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E T Petersen
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Danish Research Centre for Magnetic Resonance, Hidovre Hospital, Denmark
| |
Collapse
|
12
|
Brickman AM, Guzman VA, Gonzalez-Castellon M, Razlighi Q, Gu Y, Narkhede A, Janicki S, Ichise M, Stern Y, Manly JJ, Schupf N, Marshall RS. Cerebral autoregulation, beta amyloid, and white matter hyperintensities are interrelated. Neurosci Lett 2015; 592:54-8. [PMID: 25748319 PMCID: PMC4430835 DOI: 10.1016/j.neulet.2015.03.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/25/2015] [Accepted: 03/01/2015] [Indexed: 12/12/2022]
Abstract
Emerging studies link vascular risk factors and cerebrovascular health to the prevalence and rates of progression in Alzheimer's disease (AD). The brain's ability to maintain constant blood flow across a range of cerebral perfusion pressures, or autoregulation, may both promote and result from small vessel cerebrovascular disease and AD-related amyloid pathology. Here, we examined the relationship among cerebral autoregulation, small vessel cerebrovascular disease, and amyloid deposition in 14 non-demented older adults. Reduced cerebral autoregulation, was associated with increased amyloid deposition and increased white matter hyperintensity volume, which, in turn were positively associated with each other. For the first time in humans, we demonstrate an interrelationship among AD pathology, small vessel cerebrovascular disease, and cerebral autoregulation. Vascular factors and AD pathology are not independent but rather appear to interact.
Collapse
Affiliation(s)
- Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, USA; G.H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, USA.
| | - Vanessa A Guzman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, USA
| | | | - Qolamreza Razlighi
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, USA
| | - Yian Gu
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, USA
| | - Atul Narkhede
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, USA
| | - Sarah Janicki
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, USA; G.H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, USA
| | - Masanori Ichise
- Department of Radiology, College of Physicians and Surgeons, Columbia University, USA
| | - Yaakov Stern
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, USA; G.H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, USA
| | - Jennifer J Manly
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, USA; G.H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, USA
| | - Nicole Schupf
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, USA; G.H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, USA
| | - Randolph S Marshall
- Department of Neurology, College of Physicians and Surgeons, Columbia University, USA
| |
Collapse
|
13
|
Zueva IB. [Hypertension and cognitive impairments: Possible mechanism of development, diagnosis, and approaches to therapy]. TERAPEVT ARKH 2015; 87:96-100. [PMID: 27022657 DOI: 10.17116/terarkh2015871296-100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The review presents data on the role of hypertension in the development of cognitive impairments. It discusses issues of the early diagnosis of hypertension, the possibility of an integrated approach to therapy for cognitive disorders in hypertensive patients.
Collapse
Affiliation(s)
- I B Zueva
- V.A. Almazov North-West Federal Medical Research Center, Ministry of Health of Russia, Saint Petersburg, Russia
| |
Collapse
|
14
|
Lee M, Saver JL, Hong KS, Wu YL, Liu HC, Rao NM, Ovbiagele B. Cognitive impairment and risk of future stroke: a systematic review and meta-analysis. CMAJ 2014; 186:E536-46. [PMID: 25157064 DOI: 10.1503/cmaj.140147] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Several studies have assessed the link between cognitive impairment and risk of future stroke, but results have been inconsistent. We conducted a systematic review and meta-analysis of cohort studies to determine the association between cognitive impairment and risk of future stroke. METHODS We searched MEDLINE and Embase (1966 to November 2013) and conducted a manual search of bibliographies of relevant retrieved articles and reviews. We included cohort studies that reported multivariable adjusted relative risks and 95% confidence intervals or standard errors for stroke with respect to baseline cognitive impairment. RESULTS We identified 18 cohort studies (total 121 879 participants) and 7799 stroke events. Pooled analysis of results from all studies showed that stroke risk increased among patients with cognitive impairment at baseline (relative risk [RR] 1.39, 95% confidence interval [CI] 1.24-1.56). The results were similar when we restricted the analysis to studies that used a widely adopted definition of cognitive impairment (i.e., Mini-Mental State Examination score < 25 or nearest equivalent) (RR 1.64, 95% CI 1.46-1.84). Cognitive impairment at baseline was also associated with an increased risk of fatal stroke (RR 1.68, 95% CI 1.21-2.33) and ischemic stroke (RR 1.65, 95% CI 1.41-1.93). INTERPRETATION Baseline cognitive impairment was associated with a significantly higher risk of future stroke, especially ischemic and fatal stroke.
