1
|
Peralta Cuasolo YM, Dupraz S, Unsain N, Bisbal M, Quassollo G, Galiano MR, Grassi D, Quiroga S, Sosa LJ. The GTPase Rab21 is required for neuronal development and migration in the cerebral cortex. J Neurochem 2023; 166:790-808. [PMID: 37534523 DOI: 10.1111/jnc.15925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 08/04/2023]
Abstract
Development of the mammalian neocortex requires proper inside-out migration of developing cortical neurons from the germinal ventricular zone toward the cortical plate. The mechanics of this migration requires precise coordination of different cellular phenomena including cytoskeleton dynamics, membrane trafficking, and cell adhesion. The small GTPases play a central role in all these events. The small GTPase Rab21 regulates migration and neurite growth in developing neurons. Moreover, regulators and effectors of Rab21 have been implicated in brain pathologies with cortical malformations, suggesting a key function for the Rab21 signaling pathway in cortical development. Mechanistically, it has been posited that Rab21 influences cell migration by controlling the trafficking of endocytic vesicles containing adhesion molecules. However, direct evidence of the participation of Rab21 or its mechanism of action in the regulation of cortical migration is still incomplete. In this study, we demonstrate that Rab21 plays a critical role in the differentiation and migration of pyramidal neurons by regulating the levels of the amyloid precursor protein on the neuronal cell surface. Rab21 loss of function increased the levels of membrane-exposed APP, resulting in impaired cortical neuronal differentiation and migration. These findings further our understanding of the processes governing the development of the cerebral cortex and shed light onto the molecular mechanisms behind cortical development disorders derived from the malfunctioning of Rab21 signaling effectors.
Collapse
Affiliation(s)
- Yael Macarena Peralta Cuasolo
- Departamento de Química Biológica Ranwell Caputto, Facultad de Ciencias Químicas, CIQUIBIC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Sebastián Dupraz
- Axonal Growth and Regeneration, German Center for Neurodegenarative Diseases, Bonn, Germany
| | - Nicolas Unsain
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Biología Celular y Molecular (CeBiCeM, FCEFyN-UNC), Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariano Bisbal
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto Universitario Ciencias Biomédicas de Córdoba (IUCBC), Córdoba, Argentina
| | - Gonzalo Quassollo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mauricio R Galiano
- Departamento de Química Biológica Ranwell Caputto, Facultad de Ciencias Químicas, CIQUIBIC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Diego Grassi
- Departamento de Química Biológica Ranwell Caputto, Facultad de Ciencias Químicas, CIQUIBIC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Santiago Quiroga
- Departamento de Química Biológica Ranwell Caputto, Facultad de Ciencias Químicas, CIQUIBIC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Lucas Javier Sosa
- Departamento de Química Biológica Ranwell Caputto, Facultad de Ciencias Químicas, CIQUIBIC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
2
|
Antonino M, Marmo P, Freites CL, Quassollo GE, Sánchez MF, Lorenzo A, Bignante EA. Aβ Assemblies Promote Amyloidogenic Processing of APP and Intracellular Accumulation of Aβ42 Through Go/Gβγ Signaling. Front Cell Dev Biol 2022; 10:852738. [PMID: 35445022 PMCID: PMC9013780 DOI: 10.3389/fcell.2022.852738] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by the deposition of aggregated species of amyloid beta (Aβ) in the brain, which leads to progressive cognitive deficits and dementia. Aβ is generated by the successive cleavage of the amyloid precursor protein (APP), first by β-site APP cleaving enzyme 1 (BACE1) and subsequently by the γ-secretase complex. Those conditions which enhace or reduce its clearance predispose to Aβ aggregation and the development of AD. In vitro studies have demonstrated that Aβ assemblies spark a feed-forward loop heightening Aβ production. However, the underlying mechanism remains unknown. Here, we show that oligomers and fibrils of Aβ enhance colocalization and physical interaction of APP and BACE1 in recycling endosomes of human neurons derived from induced pluripotent stem cells and other cell types, which leads to exacerbated amyloidogenic processing of APP and intracellular accumulation of Aβ42. In cells that are overexpressing the mutant forms of APP which are unable to bind Aβ or to activate Go protein, we have found that treatment with aggregated Aβ fails to increase colocalization of APP with BACE1 indicating that Aβ-APP/Go signaling is involved in this process. Moreover, inhibition of Gβγ subunit signaling with βARKct or gallein prevents Aβ-dependent interaction of APP and BACE1 in endosomes, β-processing of APP, and intracellular accumulation of Aβ42. Collectively, our findings uncover a signaling mechanism leading to a feed-forward loop of amyloidogenesis that might contribute to Aβ pathology in the early stages of AD and suggest that gallein could have therapeutic potential.
Collapse
Affiliation(s)
- Magdalena Antonino
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Paula Marmo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Carlos Leandro Freites
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | - Alfredo Lorenzo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
- *Correspondence: Elena Anahi Bignante, ; Alfredo Lorenzo,
| | - Elena Anahi Bignante
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Córdoba, Argentina
- *Correspondence: Elena Anahi Bignante, ; Alfredo Lorenzo,
| |
Collapse
|
3
|
|
4
|
Tang BL. Amyloid Precursor Protein (APP) and GABAergic Neurotransmission. Cells 2019; 8:E550. [PMID: 31174368 PMCID: PMC6627941 DOI: 10.3390/cells8060550] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/25/2019] [Accepted: 06/06/2019] [Indexed: 12/16/2022] Open
Abstract
The amyloid precursor protein (APP) is the parent polypeptide from which amyloid-beta (Aβ) peptides, key etiological agents of Alzheimer's disease (AD), are generated by sequential proteolytic processing involving β- and γ-secretases. APP mutations underlie familial, early-onset AD, and the involvement of APP in AD pathology has been extensively studied. However, APP has important physiological roles in the mammalian brain, particularly its modulation of synaptic functions and neuronal survival. Recent works have now shown that APP could directly modulate γ-aminobutyric acid (GABA) neurotransmission in two broad ways. Firstly, APP is shown to interact with and modulate the levels and activity of the neuron-specific Potassium-Chloride (K+-Cl-) cotransporter KCC2/SLC12A5. The latter is key to the maintenance of neuronal chloride (Cl-) levels and the GABA reversal potential (EGABA), and is therefore important for postsynaptic GABAergic inhibition through the ionotropic GABAA receptors. Secondly, APP binds to the sushi domain of metabotropic GABAB receptor 1a (GABABR1a). In this regard, APP complexes and is co-transported with GABAB receptor dimers bearing GABABR1a to the axonal presynaptic plasma membrane. On the other hand, secreted (s)APP generated by secretase cleavages could act as a GABABR1a-binding ligand that modulates presynaptic vesicle release. The discovery of these novel roles and activities of APP in GABAergic neurotransmission underlies the physiological importance of APP in postnatal brain function.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
5
|
de Oliveira PG, Ramos MLS, Amaro AJ, Dias RA, Vieira SI. G i/o-Protein Coupled Receptors in the Aging Brain. Front Aging Neurosci 2019; 11:89. [PMID: 31105551 PMCID: PMC6492497 DOI: 10.3389/fnagi.2019.00089] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/03/2019] [Indexed: 12/18/2022] Open
Abstract
Cells translate extracellular signals to regulate processes such as differentiation, metabolism and proliferation, via transmembranar receptors. G protein-coupled receptors (GPCRs) belong to the largest family of transmembrane receptors, with over 800 members in the human species. Given the variety of key physiological functions regulated by GPCRs, these are main targets of existing drugs. During normal aging, alterations in the expression and activity of GPCRs have been observed. The central nervous system (CNS) is particularly affected by these alterations, which results in decreased brain functions, impaired neuroregeneration, and increased vulnerability to neuropathologies, such as Alzheimer's and Parkinson diseases. GPCRs signal via heterotrimeric G proteins, such as Go, the most abundant heterotrimeric G protein in CNS. We here review age-induced effects of GPCR signaling via the Gi/o subfamily at the CNS. During the aging process, a reduction in protein density is observed for almost half of the Gi/o-coupled GPCRs, particularly in age-vulnerable regions such as the frontal cortex, hippocampus, substantia nigra and striatum. Gi/o levels also tend to decrease with aging, particularly in regions such as the frontal cortex. Alterations in the expression and activity of GPCRs and coupled G proteins result from altered proteostasis, peroxidation of membranar lipids and age-associated neuronal degeneration and death, and have impact on aging hallmarks and age-related neuropathologies. Further, due to oligomerization of GPCRs at the membrane and their cooperative signaling, down-regulation of a specific Gi/o-coupled GPCR may affect signaling and drug targeting of other types/subtypes of GPCRs with which it dimerizes. Gi/o-coupled GPCRs receptorsomes are thus the focus of more effective therapeutic drugs aiming to prevent or revert the decline in brain functions and increased risk of neuropathologies at advanced ages.
