1
|
Hu Z, Zhu X, Liang Y, Zhang Y, Zheng P, Zhang X. Levo-Stepholidine as a Potential Cognitive Enhancer: Insights into Executive Function and Memory Improvements. Biomedicines 2024; 12:2680. [PMID: 39767588 PMCID: PMC11727210 DOI: 10.3390/biomedicines12122680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND/OBJECTIVES Levo-Stepholidine (l-SPD), a compound extracted from Chinese herbs, has the potential to treat psychotic disorders where cognitive deficits are a critical challenge. L-SPD displays a D1R agonism/D2R antagonism pharmacological profile, and its effect on cognitive function is still vague and lacks comprehensive study. Here, we investigated the impact of l-SPD on two core indexes of executive function, working memory and response inhibition, and learning and memory. METHODS Using a delayed alternation T-maze task (DAT), we investigated the impact of l-SPD on working memory, evaluated its effect on response inhibition using the stop-signal task (SST), and assessed the impact on learning and memory using trace fear conditioning in Sprague-Dawley rats. We further evaluated its effects on prefrontal glutamate receptor expression using western blot. RESULTS Rats receiving l-SPD made fewer errors in the T-maze, exhibited faster stop action in response to the stop signal, and showed longer-lasting memory retention. Molecular mechanism investigations reveal that l-SPD upregulates the expression of prefrontal glutamate receptors. These results demonstrate that l-SPD improves executive function and memory. CONCLUSIONS Here, we show the enhancement effect of l-SPD on cognitive function, which provides essential implicants for the treatment of cognitive deficits, which is a critical unmet need in psychiatric care.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuehan Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
A review: traditional herbs and remedies impacting pathogenesis of Parkinson's disease. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:495-513. [PMID: 35258640 DOI: 10.1007/s00210-022-02223-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/15/2022] [Indexed: 12/27/2022]
Abstract
Parkinson's disease (PD) is characterized by progressive degeneration of dopaminergic neurons, leading to misbalance and loss of coordination. Current therapies are claimed only for symptomatic relief, on long-term use, which causes alteration in basal ganglia, and give rise to various adverse effects like dyskinesia and extra pyramidal side effects, which is reversed and proved to be attenuated with the help of various herbal approaches. Therefore, in order to attenuate the dopaminergic complications, focus of current research has been shifted from dopaminergic to non-dopaminergic strategies. Herbs and herbal remedies seems to be a better option to overcome the complications associated with current dopaminergic therapies. In recent years, various herbs and herbal remedies based on Ayurveda, traditional Chinese and Korean remedies, have become the target of various researches. These herbs and their bioactive compound are being extensively used to treat PD in India, China, Japan, and Korea. The major focus of this current review is to analyze preclinical studies with reference to various herbs, bioactive compounds, and traditional remedies for the management of Parkinson disorder, which will give an insight towards clinical trials.
Collapse
|
3
|
Huang YB, Ma ZG, Zheng C, Ma XKK, Taylor DH, Gao M, Lukas RJ, Wu J. Levo-tetrahydropalmatine inhibits α4β2 nicotinic receptor response to nicotine in cultured SH-EP1 cells. Acta Pharmacol Sin 2022; 43:889-896. [PMID: 34253876 PMCID: PMC8975845 DOI: 10.1038/s41401-021-00709-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/30/2021] [Indexed: 02/05/2023]
Abstract
Nicotine, a major component of tobacco, is highly addictive and acts on nicotinic acetylcholine receptors (nAChRs) to stimulate reward-associated circuits in the brain. It is well known that nAChRs play critical roles in mediating nicotine reward and addiction. Current FDA-approved medications for smoking cessation are the antidepressant bupropion and the nicotinic partial agonist varenicline, yet both are limited by adverse side effects and moderate efficacy. Thus, development of more efficacious medications with fewer side effects for nicotine addiction and smoking cessation is urgently needed. l-Tetrahydropalmatine (l-THP) is an active ingredient of the Chinese medicinal herb Corydalis ambigua that possesses rich neuropharmacological actions on dopamine (DA) receptors in the mesocorticolimbic dopaminergic reward pathway. L-THP has been explored as anti-addiction treatments for drug abuse including nicotine. However, the targets and mechanisms of l-THP-caused anti-nicotine effects are largely unknown. In this study we address this question by elucidating the effects of l-THP on human neuronal nAChRs using patch-clamp recordings. Human neuronal α4β2-nAChRs were heterologously expressed in SH-EP1 human epithelial cells. Bath application of nicotine (0.1-100 μM) induced inward currents, co-application of l-THP (3 μM) inhibited nicotine-induced currents in the transfected cells. L-THP-caused inhibition was concentration-dependent (the EC50 values for inhibiting the peak and steady-state current were 18 and 2.1 μM, respectively) and non-competitive. Kinetic analysis of the whole-cell currents showed that l-THP slowed rising time and accelerated decay time constants. L-THP specifically modulated α4β2-nAChRs, as it did not affect α7-nAChRs or α1*-nAChRs (muscle type). Interestingly, two putative α4β2-nAChR isoforms, namely sazetidine A-activated, high-sensitive one (α42β23-nAChR) and cytisine-activated, low-sensitive one (α43β22-nAChR) were pharmacologically separated, and the low-sensitive one was more susceptible to l-THP inhibition than the high-sensitive one. In conclusion, we demonstrate that l-THP blocks neuronal α4β2-nAChR function, which may underlie its inhibition on nicotine addiction.