Collapse
Affiliation(s)
- Meng Lee
- Department of Neurology (Lee, Wu), Chang Gung University College of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan; Stroke Center and Department of Neurology (Saver, Rao), Geffen School of Medicine, University of California, Los Angeles; Department of Neurology (Hong), Ilsan Paik Hospital, Inje University, Gimhae, South Korea; Department of Psychiatry (Liu), Taipei City Hospital Song-Te Branch, Taipei, Taiwan; Department of Neurosciences (Ovbiagele), Medical University of South Carolina, Charleston, SC
| | - Jeffrey L Saver
- Department of Neurology (Lee, Wu), Chang Gung University College of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan; Stroke Center and Department of Neurology (Saver, Rao), Geffen School of Medicine, University of California, Los Angeles; Department of Neurology (Hong), Ilsan Paik Hospital, Inje University, Gimhae, South Korea; Department of Psychiatry (Liu), Taipei City Hospital Song-Te Branch, Taipei, Taiwan; Department of Neurosciences (Ovbiagele), Medical University of South Carolina, Charleston, SC
| | - Keun-Sik Hong
- Department of Neurology (Lee, Wu), Chang Gung University College of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan; Stroke Center and Department of Neurology (Saver, Rao), Geffen School of Medicine, University of California, Los Angeles; Department of Neurology (Hong), Ilsan Paik Hospital, Inje University, Gimhae, South Korea; Department of Psychiatry (Liu), Taipei City Hospital Song-Te Branch, Taipei, Taiwan; Department of Neurosciences (Ovbiagele), Medical University of South Carolina, Charleston, SC
| | - Yi-Ling Wu
- Department of Neurology (Lee, Wu), Chang Gung University College of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan; Stroke Center and Department of Neurology (Saver, Rao), Geffen School of Medicine, University of California, Los Angeles; Department of Neurology (Hong), Ilsan Paik Hospital, Inje University, Gimhae, South Korea; Department of Psychiatry (Liu), Taipei City Hospital Song-Te Branch, Taipei, Taiwan; Department of Neurosciences (Ovbiagele), Medical University of South Carolina, Charleston, SC
| | - Hsing-Cheng Liu
- Department of Neurology (Lee, Wu), Chang Gung University College of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan; Stroke Center and Department of Neurology (Saver, Rao), Geffen School of Medicine, University of California, Los Angeles; Department of Neurology (Hong), Ilsan Paik Hospital, Inje University, Gimhae, South Korea; Department of Psychiatry (Liu), Taipei City Hospital Song-Te Branch, Taipei, Taiwan; Department of Neurosciences (Ovbiagele), Medical University of South Carolina, Charleston, SC
| | - Neal M Rao
- Department of Neurology (Lee, Wu), Chang Gung University College of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan; Stroke Center and Department of Neurology (Saver, Rao), Geffen School of Medicine, University of California, Los Angeles; Department of Neurology (Hong), Ilsan Paik Hospital, Inje University, Gimhae, South Korea; Department of Psychiatry (Liu), Taipei City Hospital Song-Te Branch, Taipei, Taiwan; Department of Neurosciences (Ovbiagele), Medical University of South Carolina, Charleston, SC
| | - Bruce Ovbiagele
- Department of Neurology (Lee, Wu), Chang Gung University College of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan; Stroke Center and Department of Neurology (Saver, Rao), Geffen School of Medicine, University of California, Los Angeles; Department of Neurology (Hong), Ilsan Paik Hospital, Inje University, Gimhae, South Korea; Department of Psychiatry (Liu), Taipei City Hospital Song-Te Branch, Taipei, Taiwan; Department of Neurosciences (Ovbiagele), Medical University of South Carolina, Charleston, SC
| |
Collapse
|
15
|
Gąsecki D, Kwarciany M, Nyka W, Narkiewicz K. Hypertension, brain damage and cognitive decline. Curr Hypertens Rep 2014; 15:547-58. [PMID: 24146223 PMCID: PMC3838597 DOI: 10.1007/s11906-013-0398-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Loss of cognitive function is one the most devastating manifestations of ageing and vascular disease. Cognitive decline is rapidly becoming an important cause of disability worldwide and contributes significantly to increased mortality. There is growing evidence that hypertension is the most important modifiable vascular risk factor for development and progression of both cognitive decline and dementia. High blood pressure contributes to cerebral small and large vessel disease resulting in brain damage and dementia. A decline in cerebrovascular reserve capacity and emerging degenerative vascular wall changes underlie complete and incomplete brain infarcts, haemorrhages and white matter hyperintensities. This review discusses the complexity of factors linking hypertension to brain functional and structural changes, and to cognitive decline and dementia. The evidence for possible clinical markers useful for prevention of decreased cognitive ability, as well as recent data on vascular mechanism in the pathogenesis of cognitive decline, and the role of antihypertensive therapies in long-term prevention of late-life cognitive decline will be reviewed.