Collapse
Affiliation(s)
- Patrícia G de Oliveira
- Department of Medical Sciences, Institute of Biomedicine (iBiMED) and The Discovery CTR, Universidade de Aveiro, Aveiro, Portugal
| | - Marta L S Ramos
- Department of Medical Sciences, Institute of Biomedicine (iBiMED) and The Discovery CTR, Universidade de Aveiro, Aveiro, Portugal
| | - António J Amaro
- School of Health Sciences (ESSUA), Universidade de Aveiro, Aveiro, Portugal
| | - Roberto A Dias
- Department of Medical Sciences, Institute of Biomedicine (iBiMED) and The Discovery CTR, Universidade de Aveiro, Aveiro, Portugal
| | - Sandra I Vieira
- Department of Medical Sciences, Institute of Biomedicine (iBiMED) and The Discovery CTR, Universidade de Aveiro, Aveiro, Portugal
| |
Collapse
|
6
|
Bignante EA, Lorenzo A. APP signaling in Alzheimer's disease. Aging (Albany NY) 2018; 10:3063-3064. [PMID: 30425187 PMCID: PMC6286822 DOI: 10.18632/aging.101641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/01/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Elena Anahi Bignante
- Instituto de Investigación Médica "Mercedes y Martín Ferreyra", INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Alfredo Lorenzo
- Instituto de Investigación Médica "Mercedes y Martín Ferreyra", INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
7
|
Ruiz-Riquelme A, Lau HHC, Stuart E, Goczi AN, Wang Z, Schmitt-Ulms G, Watts JC. Prion-like propagation of β-amyloid aggregates in the absence of APP overexpression. Acta Neuropathol Commun 2018; 6:26. [PMID: 29615128 PMCID: PMC5883524 DOI: 10.1186/s40478-018-0529-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/21/2018] [Indexed: 11/10/2022] Open
Abstract
The amyloid cascade hypothesis posits that the initiating event in Alzheimer's disease (AD) is the aggregation and deposition of the β-amyloid (Aβ) peptide, which is a proteolytic cleavage product of the amyloid precursor protein (APP). Mounting evidence suggests that the formation and spread of prion-like Aβ aggregates during AD may contribute to disease progression. Inoculation of transgenic mice that overexpress APP with pre-formed Aβ aggregates results in the prion-like induction of cerebral Aβ deposition. To determine whether Aβ deposition can also be induced when physiological APP levels are present in the brain, we inoculated AppNL-F mice, a knock-in model of AD that avoids potential artifacts associated with APP overexpression, with Aβ aggregates derived from the brains of AD patients or transgenic mice. In all cases, induced Aβ deposition was apparent in the corpus callosum, olfactory bulb, and meningeal blood vessels of inoculated mice at 130-150 days post-inoculation, whereas uninoculated and buffer-inoculated animals exhibited minimal or no Aβ deposits at these ages. Interestingly, despite being predominantly composed of protease-resistant Aβ42 aggregates, the induced parenchymal Aβ deposits were largely diffuse and were unreactive to an amyloid-binding dye. These results demonstrate that APP overexpression is not a prerequisite for the prion-like induction of cerebral Aβ deposition. Accordingly, spreading of Aβ deposition may contribute to disease progression in AD patients.
Collapse
|
8
|
Bignante EA, Ponce NE, Heredia F, Musso J, Krawczyk MC, Millán J, Pigino GF, Inestrosa NC, Boccia MM, Lorenzo A. APP/Go protein Gβγ-complex signaling mediates Aβ degeneration and cognitive impairment in Alzheimer's disease models. Neurobiol Aging 2017; 64:44-57. [PMID: 29331876 DOI: 10.1016/j.neurobiolaging.2017.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/05/2017] [Accepted: 12/10/2017] [Indexed: 11/15/2022]
Abstract
Deposition of amyloid-β (Aβ), the proteolytic product of the amyloid precursor protein (APP), might cause neurodegeneration and cognitive decline in Alzheimer's disease (AD). However, the direct involvement of APP in the mechanism of Aβ-induced degeneration in AD remains on debate. Here, we analyzed the interaction of APP with heterotrimeric Go protein in primary hippocampal cultures and found that Aβ deposition dramatically enhanced APP-Go protein interaction in dystrophic neurites. APP overexpression rendered neurons vulnerable to Aβ toxicity by a mechanism that required Go-Gβγ complex signaling and p38-mitogen-activated protein kinase activation. Gallein, a selective pharmacological inhibitor of Gβγ complex, inhibited Aβ-induced dendritic and axonal dystrophy, abnormal tau phosphorylation, synaptic loss, and neuronal cell death in hippocampal neurons expressing endogenous protein levels. In the 3xTg-AD mice, intrahippocampal application of gallein reversed memory impairment associated with early Aβ pathology. Our data provide further evidence for the involvement of APP/Go protein in Aβ-induced degeneration and reveal that Gβγ complex is a signaling target potentially relevant for developing therapies for halting Aβ degeneration in AD.
Collapse
Affiliation(s)
- Elena Anahi Bignante
- Instituto de Investigación Médica "Mercedes y Martín Ferreyra", INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina; Instituto Universitario de Ciencias Biomédicas de Córdoda (IUCBC), Argentina
| | - Nicolás Eric Ponce
- Instituto de Investigación Médica "Mercedes y Martín Ferreyra", INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Florencia Heredia
- Instituto de Investigación Médica "Mercedes y Martín Ferreyra", INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Juliana Musso
- Instituto de Investigación Médica "Mercedes y Martín Ferreyra", INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María C Krawczyk
- Laboratorio de Neurofarmacología de los Procesos de Memoria, Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Millán
- Laboratorio de Neurofarmacología de los Procesos de Memoria, Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gustavo F Pigino
- Instituto de Investigación Médica "Mercedes y Martín Ferreyra", INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Punta Arenas, Chile
| | - Mariano M Boccia
- Laboratorio de Neurofarmacología de los Procesos de Memoria, Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alfredo Lorenzo
- Instituto de Investigación Médica "Mercedes y Martín Ferreyra", INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina; Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina.
| |
Collapse
|
9
|
Human Brain-Derived Aβ Oligomers Bind to Synapses and Disrupt Synaptic Activity in a Manner That Requires APP. J Neurosci 2017; 37:11947-11966. [PMID: 29101243 DOI: 10.1523/jneurosci.2009-17.2017] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/19/2017] [Accepted: 09/29/2017] [Indexed: 12/20/2022] Open
Abstract
Compelling genetic evidence links the amyloid precursor protein (APP) to Alzheimer's disease (AD) and several theories have been advanced to explain the relationship. A leading hypothesis proposes that a small amphipathic fragment of APP, the amyloid β-protein (Aβ), self-associates to form soluble aggregates that impair synaptic and network activity. Here, we used the most disease-relevant form of Aβ, protein isolated from AD brain. Using this material, we show that the synaptotoxic effects of Aβ depend on expression of APP and that the Aβ-mediated impairment of synaptic plasticity is accompanied by presynaptic effects that disrupt the excitatory/inhibitory (E/I) balance. The net increase in the E/I ratio and inhibition of plasticity are associated with Aβ localizing to synapses and binding of soluble Aβ aggregates to synapses requires the expression of APP. Our findings indicate a role for APP in AD pathogenesis beyond the generation of Aβ and suggest modulation of APP expression as a therapy for AD.SIGNIFICANCE STATEMENT Here, we report on the plasticity-disrupting effects of amyloid β-protein (Aβ) isolated from Alzheimer's disease (AD) brain and the requirement of amyloid precursor protein (APP) for these effects. We show that Aβ-containing AD brain extracts block hippocampal LTP, augment glutamate release probability, and disrupt the excitatory/inhibitory balance. These effects are associated with Aβ localizing to synapses and genetic ablation of APP prevents both Aβ binding and Aβ-mediated synaptic dysfunctions. Our results emphasize the importance of APP in AD and should stimulate new studies to elucidate APP-related targets suitable for pharmacological manipulation.
Collapse
|
10
|
Sosa LJ, Cáceres A, Dupraz S, Oksdath M, Quiroga S, Lorenzo A. The physiological role of the amyloid precursor protein as an adhesion molecule in the developing nervous system. J Neurochem 2017; 143:11-29. [PMID: 28677143 DOI: 10.1111/jnc.14122] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
Abstract
The amyloid precursor protein (APP) is a type I transmembrane glycoprotein better known for its participation in the physiopathology of Alzheimer disease as the source of the beta amyloid fragment. However, the physiological functions of the full length protein and its proteolytic fragments have remained elusive. APP was first described as a cell-surface receptor; nevertheless, increasing evidence highlighted APP as a cell adhesion molecule. In this review, we will focus on the current knowledge of the physiological role of APP as a cell adhesion molecule and its involvement in key events of neuronal development, such as migration, neurite outgrowth, growth cone pathfinding, and synaptogenesis. Finally, since APP is over-expressed in Down syndrome individuals because of the extra copy of chromosome 21, in the last section of the review, we discuss the potential contribution of APP to the neuronal and synaptic defects described in this genetic condition. Read the Editorial Highlight for this article on page 9. Cover Image for this issue: doi. 10.1111/jnc.13817.
Collapse
Affiliation(s)
- Lucas J Sosa
- Departamento de Química Biológica Ranwell Caputto, Facultad de Ciencias Químicas, CIQUIBIC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Alfredo Cáceres
- Laboratorio Neurobiología, Instituto Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.,Instituto Universitario Ciencias Biomédicas Córdoba, Córdoba, Argentina
| | - Sebastián Dupraz
- Axonal Growth and Regeneration, German Center for Neurodegenarative Diseases, Bonn, Germany
| | - Mariana Oksdath
- Departamento de Química Biológica Ranwell Caputto, Facultad de Ciencias Químicas, CIQUIBIC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Santiago Quiroga
- Departamento de Química Biológica Ranwell Caputto, Facultad de Ciencias Químicas, CIQUIBIC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Alfredo Lorenzo
- Laboratorio de Neuropatología Experimental, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
11
|
Wang H, Muiznieks LD, Ghosh P, Williams D, Solarski M, Fang A, Ruiz-Riquelme A, Pomès R, Watts JC, Chakrabartty A, Wille H, Sharpe S, Schmitt-Ulms G. Somatostatin binds to the human amyloid β peptide and favors the formation of distinct oligomers. eLife 2017. [PMID: 28650319 PMCID: PMC5505701 DOI: 10.7554/elife.28401] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The amyloid β peptide (Aβ) is a key player in the etiology of Alzheimer disease (AD), yet a systematic investigation of its molecular interactions has not been reported. Here we identified by quantitative mass spectrometry proteins in human brain extract that bind to oligomeric Aβ1-42 (oAβ1-42) and/or monomeric Aβ1-42 (mAβ1-42) baits. Remarkably, the cyclic neuroendocrine peptide somatostatin-14 (SST14) was observed to be the most selectively enriched oAβ1-42 binder. The binding interface comprises a central tryptophan within SST14 and the N-terminus of Aβ1-42. The presence of SST14 inhibited Aβ aggregation and masked the ability of several antibodies to detect Aβ. Notably, Aβ1-42, but not Aβ1-40, formed in the presence of SST14 oligomeric assemblies of 50 to 60 kDa that were visualized by gel electrophoresis, nanoparticle tracking analysis and electron microscopy. These findings may be relevant for Aβ-directed diagnostics and may signify a role of SST14 in the etiology of AD. DOI:http://dx.doi.org/10.7554/eLife.28401.001 Treating Alzheimer’s disease and related dementias is one of the major challenges currently facing healthcare providers worldwide. A hallmark of the disease is the formation of large deposits of a specific molecule, known as amyloid beta (Aβ), in the brain. However, more and more research suggests that smaller and particularly toxic amyloid beta clumps – often referred to as oligomeric Aβ – appear as an early sign of Alzheimer’s disease. To understand how the formation of these smaller amyloid beta clumps triggers other aspects of the disease, it is important to identify molecules in the human brain that oligomeric Aβ binds to. To this end, Wang et al. attached amyloid beta or oligomeric Aβ molecules to microscopically small beads. The beads were then exposed to human brain extracts in a test tube, which allowed molecules in the extracts to bind to the amyloid beta or oligomeric Aβ. The samples were then spun at high speed, meaning that the beads and any other molecules bound to them sunk and formed pellets at the bottom of the tubes. Each pellet was then analyzed to see which molecules it contained. The experiments identified more than a hundred human brain proteins that can bind to amyloid beta. One of them, known as somatostatin, selectively binds to oligomeric Aβ. Wang et al. were able to determine the structural features of somatostatin that control this binding. Finally, in further experiments performed in test tubes, Wang et al. noticed that smaller oligomeric Aβ clumps were more likely to form than larger amyloid beta deposits when somatostatin was present. This could signify a previously unrecognized role of somatostatin in the development of Alzheimer’s disease. Further studies are now needed to confirm whether the presence of somatostatin in the brain favors the formation of smaller, toxic oligomeric Aβ clumps over large innocuous amyloid beta deposits. If so, new treatments could be developed that aim to reduce oligomeric Aβ levels in the brain by preventing somatostatin from interacting with amyloid beta molecules. Wang et al. also suggest that somatostatin could be used in diagnostic tests to detect abnormal levels of oligomeric Aβ in the brain or body fluids of people who have Alzheimer’s disease. DOI:http://dx.doi.org/10.7554/eLife.28401.002
Collapse
Affiliation(s)
- Hansen Wang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Lisa D Muiznieks
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Punam Ghosh
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Michael Solarski
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Andrew Fang
- Department of Biochemistry, University of Alberta, Edmonton, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
| | - Alejandro Ruiz-Riquelme
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Régis Pomès
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Avi Chakrabartty
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Holger Wille
- Department of Biochemistry, University of Alberta, Edmonton, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
| | - Simon Sharpe
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
12
|
Ramaker JM, Copenhaver PF. Amyloid Precursor Protein family as unconventional Go-coupled receptors and the control of neuronal motility. NEUROGENESIS 2017; 4:e1288510. [PMID: 28321435 PMCID: PMC5345750 DOI: 10.1080/23262133.2017.1288510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/21/2017] [Accepted: 01/25/2017] [Indexed: 01/06/2023]
Abstract
Cleavage of the Amyloid Precursor Protein (APP) generates amyloid peptides that accumulate in Alzheimer Disease (AD), but APP is also upregulated by developing and injured neurons, suggesting that it regulates neuronal motility. APP can also function as a G protein-coupled receptor that signals via the heterotrimeric G protein Gαo, but evidence for APP-Gαo signaling in vivo has been lacking. Using Manduca as a model system, we showed that insect APP (APPL) regulates neuronal migration in a Gαo-dependent manner. Recently, we also demonstrated that Manduca Contactin (expressed by glial cells) induces APPL-Gαo retraction responses in migratory neurons, consistent with evidence that mammalian Contactins also interact with APP family members. Preliminary studies using cultured hippocampal neurons suggest that APP-Gαo signaling can similarly regulate growth cone motility. Whether Contactins (or other APP ligands) induce this response within the developing nervous system, and how this pathway is disrupted in AD, remains to be explored.