Collapse
Affiliation(s)
- Dariusz Gąsecki
- Department of Neurology of Adults, Medical University of Gdańsk, Gdańsk, Poland
| | | | | | | |
Collapse
|
16
|
Avolio E, Mahata SK, Mantuano E, Mele M, Alò R, Facciolo RM, Talani G, Canonaco M. Antihypertensive and neuroprotective effects of catestatin in spontaneously hypertensive rats: interaction with GABAergic transmission in amygdala and brainstem. Neuroscience 2014; 270:48-57. [PMID: 24731867 PMCID: PMC10843893 DOI: 10.1016/j.neuroscience.2014.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 12/15/2022]
Abstract
The chromogranin A-derived peptide catestatin (CST) exerts sympathoexcitatory and hypertensive effects when microinjected into the rostral ventrolateral medulla (RVLM: excitatory output); it exhibits sympathoinhibitory and antihypertensive effects when microinjected into the caudal ventrolateral medulla (CVLM: inhibitory output) of vagotomized normotensive rats. Here, continuous infusion of CST into the central amygdalar nucleus (CeA) of spontaneously hypertensive rats (SHRs) for 15 days resulted in a marked decrease of blood pressure (BP) in 6-month- (by 37 mm Hg) and 9-month- (by 65 mm Hg)old rats. Whole-cell patch-clamp recordings on pyramidal CeA neurons revealed that CST increased both spontaneous inhibitory postsynaptic current (sIPSC) amplitude plus frequency, along with reductions of sIPSC rise time and decay time. Inhibition of GABAA receptors (GABAARs) by bicuculline completely abolished CST-induced sIPSC, corroborating that CST signals occur through this major neuroreceptor complex. Hypertension is a major risk factor for cerebrovascular diseases, leading to vascular dementia and neurodegeneration. We found a marked neurodegeneration in the amygdala and brainstem of 9-month-old SHRs, while CST and the GABAAR agonist Muscimol provided significant neuroprotection. Enhanced phosphorylation of Akt and ERK accounted for these neuroprotective effects through anti-inflammatory and anti-apoptotic activities. Overall our results point to CST exerting potent antihypertensive and neuroprotective effects plausibly via a GABAergic output, which constitute a novel therapeutic measure to correct defects in blood flow control in disorders such as stroke and Alzheimer's disease.
Collapse
Affiliation(s)
- E Avolio
- Comparative Neuroanatomy Laboratory of Biology, Ecology and Earth Science Dept. (DiBEST), University of Calabria, Ponte P. Bucci 4B, 87030 Arcavacata di Rende, Cosenza, Italy; VA San Diego Healthcare System/Department of Medicine, University of California-San Diego, La Jolla, CA 92093-0838, USA; Department of Pathology, University of California-San Diego, La Jolla, CA 92093-0838, USA.
| | - S K Mahata
- VA San Diego Healthcare System/Department of Medicine, University of California-San Diego, La Jolla, CA 92093-0838, USA.
| | - E Mantuano
- Department of Pathology, University of California-San Diego, La Jolla, CA 92093-0838, USA
| | - M Mele
- Comparative Neuroanatomy Laboratory of Biology, Ecology and Earth Science Dept. (DiBEST), University of Calabria, Ponte P. Bucci 4B, 87030 Arcavacata di Rende, Cosenza, Italy
| | - R Alò
- Comparative Neuroanatomy Laboratory of Biology, Ecology and Earth Science Dept. (DiBEST), University of Calabria, Ponte P. Bucci 4B, 87030 Arcavacata di Rende, Cosenza, Italy
| | - R M Facciolo
- Comparative Neuroanatomy Laboratory of Biology, Ecology and Earth Science Dept. (DiBEST), University of Calabria, Ponte P. Bucci 4B, 87030 Arcavacata di Rende, Cosenza, Italy
| | - G Talani
- Institute of Neuroscience, National Research Council of Italy, 09042 Monserrato, Cagliari, Italy
| | - M Canonaco
- Comparative Neuroanatomy Laboratory of Biology, Ecology and Earth Science Dept. (DiBEST), University of Calabria, Ponte P. Bucci 4B, 87030 Arcavacata di Rende, Cosenza, Italy
| |
Collapse
|
17
|
Liu R, Li JZ, Song JK, Zhou D, Huang C, Bai XY, Xie T, Zhang X, Li YJ, Wu CX, Zhang L, Li L, Zhang TT, Du GH. Pinocembrin improves cognition and protects the neurovascular unit in Alzheimer related deficits. Neurobiol Aging 2014; 35:1275-85. [PMID: 24468471 DOI: 10.1016/j.neurobiolaging.2013.12.031] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 11/13/2013] [Accepted: 12/25/2013] [Indexed: 11/23/2022]
Abstract
Amyloid-β (Aβ) peptides accumulate in the brain and initiate a cascade of pathologic events in Alzheimer's disease. The receptor for advanced glycation end products (RAGE) has been implicated to mediate Aβ-induced perturbations in the neurovascular unit (NVU). We demonstrated that pinocembrin exhibits neuroprotection through inhibition of the Aβ and/or RAGE pathway, but the therapeutic role and mechanism involved are not ascertained. Here, we report that a 3-month treatment with pinocembrin prevents the cognition decline in APP/PS1 transgenic mice without altering Aβ burden and oxidative stress. Instead, pinocembrin is effective in conferring neurovascular protection through maintenance of neuropil ultrastructure, reduction of glial activation and levels of inflammatory mediators, preservation of microvascular function, improving the cholinergic system by conserving the ERK-CREB-BDNF pathway, and modulation of RAGE-mediated transduction. Furthermore, in an in vitro model, pinocembrin provides the NVU protection against fibrillar Aβ₁₋₄₂, accompanied by regulation of neurovascular RAGE pathways. Our findings indicate that pinocembrin improves cognition, at least in part, attributable to the NVU protection, and highlights pinocembrin as a potential therapeutic strategy for the prevention and/or treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Rui Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Jin-ze Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Jun-ke Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Dan Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Chao Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Xiao-yu Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Tao Xie
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Xue Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Yong-jie Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Cai-xia Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China; School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lan Zhang
- Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing Geriatric Medical Research Center, Beijing 100053, PR China
| | - Lin Li
- Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing Geriatric Medical Research Center, Beijing 100053, PR China
| | - Tian-tai Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China.