Collapse
Affiliation(s)
- Jenna M Ramaker
- Department of Cell, Developmental and Cancer Biology L-215, Oregon Health & Sciences University , Portland, OR, USA
| | - Philip F Copenhaver
- Department of Cell, Developmental and Cancer Biology L-215, Oregon Health & Sciences University , Portland, OR, USA
| |
Collapse
|
13
|
Kirouac L, Rajic AJ, Cribbs DH, Padmanabhan J. Activation of Ras-ERK Signaling and GSK-3 by Amyloid Precursor Protein and Amyloid Beta Facilitates Neurodegeneration in Alzheimer's Disease. eNeuro 2017; 4:ENEURO.0149-16.2017. [PMID: 28374012 PMCID: PMC5367084 DOI: 10.1523/eneuro.0149-16.2017] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 02/01/2023] Open
Abstract
It is widely accepted that amyloid β (Aβ) generated from amyloid precursor protein (APP) oligomerizes and fibrillizes to form neuritic plaques in Alzheimer's disease (AD), yet little is known about the contribution of APP to intracellular signaling events preceding AD pathogenesis. The data presented here demonstrate that APP expression and neuronal exposure to oligomeric Aβ42 enhance Ras/ERK signaling cascade and glycogen synthase kinase 3 (GSK-3) activation. We find that RNA interference (RNAi)-directed knockdown of APP in B103 rat neuroblastoma cells expressing APP inhibits Ras-ERK signaling and GSK-3 activation, indicating that APP acts upstream of these signal transduction events. Both ERK and GSK-3 are known to induce hyperphosphorylation of tau and APP at Thr668, and our findings suggest that aberrant signaling by APP facilitates these events. Supporting this notion, analysis of human AD brain samples showed increased expression of Ras, activation of GSK-3, and phosphorylation of APP and tau, which correlated with Aβ levels in the AD brains. Furthermore, treatment of primary rat neurons with Aβ recapitulated these events and showed enhanced Ras-ERK signaling, GSK-3 activation, upregulation of cyclin D1, and phosphorylation of APP and tau. The finding that Aβ induces Thr668 phosphorylation on APP, which enhances APP proteolysis and Aβ generation, denotes a vicious feedforward mechanism by which APP and Aβ promote tau hyperphosphorylation and neurodegeneration in AD. Based on these results, we hypothesize that aberrant proliferative signaling by APP plays a fundamental role in AD neurodegeneration and that inhibition of this would impede cell cycle deregulation and neurodegeneration observed in AD.
Collapse
Affiliation(s)
- Lisa Kirouac
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Alexander J. Rajic
- Institute for Memory Impairment and Neurological Disorders, Department of Neurology, University of California, Irvine, Irvine, CA 92697-4540
| | - David H. Cribbs
- Institute for Memory Impairment and Neurological Disorders, Department of Neurology, University of California, Irvine, Irvine, CA 92697-4540
| | - Jaya Padmanabhan
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| |
Collapse
|
14
|
Copenhaver PF, Kögel D. Role of APP Interactions with Heterotrimeric G Proteins: Physiological Functions and Pathological Consequences. Front Mol Neurosci 2017; 10:3. [PMID: 28197070 PMCID: PMC5281615 DOI: 10.3389/fnmol.2017.00003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/05/2017] [Indexed: 12/27/2022] Open
Abstract
Following the discovery that the amyloid precursor protein (APP) is the source of β-amyloid peptides (Aβ) that accumulate in Alzheimer’s disease (AD), structural analyses suggested that the holoprotein resembles a transmembrane receptor. Initial studies using reconstituted membranes demonstrated that APP can directly interact with the heterotrimeric G protein Gαo (but not other G proteins) via an evolutionarily G protein-binding motif in its cytoplasmic domain. Subsequent investigations in cell culture showed that antibodies against the extracellular domain of APP could stimulate Gαo activity, presumably mimicking endogenous APP ligands. In addition, chronically activating wild type APP or overexpressing mutant APP isoforms linked with familial AD could provoke Go-dependent neurotoxic responses, while biochemical assays using human brain samples suggested that the endogenous APP-Go interactions are perturbed in AD patients. More recently, several G protein-dependent pathways have been implicated in the physiological roles of APP, coupled with evidence that APP interacts both physically and functionally with Gαo in a variety of contexts. Work in insect models has demonstrated that the APP ortholog APPL directly interacts with Gαo in motile neurons, whereby APPL-Gαo signaling regulates the response of migratory neurons to ligands encountered in the developing nervous system. Concurrent studies using cultured mammalian neurons and organotypic hippocampal slice preparations have shown that APP signaling transduces the neuroprotective effects of soluble sAPPα fragments via modulation of the PI3K/Akt pathway, providing a mechanism for integrating the stress and survival responses regulated by APP. Notably, this effect was also inhibited by pertussis toxin, indicating an essential role for Gαo/i proteins. Unexpectedly, C-terminal fragments (CTFs) derived from APP have also been found to interact with Gαs, whereby CTF-Gαs signaling can promote neurite outgrowth via adenylyl cyclase/PKA-dependent pathways. These reports offer the intriguing perspective that G protein switching might modulate APP-dependent responses in a context-dependent manner. In this review, we provide an up-to-date perspective on the model that APP plays a variety of roles as an atypical G protein-coupled receptor in both the developing and adult nervous system, and we discuss the hypothesis that disruption of these normal functions might contribute to the progressive neuropathologies that typify AD.
Collapse
Affiliation(s)
- Philip F Copenhaver
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Sciences University, Portland OR, USA
| | - Donat Kögel
- Experimental Neurosurgery, Goethe University Frankfurt Frankfurt am Main, Germany
| |
Collapse
|
15
|
Preat T, Goguel V. Role of Drosophila Amyloid Precursor Protein in Memory Formation. Front Mol Neurosci 2016; 9:142. [PMID: 28008309 PMCID: PMC5143682 DOI: 10.3389/fnmol.2016.00142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/28/2016] [Indexed: 12/22/2022] Open
Abstract
The amyloid precursor protein (APP) is a membrane protein engaged in complex proteolytic pathways. APP and its derivatives have been shown to play a central role in Alzheimer’s disease (AD), a progressive neurodegenerative disease characterized by memory decline. Despite a huge effort from the research community, the primary cause of AD remains unclear, making it crucial to better understand the physiological role of the APP pathway in brain plasticity and memory. Drosophila melanogaster is a model system well-suited to address this issue. Although relatively simple, the fly brain is highly organized, sustains several forms of learning and memory, and drives numerous complex behaviors. Importantly, molecules and mechanisms underlying memory processes are conserved from flies to mammals. The fly encodes a single non-essential APP homolog named APP-Like (APPL). Using in vivo inducible RNA interference strategies, it was shown that APPL knockdown in the mushroom bodies (MB)—the central integrative brain structure for olfactory memory—results in loss of memory. Several APPL derivatives, such as secreted and full-length membrane APPL, may play different roles in distinct types of memory phases. Furthermore, overexpression of Drosophila amyloid peptide exacerbates the memory deficit caused by APPL knockdown, thus potentiating memory decline. Data obtained in the fly support the hypothesis that APP acts as a transmembrane receptor, and that disruption of its normal function may contribute to cognitive impairment during early AD.
Collapse
Affiliation(s)
- Thomas Preat
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, Centre National de la Recherche Scientifique (CNRS), ESPCI Paris, PSL Research University Paris, France
| | - Valérie Goguel
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, Centre National de la Recherche Scientifique (CNRS), ESPCI Paris, PSL Research University Paris, France
| |
Collapse
|
16
|
Ramaker JM, Cargill RS, Swanson TL, Quirindongo H, Cassar M, Kretzschmar D, Copenhaver PF. Amyloid Precursor Proteins Are Dynamically Trafficked and Processed during Neuronal Development. Front Mol Neurosci 2016; 9:130. [PMID: 27932950 PMCID: PMC5122739 DOI: 10.3389/fnmol.2016.00130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/10/2016] [Indexed: 01/10/2023] Open
Abstract
Proteolytic processing of the Amyloid Precursor Protein (APP) produces beta-amyloid (Aβ) peptide fragments that accumulate in Alzheimer's Disease (AD), but APP may also regulate multiple aspects of neuronal development, albeit via mechanisms that are not well understood. APP is a member of a family of transmembrane glycoproteins expressed by all higher organisms, including two mammalian orthologs (APLP1 and APLP2) that have complicated investigations into the specific activities of APP. By comparison, insects express only a single APP-related protein (APP-Like, or APPL) that contains the same protein interaction domains identified in APP. However, unlike its mammalian orthologs, APPL is only expressed by neurons, greatly simplifying an analysis of its functions in vivo. Like APP, APPL is processed by secretases to generate a similar array of extracellular and intracellular cleavage fragments, as well as an Aβ-like fragment that can induce neurotoxic responses in the brain. Exploiting the complementary advantages of two insect models (Drosophila melanogaster and Manduca sexta), we have investigated the regulation of APPL trafficking and processing with respect to different aspects of neuronal development. By comparing the behavior of endogenously expressed APPL with fluorescently tagged versions of APPL and APP, we have shown that some full-length protein is consistently trafficked into the most motile regions of developing neurons both in vitro and in vivo. Concurrently, much of the holoprotein is rapidly processed into N- and C-terminal fragments that undergo bi-directional transport within distinct vesicle populations. Unexpectedly, we also discovered that APPL can be transiently sequestered into an amphisome-like compartment in developing neurons, while manipulations targeting APPL cleavage altered their motile behavior in cultured embryos. These data suggest that multiple mechanisms restrict the bioavailability of the holoprotein to regulate APPL-dependent responses within the nervous system. Lastly, targeted expression of our double-tagged constructs (combined with time-lapse imaging) revealed that APP family proteins are subject to complex patterns of trafficking and processing that vary dramatically between different neuronal subtypes. In combination, our results provide a new perspective on how the regulation of APP family proteins can be modulated to accommodate a variety of cell type-specific responses within the embryonic and adult nervous system.
Collapse
Affiliation(s)
- Jenna M Ramaker
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science UniversityPortland, OR, USA; Neuroscience Graduate Program, Oregon Health and Science UniversityPortland, OR, USA
| | - Robert S Cargill
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University Portland, OR, USA
| | - Tracy L Swanson
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University Portland, OR, USA
| | - Hanil Quirindongo
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University Portland, OR, USA
| | - Marlène Cassar
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University Portland, OR, USA
| | - Doris Kretzschmar
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University Portland, OR, USA
| | - Philip F Copenhaver
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University Portland, OR, USA
| |
Collapse
|
17
|
Ramírez VT, Ramos-Fernández E, Henríquez JP, Lorenzo A, Inestrosa NC. Wnt-5a/Frizzled9 Receptor Signaling through the Gαo-Gβγ Complex Regulates Dendritic Spine Formation. J Biol Chem 2016; 291:19092-107. [PMID: 27402827 DOI: 10.1074/jbc.m116.722132] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Indexed: 02/04/2023] Open
Abstract
Wnt ligands play crucial roles in the development and regulation of synapse structure and function. Specifically, Wnt-5a acts as a secreted growth factor that regulates dendritic spine formation in rodent hippocampal neurons, resulting in postsynaptic development that promotes the clustering of the PSD-95 (postsynaptic density protein 95). Here, we focused on the early events occurring after the interaction between Wnt-5a and its Frizzled receptor at the neuronal cell surface. Additionally, we studied the role of heterotrimeric G proteins in Wnt-5a-dependent synaptic development. We report that FZD9 (Frizzled9), a Wnt receptor related to Williams syndrome, is localized in the postsynaptic region, where it interacts with Wnt-5a. Functionally, FZD9 is required for the Wnt-5a-mediated increase in dendritic spine density. FZD9 forms a precoupled complex with Gαo under basal conditions that dissociates after Wnt-5a stimulation. Accordingly, we found that G protein inhibition abrogates the Wnt-5a-dependent pathway in hippocampal neurons. In particular, the activation of Gαo appears to be a key factor controlling the Wnt-5a-induced dendritic spine density. In addition, we found that Gβγ is required for the Wnt-5a-mediated increase in cytosolic calcium levels and spinogenesis. Our findings reveal that FZD9 and heterotrimeric G proteins regulate Wnt-5a signaling and dendritic spines in cultured hippocampal neurons.
Collapse
Affiliation(s)
- Valerie T Ramírez
- From the Centro de Envejecimiento y Regeneración, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
| | - Eva Ramos-Fernández
- From the Centro de Envejecimiento y Regeneración, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
| | - Juan Pablo Henríquez
- the Laboratorio de Neurobiología del Desarrollo, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Núcleo Milenio de Biología Regenerativa, Centro de Microscopía Avanzada, Universidad de Concepción, 4089100 Concepción, Chile
| | - Alfredo Lorenzo
- the Laboratorio de Neuropatología Experimental, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, 5016 Córdoba, Argentina
| | - Nibaldo C Inestrosa
- From the Centro de Envejecimiento y Regeneración, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile, the Center for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, 2031 New South Wales, Australia, and the Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes, 6200000 Punta Arenas, Chile
| |
Collapse
|
18
|
Phosphoinositides: Two-Path Signaling in Neuronal Response to Oligomeric Amyloid β Peptide. Mol Neurobiol 2016; 54:3236-3252. [DOI: 10.1007/s12035-016-9885-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/28/2016] [Indexed: 12/12/2022]
|
19
|
Bourdet I, Lampin-Saint-Amaux A, Preat T, Goguel V. Amyloid-β Peptide Exacerbates the Memory Deficit Caused by Amyloid Precursor Protein Loss-of-Function in Drosophila. PLoS One 2015; 10:e0135741. [PMID: 26274614 PMCID: PMC4537105 DOI: 10.1371/journal.pone.0135741] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 07/26/2015] [Indexed: 11/18/2022] Open
Abstract
The amyloid precursor protein (APP) plays a central role in Alzheimer's disease (AD). APP can undergo two exclusive proteolytic pathways: cleavage by the α-secretase initiates the non-amyloidogenic pathway while cleavage by the β-secretase initiates the amyloidogenic pathway that leads, after a second cleavage by the γ-secretase, to amyloid-β (Aβ) peptides that can form toxic extracellular deposits, a hallmark of AD. The initial events leading to AD are still unknown. Importantly, aside from Aβ toxicity whose molecular mechanisms remain elusive, several studies have shown that APP plays a positive role in memory, raising the possibility that APP loss-of-function may participate to AD. We previously showed that APPL, the Drosophila APP ortholog, is required for associative memory in young flies. In the present report, we provide the first analysis of the amyloidogenic pathway's influence on memory in the adult. We show that transient overexpression of the β-secretase in the mushroom bodies, the center for olfactory memory, did not alter memory. In sharp contrast, β-secretase overexpression affected memory when associated with APPL partial loss-of-function. Interestingly, similar results were observed with Drosophila Aβ peptide. Because Aβ overexpression impaired memory only when combined to APPL partial loss-of-function, the data suggest that Aβ affects memory through the APPL pathway. Thus, memory is altered by two connected mechanisms-APPL loss-of-function and amyloid peptide toxicity-revealing in Drosophila a functional interaction between APPL and amyloid peptide.
Collapse
Affiliation(s)
- Isabelle Bourdet
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI-ParisTech, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Aurélie Lampin-Saint-Amaux
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI-ParisTech, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Thomas Preat
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI-ParisTech, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
- * E-mail: (VG); (TP)
| | - Valérie Goguel
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI-ParisTech, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
- * E-mail: (VG); (TP)
| |
Collapse
|
20
|
Canobbio I, Abubaker AA, Visconte C, Torti M, Pula G. Role of amyloid peptides in vascular dysfunction and platelet dysregulation in Alzheimer's disease. Front Cell Neurosci 2015; 9:65. [PMID: 25784858 PMCID: PMC4347625 DOI: 10.3389/fncel.2015.00065] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/11/2015] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative cause of dementia in the elderly. AD is accompanied by the accumulation of amyloid peptides in the brain parenchyma and in the cerebral vessels. The sporadic form of AD accounts for about 95% of all cases. It is characterized by a late onset, typically after the age of 65, with a complex and still poorly understood aetiology. Several observations point towards a central role of cerebrovascular dysfunction in the onset of sporadic AD (SAD). According to the "vascular hypothesis", AD may be initiated by vascular dysfunctions that precede and promote the neurodegenerative process. In accordance to this, AD patients show increased hemorrhagic or ischemic stroke risks. It is now clear that multiple bidirectional connections exist between AD and cerebrovascular disease, and in this new scenario, the effect of amyloid peptides on vascular cells and blood platelets appear to be central to AD. In this review, we analyze the effect of amyloid peptides on vascular function and platelet activation and its contribution to the cerebrovascular pathology associated with AD and the progression of this disease.