| | - Guan-hua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China.
| |
Collapse
|
18
|
Vascular aspects of cognitive impairment and dementia. J Cereb Blood Flow Metab 2013; 33:1696-706. [PMID: 24022624 PMCID: PMC3824191 DOI: 10.1038/jcbfm.2013.159] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 08/05/2013] [Accepted: 08/12/2013] [Indexed: 01/03/2023]
Abstract
Hypertension and stroke are highly prevalent risk factors for cognitive impairment and dementia. Alzheimer's disease (AD) and vascular dementia (VaD) are the most common forms of dementia, and both conditions are preceded by a stage of cognitive impairment. Stroke is a major risk factor for the development of vascular cognitive impairment (VCI) and VaD; however, stroke may also predispose to AD. Hypertension is a major risk factor for stroke, thus linking hypertension to VCI and VaD, but hypertension is also an important risk factor for AD. Reducing these two major, but modifiable, risk factors-hypertension and stroke-could be a successful strategy for reducing the public health burden of cognitive impairment and dementia. Intake of long-chain omega-3 polyunsaturated fatty acids (LC-n3-FA) and the manipulation of factors involved in the renin-angiotensin system (e.g. angiotensin II or angiotensin-converting enzyme) have been shown to reduce the risk of developing hypertension and stroke, thereby reducing dementia risk. This paper will review the research conducted on the relationship between hypertension, stroke, and dementia and also on the impact of LC-n3-FA or antihypertensive treatments on risk factors for VCI, VaD, and AD.
Collapse
|
19
|
Liu R, Zhang TT, Zhou D, Bai XY, Zhou WL, Huang C, Song JK, Meng FR, Wu CX, Li L, Du GH. Quercetin protects against the Aβ(25-35)-induced amnesic injury: involvement of inactivation of rage-mediated pathway and conservation of the NVU. Neuropharmacology 2012; 67:419-31. [PMID: 23231807 DOI: 10.1016/j.neuropharm.2012.11.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 11/15/2012] [Accepted: 11/20/2012] [Indexed: 12/21/2022]
Abstract
Quercetin has demonstrated protective effects against Aβ-induced toxicity on both neurons and endothelial cells. However, whether or not quercetin has an effect on the neurovascular coupling is unclear. In the present study, we aim to investigate the anti-amnesic effects of quercetin and to explore the underlying mechanisms. Aβ(25-35) (10 nmol) was administrated to mice i.c.v. Quercetin was administrated orally for 8 days after injection. Learning and memory behaviors were evaluated by measuring spontaneous alternation in Morris Water Maze test and the step-through positive avoidance test. The regional cerebral blood flow was monitored before the Aβ(25-35) injection and on seven consecutive days after injection. Mice were sacrificed and cerebral cortices were isolated on the last day. The effects of quercetin on the neurovascular unit (NVU) integrity, microvascular function and cholinergic neuronal changes, and the modification of signaling pathways were tested. Our results demonstrate that quercetin treatment for Aβ(25-35)-induced amnesic mice improved the learning and memory capabilities and conferred robust neurovascular coupling protection, involving maintenance of the NVU integrity, reduction of neurovascular oxidation, modulation of microvascular function, improvement of cholinergic system, and regulation of neurovascular RAGE signaling pathway and ERK/CREB/BDNF pathway. In conclusion, in Aβ(25-35)-induced amnesic mice, optimal doses of quercetin administration were beneficial. Quercetin protected the NVU likely through reduction of oxidative damage, inactivation of RAGE-mediated pathway and preservation of cholinergic neurons, offering an alternative medication for Alzheimer's disease.
Collapse
Affiliation(s)
- Rui Liu
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xiannongtan Street, Beijing 100050, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Grinberg LT, Korczyn AD, Heinsen H. Cerebral amyloid angiopathy impact on endothelium. Exp Gerontol 2012; 47:838-42. [PMID: 22944481 DOI: 10.1016/j.exger.2012.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 08/18/2012] [Accepted: 08/20/2012] [Indexed: 12/30/2022]
Abstract
Cerebral amyloid angiopathy (CAA) is an age-associated disease characterized by amyloid deposition in cerebral and meningeal vessel walls. CAA is detected in the majority of the individuals with dementia and also in a large number of non-demented elderly individuals. In addition, CAA is strongly associated with Alzheimer's disease (AD) pathology. Mechanical consequences including intra-cerebral or subarachnoid hemorrhage remains CAA most feared complication, but only a small fraction of CAA results in severe bleeding. On the hand the non-mechanical consequences in cerebrovascular regulation are prevalent and may be even more deleterious. Studies of animal models have provided strong evidence linking the vasoactive Aβ 1-40, the main species found in CAA, to disturbances in endothelial-dependent factors, disrupting cerebrovascular regulation Here, we aimed to review experimental findings regarding the non-mechanical consequences of CAA for cerebrovascular regulation and discuss the implications of these results to clinical practice.
Collapse
Affiliation(s)
- Lea Tenenholz Grinberg
- Department of Neurology, University of California San Francisco, 305 Parnassus Avenue, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
21
|
Microvascular brain damage with aging and hypertension: pathophysiological consideration and clinical implications. J Hypertens 2012; 29:1469-77. [PMID: 21577138 DOI: 10.1097/hjh.0b013e328347cc17] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Loss of cognitive function and hypertension are two common conditions in the elderly and both significantly contribute to loss of personal independency. Microvascular brain damage - the result of age-associated alteration in large arteries and the progressive mismatch of their cross-talk with small cerebral arteries - represents a potent risk factor for cognitive decline and for the onset of dementia in older individuals. The present review discusses the complexity of factors linking large artery to microvascular brain disease and to cognitive decline and the evidence for possible clinical markers useful for prevention of this phenomenon. The possibility of dementia prevention by cardiovascular risk factors control has not been demonstrated. In the absence of research clinical trials specifically and primarily designed to demonstrate the antihypertensive treatment efficacy for reducing the risk of dementia, further evidence demonstrating that it is possible to limit the progression of microvascular brain damage is needed.
Collapse
|
22
|
Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, Launer LJ, Laurent S, Lopez OL, Nyenhuis D, Petersen RC, Schneider JA, Tzourio C, Arnett DK, Bennett DA, Chui HC, Higashida RT, Lindquist R, Nilsson PM, Roman GC, Sellke FW, Seshadri S. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke 2011; 42:2672-713. [PMID: 21778438 PMCID: PMC3778669 DOI: 10.1161/str.0b013e3182299496] [Citation(s) in RCA: 2685] [Impact Index Per Article: 191.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND PURPOSE This scientific statement provides an overview of the evidence on vascular contributions to cognitive impairment and dementia. Vascular contributions to cognitive impairment and dementia of later life are common. Definitions of vascular cognitive impairment (VCI), neuropathology, basic science and pathophysiological aspects, role of neuroimaging and vascular and other associated risk factors, and potential opportunities for prevention and treatment are reviewed. This statement serves as an overall guide for practitioners to gain a better understanding of VCI and dementia, prevention, and treatment. METHODS Writing group members were nominated by the writing group co-chairs on the basis of their previous work in relevant topic areas and were approved by the American Heart Association Stroke Council Scientific Statement Oversight Committee, the Council on Epidemiology and Prevention, and the Manuscript Oversight Committee. The writing group used systematic literature reviews (primarily covering publications from 1990 to May 1, 2010), previously published guidelines, personal files, and expert opinion to summarize existing evidence, indicate gaps in current knowledge, and, when appropriate, formulate recommendations using standard American Heart Association criteria. All members of the writing group had the opportunity to comment on the recommendations and approved the final version of this document. After peer review by the American Heart Association, as well as review by the Stroke Council leadership, Council on Epidemiology and Prevention Council, and Scientific Statements Oversight Committee, the statement was approved by the American Heart Association Science Advisory and Coordinating Committee. RESULTS The construct of VCI has been introduced to capture the entire spectrum of cognitive disorders associated with all forms of cerebral vascular brain injury-not solely stroke-ranging from mild cognitive impairment through fully developed dementia. Dysfunction of the neurovascular unit and mechanisms regulating cerebral blood flow are likely to be important components of the pathophysiological processes underlying VCI. Cerebral amyloid angiopathy is emerging as an important marker of risk for Alzheimer disease, microinfarction, microhemorrhage and macrohemorrhage of the brain, and VCI. The neuropathology of cognitive impairment in later life is often a mixture of Alzheimer disease and microvascular brain damage, which may overlap and synergize to heighten the risk of cognitive impairment. In this regard, magnetic resonance imaging and other neuroimaging techniques play an important role in the definition and detection of VCI and provide evidence that subcortical forms of VCI with white matter hyperintensities and small deep infarcts are common. In many cases, risk markers for VCI are the same as traditional risk factors for stroke. These risks may include but are not limited to atrial fibrillation, hypertension, diabetes mellitus, and hypercholesterolemia. Furthermore, these same vascular risk factors may be risk markers for Alzheimer disease. Carotid intimal-medial thickness and arterial stiffness are emerging as markers of arterial aging and may serve as risk markers for VCI. Currently, no specific treatments for VCI have been approved by the US Food and Drug Administration. However, detection and control of the traditional risk factors for stroke and cardiovascular disease may be effective in the prevention of VCI, even in older people. CONCLUSIONS Vascular contributions to cognitive impairment and dementia are important. Understanding of VCI has evolved substantially in recent years, based on preclinical, neuropathologic, neuroimaging, physiological, and epidemiological studies. Transdisciplinary, translational, and transactional approaches are recommended to further our understanding of this entity and to better characterize its neuropsychological profile. There is a need for prospective, quantitative, clinical-pathological-neuroimaging studies to improve knowledge of the pathological basis of neuroimaging change and the complex interplay between vascular and Alzheimer disease pathologies in the evolution of clinical VCI and Alzheimer disease. Long-term vascular risk marker interventional studies beginning as early as midlife may be required to prevent or postpone the onset of VCI and Alzheimer disease. Studies of intensive reduction of vascular risk factors in high-risk groups are another important avenue of research.