Collapse
Affiliation(s)
- Ilaria Canobbio
- Department of Biology and Biotechnology, Unit of Biochemistry, University of Pavia Pavia, Italy
| | - Aisha Alsheikh Abubaker
- Department of Biology and Biotechnology, Unit of Biochemistry, University of Pavia Pavia, Italy
| | - Caterina Visconte
- Department of Biology and Biotechnology, Unit of Biochemistry, University of Pavia Pavia, Italy
| | - Mauro Torti
- Department of Biology and Biotechnology, Unit of Biochemistry, University of Pavia Pavia, Italy
| | - Giordano Pula
- Department of Biology and Biotechnology, Unit of Biochemistry, University of Pavia Pavia, Italy
| |
Collapse
|
21
|
Wang Y, Zhu N, Wang K, Zhang Z, Wang Y. Identification of α7 nicotinic acetylcholine receptor on hippocampal astrocytes cultured in vitro and its role on inflammatory mediator secretion. Neural Regen Res 2015; 7:1709-14. [PMID: 25624792 PMCID: PMC4302451 DOI: 10.3969/j.issn.1673-5374.2012.22.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 06/13/2012] [Indexed: 12/11/2022] Open
Abstract
The present study found expressions of α7 nicotinic acetylcholine receptor on hippocampal slices and hippocampal astrocytes using double immunofluorescence stainings. Expression of glial fibrillary acidic protein in the cultured hippocampal slices and hippocampal astrocytes significantly increased, and levels of macrophage inflammatory protein 1α, RANTES, interleukin-1β, interleukin-6, and tumor necrosis factor-α increased in the supernatant of cultured astrocytes following exposure to 200 nM amyloid β protein 1–42. Preconditioning of 10 μM nicotine, a nicotinic acetylcholine receptor agonist, could attenuate the influence of amyloid β protein 1–42 in inflammatory mediator secretion of cultured astrocytes. Experimental findings indicated that α7 nicotinic acetylcholine receptor was expressed on the surface of hippocampal astrocytes, and activated α7 nicotinic acetylcholine receptor was shown to inhibit inflammation induced by amyloid β protein 1–42.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China ; Department of Pharmacy, the 458 Hospital of Chinese PLA, Guangzhou 510602, Guangdong Province, China
| | - Ning Zhu
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Kewan Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510602, Guangdong Province, China
| | - Zhongyi Zhang
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Yong Wang
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| |
Collapse
|
22
|
Weyer SW, Zagrebelsky M, Herrmann U, Hick M, Ganss L, Gobbert J, Gruber M, Altmann C, Korte M, Deller T, Müller UC. Comparative analysis of single and combined APP/APLP knockouts reveals reduced spine density in APP-KO mice that is prevented by APPsα expression. Acta Neuropathol Commun 2014; 2:36. [PMID: 24684730 PMCID: PMC4023627 DOI: 10.1186/2051-5960-2-36] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 03/07/2014] [Indexed: 11/21/2022] Open
Abstract
Synaptic dysfunction and synapse loss are key features of Alzheimer's pathogenesis. Previously, we showed an essential function of APP and APLP2 for synaptic plasticity, learning and memory. Here, we used organotypic hippocampal cultures to investigate the specific role(s) of APP family members and their fragments for dendritic complexity and spine formation of principal neurons within the hippocampus. Whereas CA1 neurons from APLP1-KO or APLP2-KO mice showed normal neuronal morphology and spine density, APP-KO mice revealed a highly reduced dendritic complexity in mid-apical dendrites. Despite unaltered morphology of APLP2-KO neurons, combined APP/APLP2-DKO mutants showed an additional branching defect in proximal apical dendrites, indicating redundancy and a combined function of APP and APLP2 for dendritic architecture. Remarkably, APP-KO neurons showed a pronounced decrease in spine density and reductions in the number of mushroom spines. No further decrease in spine density, however, was detectable in APP/APLP2-DKO mice. Mechanistically, using APPsα-KI mice lacking transmembrane APP and expressing solely the secreted APPsα fragment we demonstrate that APPsα expression alone is sufficient to prevent the defects in spine density observed in APP-KO mice. Collectively, these studies reveal a combined role of APP and APLP2 for dendritic architecture and a unique function of secreted APPs for spine density.
Collapse
Affiliation(s)
- Sascha W Weyer
- Department of Bioinformatics and Functional Genomics, Ruprecht-Karls University Heidelberg, Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, Heidelberg D-69120, Germany
| | - Marta Zagrebelsky
- TU Braunschweig, Zoological Institute, Cellular Neurobiology, Spielmannstr. 7, Braunschweig D-38106, Germany
| | - Ulrike Herrmann
- TU Braunschweig, Zoological Institute, Cellular Neurobiology, Spielmannstr. 7, Braunschweig D-38106, Germany
| | - Meike Hick
- Department of Bioinformatics and Functional Genomics, Ruprecht-Karls University Heidelberg, Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, Heidelberg D-69120, Germany
| | - Lennard Ganss
- Department of Bioinformatics and Functional Genomics, Ruprecht-Karls University Heidelberg, Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, Heidelberg D-69120, Germany
- Present address: Department of Applied Tumor Biology, Ruprecht-Karls University Heidelberg, Institute of Pathology, University of Heidelberg, Heidelberg D-69120, Germany
| | - Julia Gobbert
- Department of Bioinformatics and Functional Genomics, Ruprecht-Karls University Heidelberg, Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, Heidelberg D-69120, Germany
| | - Morna Gruber
- Goethe University Frankfurt, Institute of Clinical Neuroanatomy, Neuroscience Center, Theodor-Stern-Kai 7, Frankfurt am Main D-60596, Germany
| | - Christine Altmann
- Goethe University Frankfurt, Institute of Clinical Neuroanatomy, Neuroscience Center, Theodor-Stern-Kai 7, Frankfurt am Main D-60596, Germany
| | - Martin Korte
- TU Braunschweig, Zoological Institute, Cellular Neurobiology, Spielmannstr. 7, Braunschweig D-38106, Germany
| | - Thomas Deller
- Goethe University Frankfurt, Institute of Clinical Neuroanatomy, Neuroscience Center, Theodor-Stern-Kai 7, Frankfurt am Main D-60596, Germany
| | - Ulrike C Müller
- Department of Bioinformatics and Functional Genomics, Ruprecht-Karls University Heidelberg, Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, Heidelberg D-69120, Germany
| |
Collapse
|
23
|
Amyloid precursor proteins interact with the heterotrimeric G protein Go in the control of neuronal migration. J Neurosci 2013; 33:10165-81. [PMID: 23761911 DOI: 10.1523/jneurosci.1146-13.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Amyloid precursor protein (APP) belongs to a family of evolutionarily conserved transmembrane glycoproteins that has been proposed to regulate multiple aspects of cell motility in the nervous system. Although APP is best known as the source of β-amyloid fragments (Aβ) that accumulate in Alzheimer's disease, perturbations affecting normal APP signaling events may also contribute to disease progression. Previous in vitro studies showed that interactions between APP and the heterotrimeric G protein Goα-regulated Goα activity and Go-dependent apoptotic responses, independent of Aβ. However, evidence for authentic APP-Go interactions within the healthy nervous system has been lacking. To address this issue, we have used a combination of in vitro and in vivo strategies to show that endogenously expressed APP family proteins colocalize with Goα in both insect and mammalian nervous systems, including human brain. Using biochemical, pharmacological, and Bimolecular Fluorescence Complementation assays, we have shown that insect APP (APPL) directly interacts with Goα in cell culture and at synaptic terminals within the insect brain, and that this interaction is regulated by Goα activity. We have also adapted a well characterized assay of neuronal migration in the hawkmoth Manduca to show that perturbations affecting APPL and Goα signaling induce the same unique pattern of ectopic, inappropriate growth and migration, analogous to defective migration patterns seen in mice lacking all APP family proteins. These results support the model that APP and its orthologs regulate conserved aspects of neuronal migration and outgrowth in the nervous system by functioning as unconventional Goα-coupled receptors.