Collapse
|
23
|
Vascular β-amyloid and early astrocyte alterations impair cerebrovascular function and cerebral metabolism in transgenic arcAβ mice. Acta Neuropathol 2011; 122:293-311. [PMID: 21688176 PMCID: PMC3168476 DOI: 10.1007/s00401-011-0834-y] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 04/11/2011] [Accepted: 05/04/2011] [Indexed: 12/19/2022]
Abstract
Cerebrovascular lesions related to congophilic amyloid angiopathy (CAA) often accompany deposition of β-amyloid (Aβ) in Alzheimer's disease (AD), leading to disturbed cerebral blood flow and cognitive dysfunction, posing the question how cerebrovascular pathology contributes to the pathology of AD. To address this question, we characterised the morphology, biochemistry and functionality of brain blood vessels in transgenic arctic β-amyloid (arcAβ) mice expressing human amyloid precursor protein (APP) with both the familial AD-causing Swedish and Arctic mutations; these mice are characterised by strong CAA pathology. Mice were analysed at early, mid and late-stage pathology. Expression of the glucose transporter GLUT1 at the blood-brain barrier (BBB) was significantly decreased and paralleled by impaired in vivo blood-to-brain glucose transport and reduced cerebral lactate release during neuronal activation from mid-stage pathology onwards. Reductions in astrocytic GLUT1 and lactate transporters, as well as retraction of astrocyte endfeet and swelling consistent with neurovascular uncoupling, preceded wide-spread β-amyloid plaque pathology. We show that CAA at later disease stages is accompanied by severe morphological alterations of brain blood vessels including stenoses, BBB leakages and the loss of vascular smooth muscle cells (SMCs). Together, our data establish that cerebrovascular and astrocytic pathology are paralleled by impaired cerebral metabolism in arcAβ mice, and that astrocyte alterations occur already at premature stages of pathology, suggesting that astrocyte dysfunction can contribute to early behavioural and cognitive impairments seen in these mice.
Collapse
|
24
|
Chen L, Choi JJ, Choi YJ, Hennig B, Toborek M. HIV-1 Tat-induced cerebrovascular toxicity is enhanced in mice with amyloid deposits. Neurobiol Aging 2011; 33:1579-90. [PMID: 21764480 DOI: 10.1016/j.neurobiolaging.2011.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 04/04/2011] [Accepted: 06/04/2011] [Indexed: 01/07/2023]
Abstract
HIV-1-infected brains are characterized by elevated depositions of amyloid beta (Aβ); however, the interactions between Aβ and HIV-1 are poorly understood. In the present study, we administered specific HIV-1 protein Tat into the cerebral vasculature of 50-52-week-old double transgenic (B6C3-Tg) mice that express a chimeric mouse/human amyloid precursor protein (Mo/HuAPP695swe) and a mutant human presenilin 1 (PS1-dE9) and are characterized by increased Aβ depositions in the brain. Exposure to Tat increased permeability across cerebral capillaries, enhanced disruption of zonula occludens (ZO)-1 tight junction protein, and elevated brain expression of matrix metalloproteinase-9 (MMP-9) in B6C3-Tg mice as compared with age-matched littermate controls. These changes were associated with increased leukocyte attachment and their transcapillary migration. The majority of Tat-induced effects were attenuated by treatment with a specific Rho inhibitor, hydroxyfasudil. The results of animal experiments were reproduced in cultured brain endothelial cells exposed to Aβ and/or Tat. The present data indicate that increased brain levels of Aβ can enhance vascular toxicity and proinflammatory responses induced by HIV-1 protein Tat.
Collapse
Affiliation(s)
- Lei Chen
- Molecular Neuroscience and Vascular Biology Laboratory, Department of Neurosurgery, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
25
|
Kovacic JC, Moreno P, Nabel EG, Hachinski V, Fuster V. Cellular senescence, vascular disease, and aging: part 2 of a 2-part review: clinical vascular disease in the elderly. Circulation 2011; 123:1900-10. [PMID: 21537006 DOI: 10.1161/circulationaha.110.009118] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jason C Kovacic
- Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
Cerebral autoregulation aims to stabilize blood flow to the brain during variations in perfusion pressure, thus protecting the brain against the risks of low or high systemic blood pressure. This vital mechanism is severely impaired in the transgenic mouse model of Alzheimer's disease (AD) that abundantly produces amyloid-β peptide β(1-42). These observations have been extrapolated to human AD, wherein impairment of autoregulation could have important implications for the clinical management and prevention of AD. Research on cerebral autoregulation in human AD, however, has only recently become available. Contrary to the animal models, preliminary studies suggest that cerebral autoregulation is preserved in patients with AD. Further research is urgently needed to elucidate this discrepancy in the current literature, given the accumulating evidence that implicates cerebrovascular pathology in AD.
Collapse
|
27
|
Targeting the neurovascular unit: development of a new model and consideration for novel strategy for Alzheimer's disease. Brain Res Bull 2011; 86:13-21. [PMID: 21700401 DOI: 10.1016/j.brainresbull.2011.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/19/2011] [Accepted: 05/27/2011] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease involves the complex and interconnected cascade of cellular and molecular events. Only a few treatments are available to slow the course of the disease at present. Recent studies suggest that neurovascular unit serves to maintain cerebral homeostasis, and pathological interactions between components of neurovascular unit lead to cerebral dysfunction. In present study, we established a functional unit trying to target major components of the neurovascular unit by the co-culture of rat cortical parenchymal culture and cerebral microvascular endothelial cells. This entity allowed the application of techniques such as immunofluorescent imaging and biological assays under defined conditions. The morphology of cell types, blood-brain barrier function and neuronal activation were investigated. The insight revealed that targeting components of the neurovascular unit, rather than just the neuron, might be a priority in Alzheimer's disease and more likely to provide cerebroprotection.
Collapse
|
28
|
Vasilevko V, Passos G, Quiring D, Head E, Fisher M, Cribbs DH. Aging and cerebrovascular dysfunction: contribution of hypertension, cerebral amyloid angiopathy, and immunotherapy. Ann N Y Acad Sci 2010; 1207:58-70. [PMID: 20955427 PMCID: PMC2958685 DOI: 10.1111/j.1749-6632.2010.05786.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Age-related cerebrovascular dysfunction contributes to ischemic stroke, intracerebral hemorrhages (ICHs), microbleeds, cerebral amyloid angiopathy (CAA), and cognitive decline. Importantly, there is increasing recognition that this dysfunction plays a critical secondary role in many neurodegenerative diseases, including Alzheimer's disease (AD). Atherosclerosis, hypertension, and CAA are the most common causes of blood-brain barrier (BBB) lesions. The accumulation of amyloid beta (Aβ) in the cerebrovascular system is a significant risk factor for ICH and has been linked to endothelial transport failure and blockage of perivascular drainage. Moreover, recent anti-Aβ immunotherapy clinical trials demonstrated efficient clearance of parenchymal amyloid deposits but have been plagued by CAA-associated adverse events. Although management of hypertension and atherosclerosis can reduce the incidence of ICH, there are currently no approved therapies for attenuating CAA. Thus, there is a critical need for new strategies that improve BBB function and limit the development of β-amyloidosis in the cerebral vasculature.
Collapse
Affiliation(s)
- Vitaly Vasilevko
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA
| | - Giselle Passos
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA
| | - Daniel Quiring
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA
| | - Elizabeth Head
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA
- Department of Neurology, University of California, Irvine, Irvine, CA
| | - Mark Fisher
- Department of Neurology, University of California, Irvine, Irvine, CA
| | - David H. Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA
- Department of Neurology, University of California, Irvine, Irvine, CA
| |
Collapse
|
29
|
Iadecola C. The overlap between neurodegenerative and vascular factors in the pathogenesis of dementia. Acta Neuropathol 2010; 120:287-96. [PMID: 20623294 DOI: 10.1007/s00401-010-0718-6] [Citation(s) in RCA: 409] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 07/03/2010] [Accepted: 07/04/2010] [Indexed: 02/07/2023]
Abstract
There is increasing evidence that cerebrovascular dysfunction plays a role not only in vascular causes of cognitive impairment but also in Alzheimer's disease (AD). Vascular risk factors and AD impair the structure and function of cerebral blood vessels and associated cells (neurovascular unit), effects mediated by vascular oxidative stress and inflammation. Injury to the neurovascular unit alters cerebral blood flow regulation, depletes vascular reserves, disrupts the blood-brain barrier, and reduces the brain's repair potential, effects that amplify the brain dysfunction and damage exerted by incident ischemia and coexisting neurodegeneration. Clinical-pathological studies support the notion that vascular lesions aggravate the deleterious effects of AD pathology by reducing the threshold for cognitive impairment and accelerating the pace of the dementia. In the absence of mechanism-based approaches to counteract cognitive dysfunction, targeting vascular risk factors and improving cerebrovascular health offers the opportunity to mitigate the impact of one of the most disabling human afflictions.