Collapse
|
24
|
Amyloid β precursor protein as a molecular target for amyloid β--induced neuronal degeneration in Alzheimer's disease. Neurobiol Aging 2013; 34:2525-37. [PMID: 23714735 DOI: 10.1016/j.neurobiolaging.2013.04.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/17/2013] [Accepted: 04/20/2013] [Indexed: 11/23/2022]
Abstract
A role of amyloid β (Aβ) peptide aggregation and deposition in Alzheimer's disease (AD) pathogenesis is widely accepted. Significantly, abnormalities induced by aggregated Aβ have been linked to synaptic and neuritic degeneration, consistent with the "dying-back" pattern of degeneration that characterizes neurons affected in AD. However, molecular mechanisms underlying the toxic effect of aggregated Aβ remain elusive. In the last 2 decades, a variety of aggregated Aβ species have been identified and their toxic properties demonstrated in diverse experimental systems. Concurrently, specific Aβ assemblies have been shown to interact and misregulate a growing number of molecular effectors with diverse physiological functions. Such pleiotropic effects of aggregated Aβ posit a mayor challenge for the identification of the most cardinal Aβ effectors relevant to AD pathology. In this review, we discuss recent experimental evidence implicating amyloid β precursor protein (APP) as a molecular target for toxic Aβ assemblies. Based on a significant body of pathologic observations and experimental evidence, we propose a novel pathologic feed-forward mechanism linking Aβ aggregation to abnormalities in APP processing and function, which in turn would trigger the progressive loss of neuronal connectivity observed early in AD.
Collapse
|
25
|
Nalivaeva NN, Turner AJ. The amyloid precursor protein: a biochemical enigma in brain development, function and disease. FEBS Lett 2013; 587:2046-54. [PMID: 23684647 DOI: 10.1016/j.febslet.2013.05.010] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/06/2013] [Accepted: 05/06/2013] [Indexed: 12/11/2022]
Abstract
For 20 years the amyloid cascade hypothesis of Alzheimer disease (AD) has placed the amyloid-β peptide (Aβ), formed from the amyloid precursor protein (APP), centre stage in the process of neurodegeneration. However, no new therapeutic agents have reached the clinic through exploitation of the hypothesis. The APP metabolites, including Aβ, generated by its proteolytic processing, have distinct physiological functions. In particular, the cleaved intracellular domain of APP (AICD) regulates expression of several genes, including APP itself, the β-secretase BACE-1 and the Aβ-degrading enzyme, neprilysin and this transcriptional regulation involves direct promoter binding of AICD. Of the three major splice isoforms of APP (APP695, APP751, APP770), APP695 is the predominant neuronal form, from which Aβ and transcriptionally-active AICD are preferentially generated by selective processing through the amyloidogenic pathway. Despite intensive research, the normal functions of the APP isoforms remain an enigma. APP plays an important role in brain development, memory and synaptic plasticity and secreted forms of APP are neuroprotective. A fuller understanding of the physiological and pathological actions of APP and its metabolic and gene regulatory network could provide new therapeutic opportunities in neurodegeneration, including AD.
Collapse
Affiliation(s)
- Natalia N Nalivaeva
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | | |
Collapse
|
26
|
Brunholz S, Sisodia S, Lorenzo A, Deyts C, Kins S, Morfini G. Axonal transport of APP and the spatial regulation of APP cleavage and function in neuronal cells. Exp Brain Res 2012; 217:353-64. [PMID: 21960299 PMCID: PMC3670699 DOI: 10.1007/s00221-011-2870-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 09/07/2011] [Indexed: 12/12/2022]
Abstract
Over two decades have passed since the original discovery of amyloid precursor protein (APP). While physiological function(s) of APP still remain a matter of debate, consensus exists that the proteolytic processing of this protein represents a critical event in the life of neurons and that abnormalities in this process are instrumental in Alzheimer's disease (AD) pathogenesis. Specific molecular components involved in APP proteolysis have been identified, and their enzymatic activities characterized in great detail. As specific proteolytic fragments of APP are identified and novel physiological effects for these fragments are revealed, more obvious becomes our need to understand the spatial organization of APP proteolysis. Valuable insights on this process have been obtained through the study of non-neuronal cells. However, much less is known about the topology of APP processing in neuronal cells, which are characterized by their remarkably complex cellular architecture and extreme degree of polarization. In this review, we discuss published literature addressing various molecular mechanisms and components involved in the trafficking and subcellular distribution of APP and APP secretases in neurons. These include the relevant machinery involved in their sorting, the identity of membranous organelles in which APP is transported, and the molecular motor-based mechanisms involved in their translocation. We also review experimental evidence specifically addressing the processing of APP at the axonal compartment. Understanding neuron-specific mechanisms of APP processing would help illuminating the physiological roles of APP-derived proteolytic fragments and provide novel insights on AD pathogenesis.
Collapse
Affiliation(s)
- Silke Brunholz
- Department of Human Biology and Human Genetics, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Novel GαS-protein signaling associated with membrane-tethered amyloid precursor protein intracellular domain. J Neurosci 2012; 32:1714-29. [PMID: 22302812 DOI: 10.1523/jneurosci.5433-11.2012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Numerous physiological functions, including a role as a cell surface receptor, have been ascribed to Alzheimer's disease-associated amyloid precursor protein (APP). However, detailed analysis of intracellular signaling mediated by APP in neurons has been lacking. Here, we characterized intrinsic signaling associated with membrane-bound APP C-terminal fragments, which are generated following APP ectodomain release by α- or β-secretase cleavage. We found that accumulation of APP C-terminal fragments or expression of membrane-tethered APP intracellular domain results in adenylate cyclase-dependent activation of PKA (protein kinase A) and inhibition of GSK3β signaling cascades, and enhancement of axodendritic arborization in rat immortalized hippocampal neurons, mouse primary cortical neurons, and mouse neuroblastoma. We discovered an interaction between BBXXB motif of APP intracellular domain and the heterotrimeric G-protein subunit Gα(S), and demonstrate that Gα(S) coupling to adenylate cyclase mediates membrane-tethered APP intracellular domain-induced neurite outgrowth. Our study provides clear evidence that APP intracellular domain can have a nontranscriptional role in regulating neurite outgrowth through its membrane association. The novel functional coupling of membrane-bound APP C-terminal fragments with Gα(S) signaling identified in this study could impact several brain functions such as synaptic plasticity and memory formation.
Collapse
|
28
|
Kedikian G, Heredia F, Salvador VR, Raimunda D, Isoardi N, Heredia L, Lorenzo A. Secreted amyloid precursor protein and holo-APP bind amyloid beta through distinct domains eliciting different toxic responses on hippocampal neurons. J Neurosci Res 2010; 88:1795-803. [PMID: 20155808 DOI: 10.1002/jnr.22347] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Amyloid beta (Abeta) is a metabolic product of Abeta precursor protein (APP). Deposition of Abeta in the brain and neuronal degeneration are characteristic hallmarks of Alzheimer's disease (AD). Abeta induces neuronal degeneration, but the mechanism of neurotoxicity remains elusive. Increasing evidence implicates APP as a receptor-like protein for Abeta fibrils (fAbeta). In this study, we present further experimental support for the direct interaction of APP with fAbeta and for its involvement in Abeta neurotoxicity. Using recombinant purified holo-APP (h-APP), we have shown that it directly binds fAbeta. Employing deletion mutant forms of APP, we show that two different sequences are involved in the binding of APP to fAbeta. One sequence in the n-terminus of APP is required for binding of fAbeta to secreted APP (s-APP) but not to h-APP. In addition, the extracellular juxtamembrane Abeta-sequence mediates binding of fAbeta to h-APP but not to s-APP. Deletion of the extracellular juxtamembrane Abeta sequence abolishes abnormal h-APP accumulation and toxicity induced by fAbeta deposition, whereas deletions in the n-terminus of APP do not affect Abeta toxicity. These experiments show that interaction of toxic Abeta species with its membrane-anchored parental protein promotes toxicity in hippocampal neurons, adding further support to an Abeta-receptor-like function of APP directly implicated in neuronal degeneration in AD.
Collapse
Affiliation(s)
- Gabriela Kedikian
- Laboratory of Experimental Neuropathology, Instituto de Investigación Médica "Mercedes y Martín Ferreyra," INIMEC-CONICET, Córdoba, Argentina
| | | | | | | | | | | | | |
Collapse
|
29
|
Granic A, Padmanabhan J, Norden M, Potter H. Alzheimer Abeta peptide induces chromosome mis-segregation and aneuploidy, including trisomy 21: requirement for tau and APP. Mol Biol Cell 2009; 21:511-20. [PMID: 20032300 PMCID: PMC2820417 DOI: 10.1091/mbc.e09-10-0850] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Chromosome aneuploidy, especially trisomy 21, arises in both familial and sporadic Alzheimer's disease. Expression of FAD genes or exposure to Aβ peptide induces aneuploidy in tg-mice and cultured cells. The requirement for GSK-3β, calpain, and Tau in Aβ-induced chromosome mis-segregation points to MT dysfunction as contributing to AD pathogenesis. Both sporadic and familial Alzheimer's disease (AD) patients exhibit increased chromosome aneuploidy, particularly trisomy 21, in neurons and other cells. Significantly, trisomy 21/Down syndrome patients develop early onset AD pathology. We investigated the mechanism underlying mosaic chromosome aneuploidy in AD and report that FAD mutations in the Alzheimer Amyloid Precursor Protein gene, APP, induce chromosome mis-segregation and aneuploidy in transgenic mice and in transfected cells. Furthermore, adding synthetic Aβ peptide, the pathogenic product of APP, to cultured cells causes rapid and robust chromosome mis-segregation leading to aneuploid, including trisomy 21, daughters, which is prevented by LiCl addition or Ca2+ chelation and is replicated in tau KO cells, implicating GSK-3β, calpain, and Tau-dependent microtubule transport in the aneugenic activity of Aβ. Furthermore, APP KO cells are resistant to the aneugenic activity of Aβ, as they have been shown previously to be resistant to Aβ-induced tau phosphorylation and cell toxicity. These results indicate that Aβ-induced microtubule dysfunction leads to aneuploid neurons and may thereby contribute to the pathogenesis of AD.
Collapse
Affiliation(s)
- Antoneta Granic
- Eric Pfeiffer Suncoast Alzheimer's Center, University of South Florida, Tampa FL, 33613, USA
| | | | | | | |
Collapse
|
30
|
Shaked GM, Chauv S, Ubhi K, Hansen LA, Masliah E. Interactions between the amyloid precursor protein C-terminal domain and G proteins mediate calcium dysregulation and amyloid beta toxicity in Alzheimer's disease. FEBS J 2009; 276:2736-51. [PMID: 19368557 PMCID: PMC2838422 DOI: 10.1111/j.1742-4658.2009.06997.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease is characterized by neuropathological accumulations of amyloid beta(1-42) [A beta(1-42)], a cleavage product of the amyloid precursor protein (APP). Recent studies have highlighted the role of APP in A beta-mediated toxicity and have implicated the G-protein system; however, the exact mechanisms underlying this pathway are as yet undetermined. In this context, we sought to investigate the role of calcium upregulation following APP-dependent, A beta-mediated G-protein activation. Initial studies on the interaction between APP, A beta and Go proteins demonstrated that the interaction between APP, specifically its C-terminal -YENPTY- region, and Go was reduced in the presence of A beta. Cell death and calcium influx in A beta-treated cells were shown to be APP dependent and to involve G-protein activation because these effects were blocked by use of the G-protein inhibitor, pertussis toxin. Collectively, these results highlight a role for the G-protein system in APP-dependent, A beta-induced toxicity and calcium dysregulation. Analysis of the APP:Go interaction in human brain samples from Alzheimer's disease patients at different stages of the disease revealed a decrease in the interaction, correlating with disease progression. Moreover, the reduced interaction between APP and Go was shown to correlate with an increase in membrane A beta levels and G-protein activity, showing for first time that the APP:Go interaction is present in humans and is responsive to A beta load. The results presented support a role for APP in A beta-induced G-protein activation and suggest a mechanism by which basal APP binding to Go is reduced under pathological loads of A beta, liberating Go and activating the G-protein system, which may in turn result in downstream effects including calcium dysregulation. These results also suggest that specific antagonists of G-protein activity may have a therapeutic relevance in Alzheimer's disease.
Collapse
Affiliation(s)
- Gideon M Shaked
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093-0624, USA
| | | | | | | | | |
Collapse
|
31
|
Singh OV, Yaster M, Xu JT, Guan Y, Guan X, Dharmarajan AM, Raja SN, Zeitlin PL, Tao YX. Proteome of synaptosome-associated proteins in spinal cord dorsal horn after peripheral nerve injury. Proteomics 2009; 9:1241-53. [PMID: 19206110 PMCID: PMC2768229 DOI: 10.1002/pmic.200800636] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Indexed: 12/29/2022]
Abstract
Peripheral nerve injury may lead to neuroadaptive changes of cellular signals in spinal cord that are thought to contribute to central mechanisms underlying neuropathic pain. Here we used a 2-DE-based proteomic technique to determine the global expression changes of synaptosome-associated proteins in spinal cord dorsal horn after unilateral fifth spinal nerve injury (SNI). The fifth lumbar dorsal horns ipsilateral to SNI or sham surgery were harvested on day 14 post-surgery, and the total soluble and synaptosomal fractions were isolated. The proteins derived from the synaptosomal fraction were resolved by 2-DE. We identified 27 proteins that displayed different expression levels after SNI, including proteins involved in transmission and modulation of noxious information, cellular metabolism, membrane receptor trafficking, oxidative stress, apoptosis, and degeneration. Six of the 27 proteins were chosen randomly and further validated in the synaptosomal fraction by Western blot analysis. Unexpectedly, Western blot analysis showed that only one protein in the total soluble fraction exhibited a significant expression change after SNI. The data indicate that peripheral nerve injury changes not only protein expression but also protein subcellular distribution in dorsal horn cells. These changes might participate in the central mechanism that underlies the maintenance of neuropathic pain.
Collapse
Affiliation(s)
- Om V Singh
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Bruce A Yankner
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
33
|
Itoh T, Satou T, Nishida S, Tsubaki M, Hashimoto S, Ito H. Improvement of cerebral function by anti-amyloid precursor protein antibody infusion after traumatic brain injury in rats. Mol Cell Biochem 2009; 324:191-9. [PMID: 19130181 DOI: 10.1007/s11010-008-0013-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 12/30/2008] [Indexed: 10/21/2022]
Abstract
We previously demonstrated the increased amyloid precursor protein (APP) immunoreactivity around the site of damage after traumatic brain injury (TBI). However, the function of APP after TBI has not been evaluated. In this study, we investigated the effects of direct infusion of an anti-APP antibody into the damaged brain region on cerebral function and morphological changes following TBI in rats. Three days after TBI, there were many TUNEL-positive neurons and astrocytes around the damaged region and a significantly greater number of TUNEL-positive cells in the PBS group compared with the anti-APP group found. Seven days after TBI, there were significantly a greater number of large glial fibrillary acidic protein-positive cells, long elongated projections, and microtubule-associated protein-2-positive cells around the damaged region in the anti-APP group compared with the PBS group found. Seven days after TBI, the region of brain damage was significantly smaller and the time to arrival at a platform was significantly shorter in the anti-APP group compared with the PBS group. Furthermore, after TBI in the anti-APP group, the time to arrival at the platform recovered to that observed in uninjured sham operation group rats. These data suggest that the overproduction of APP after TBI inhibits astrocyte activity and reduces neural cell survival around the damaged brain region, which speculatively may be related to the induction of Alzheimer disease-type dementia after TBI.
Collapse
Affiliation(s)
- Tatsuki Itoh
- Department of Pathology, Kinki University School of Medicine, 377-2 Ohno-higashi, Osakasayama-shi, Osaka, 589-8511, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
The proteolytic processing of amyloid beta precursor protein (APP) has long been studied because of its association with the pathology of Alzheimer's disease (AD). The ectodomain of APP is shed by alpha- or beta-secretase cleavage. The remaining membrane bound stub can then undergo regulated intramembrane proteolysis (RIP) by gamma-secretase. This cleavage can release amyloid beta (Abeta) from the stub left by beta-secretase cleavage but also releases the APP intracellular domain (AICD) after alpha- or beta-secretase cleavage. The physiological functions of this proteolytic processing are not well understood. We compare the proteolytic processing of APP to the ligand-dependent RIP of Notch. In this review, we discuss recent evidence suggesting that TAG1 is a functional ligand for APP. The interaction between TAG1 and APP triggers gamma-secretase-dependent release of AICD. TAG1, APP and Fe65 colocalise in the neurogenic ventricular zone and in fetal neural progenitor cells in vitro. Experiments in TAG1, APP and Fe65 null mice as well as TAG1 and APP double-null mice demonstrate that TAG1 induces a gamma-secretase- and Fe65-dependent suppression of neurogenesis.
Collapse
Affiliation(s)
- Quan-Hong Ma
- Institute of Molecular and Cell Biology, Singapore
| | | | | | | |
Collapse
|