Collapse
|
30
|
Ma JF, Wang HM, Li QY, Zhang Y, Pan J, Qiang Q, Xin XY, Tang HD, Ding JQ, Chen SD. Starvation triggers Abeta42 generation from human umbilical vascular endothelial cells. FEBS Lett 2010; 584:3101-6. [PMID: 20621836 DOI: 10.1016/j.febslet.2010.05.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 05/21/2010] [Accepted: 05/24/2010] [Indexed: 12/19/2022]
Abstract
Cerebral amyloid angiopathy is a common feature in Alzheimer's disease (AD), which is characterized by amyloid deposit around brain vessels including capillaries. The origin of the amyloid protein of CAA remains controversial. In our work, we provide data to show that primary umbilical vein endothelial cells (HUVEC) harbor APP processing secretases and can produce Abeta(42) under starvation. Starvation can increase the secretion of Abeta(42) by altering the expression of beta-secretases (BACE1) and gamma-secretases (APH and PEN2). This process is regulated by macroautophagy. Suppression of macroautophagy induction by 3MA further increased the level of Abeta(42) produced under starvation in HUVECs. These results suggest that starvation-induced Abeta(42) secretion might contribute to the formation of CAA and hence vascular degeneration in AD.
Collapse
Affiliation(s)
- Jian-Fang Ma
- Department of Neurology & Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Palmer JC, Kehoe PG, Love S. Endothelin-converting enzyme-1 in Alzheimer's disease and vascular dementia. Neuropathol Appl Neurobiol 2010; 36:487-97. [DOI: 10.1111/j.1365-2990.2010.01084.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Wang LY, Larson EB, Sonnen JA, Shofer JB, McCormick W, Bowen JD, Montine TJ, Li G. Blood pressure and brain injury in older adults: findings from a community-based autopsy study. J Am Geriatr Soc 2009; 57:1975-81. [PMID: 19793158 DOI: 10.1111/j.1532-5415.2009.02493.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To examine correlations between blood pressure (BP) and dementia-related pathological brain changes in a community-based autopsy sample. DESIGN Prospective cohort study. SETTING A large health maintenance organization in Seattle, Washington. PARTICIPANTS A cohort of 250 participants aged 65 and older and cognitively normal at time of enrollment in the Adult Changes in Thought (ACT) Study and who underwent autopsy. MEASUREMENTS BP and history of antihypertensive treatment were taken at enrollment. A linear regression model was used to examine the relationship between BP (systolic (SBP) and diastolic (DBP)) at enrollment and pathological changes in the cerebrum (cystic macroscopic infarcts, microinfarcts, neuritic plaques, neurofibrillary tangles, and cortical Lewy bodies). RESULTS The presence of more than 2 microinfarcts, but not any other pathological change, was independently associated with SBP in younger participants (65-80, n=137) but not in older participants (>80, n=91). The relative risk (RR) for more than two microinfarcts with each 10-mmHg increase in SBP was 1.15 (95% confidence interval (CI)=1.00-1.33) in the younger participants, adjusted for age at entry, sex, and time to death. This RR was particularly strong in younger participants not taking antihypertensive medications (RR=1.48, 95% CI=1.21, 1.81); significant associations were not observed in participants treated for hypertension. Findings for DBP were negative. CONCLUSION The association between high SBP and cerebrovascular damage in untreated older adults (65-80) suggests that adequate hypertension treatment may reduce dementia risk by minimizing microvascular injury to cerebrum.
Collapse
Affiliation(s)
- Lucy Y Wang
- Mental Illness Research and Education Clinical Center, Veterans Affairs Puget Sound Healthcare System, Seattle, Washington 98108, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Aging, Alzheimer disease, and hypertension, major determinants of cognitive dysfunction, are associated with profound alterations in the structure and function of cerebral blood vessels. These vascular alterations may impair the delivery of energy substrates and nutrients to the active brain, and impede the clearance of potentially toxic metabolic byproducts. Reactive oxygen species derived form the enzyme NADPH oxidase are key pathogenic effectors of the cerebrovascular dysregulation. The resulting alterations in the homeostasis of the cerebral microenvironment may lead to cellular dysfunction and death and to cognitive impairment. The prominent role that cerebrovascular oxidative stress plays in conditions associated with cognitive impairment suggests new therapeutic opportunities to counteract and, possibly, reverse the devastating effects of cerebrovascular dysfunction on the brain.
Collapse
Affiliation(s)
- Costantino Iadecola
- Division of Neurobiology, Weill Medical College of Cornell University, 411 East 69th Street; KB410, New York, NY 10021, USA.
| | | | | |
Collapse
|