Collapse
Affiliation(s)
- Yuan-Bing Huang
- Department of Neurology, Yunfu People's Hospital, Yunfu, 527300, China
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Ze-Gang Ma
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
- Electrophysiology Laboratory, Wannan Medical College, Wuhu, 695011, China
| | - Chao Zheng
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
- Institution of Brain Sciences and Diseases, Qingdao University, Qingdao, 266071, China
| | - Xiao-Kuang K Ma
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Devin H Taylor
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
- Department of Biology, Utah Valley University, Orem, UT, 84058, USA
| | - Ming Gao
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Ronald J Lukas
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Jie Wu
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA.
- Institution of Brain Sciences and Diseases, Qingdao University, Qingdao, 266071, China.
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
4
|
Plazas E, Avila M MC, Muñoz DR, Cuca S LE. Natural isoquinoline alkaloids: Pharmacological features and multi-target potential for complex diseases. Pharmacol Res 2022; 177:106126. [DOI: 10.1016/j.phrs.2022.106126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022]
|
5
|
Cordone P, Namballa HK, Harding WW. First synthesis of thiazepino[3,4‐a]isoquinolines, a facile new synthetic route to diazepino[3,4‐a]isoquinolines and assessment of their dopamine and σ receptor affinities. J Heterocycl Chem 2020; 57:3709-3713. [DOI: 10.1002/jhet.4086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Pierpaolo Cordone
- Department of Chemistry Hunter College, City University of New York New York New York USA
- Ph.D. Program in Biochemistry CUNY Graduate Center New York New York USA
| | - Hari Krishna Namballa
- Department of Chemistry Hunter College, City University of New York New York New York USA
| | - Wayne Wesley Harding
- Department of Chemistry Hunter College, City University of New York New York New York USA
- Ph.D. Program in Biochemistry CUNY Graduate Center New York New York USA
- Ph.D. Program in Chemistry CUNY Graduate Center New York New York USA
| |
Collapse
|
6
|
Farajdokht F, Sadigh-Eteghad S, Majdi A, Pashazadeh F, Vatandoust SM, Ziaee M, Safari F, Karimi P, Mahmoudi J. Serotonergic system modulation holds promise for L-DOPA-induced dyskinesias in hemiparkinsonian rats: A systematic review. EXCLI JOURNAL 2020; 19:268-295. [PMID: 32327954 PMCID: PMC7174586 DOI: 10.17179/excli2020-1024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/24/2020] [Indexed: 11/10/2022]
Abstract
The alleged effects of serotonergic agents in alleviating levodopa-induced dyskinesias (LIDs) in parkinsonian patients are debatable. To this end, we systematically reviewed the serotonergic agents used for the treatment of LIDs in a 6-hydroxydopamine model of Parkinson's disease in rats. We searched MEDLINE via PubMed, Embase, Google Scholar, and Proquest for entries no later than March 2018, and restricted the search to publications on serotonergic agents used for the treatment of LIDs in hemiparkinsonian rats. The initial search yielded 447 citations, of which 49 articles and one conference paper met our inclusion criteria. The results revealed ten different categories of serotonergic agents, including but not limited to 5-HT1A/BR agonists, 5-HT2AR antagonists, selective serotonin reuptake inhibitors (SSRIs), serotonin-norepinephrine reuptake inhibitor (SNRIs), and tricyclic antidepressants (TCAs), all of which improved LIDs without imposing considerable adverse effects. Although there is promising evidence regarding the role of these agents in relieving LIDs in hemiparkinsonian rats, further studies are needed for the enlightenment of hidden aspect of these molecules in terms of mechanisms and outcomes. Given this, improving the quality of the pre-clinical studies and designing appropriate clinical trials will help fill the bench-to-bedside gap.
Collapse
Affiliation(s)
- Fereshteh Farajdokht
- Research Center for Evidence-Based Medicine (EBM), Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Majdi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Pashazadeh
- Research Center for Evidence-Based Medicine (EBM), Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Iranian Evidence-Based Medicine (EBM) Center, a Joanna Briggs Institute Affiliated Group
| | | | - Mojtaba Ziaee
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Phytopharmacology Research Center, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Fatemeh Safari
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pouran Karimi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Lu DS, Chen C, Zheng YX, Li DD, Wang GQ, Liu J, Shi J, Zhang F. Combination Treatment of Icariin and L-DOPA Against 6-OHDA-Lesioned Dopamine Neurotoxicity. Front Mol Neurosci 2018; 11:155. [PMID: 29867347 PMCID: PMC5964195 DOI: 10.3389/fnmol.2018.00155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/24/2018] [Indexed: 12/16/2022] Open
Abstract
Until now, the dopamine (DA) precursor, L-3,4-dihydroxyphenylalanine (L-DOPA), remains the gold standard effective drug therapy for Parkinson’s disease (PD) patients. Nevertheless, long-term chronic L-DOPA administration leads to the drug efficacy loss and severe adverse effects, such as L-DOPA-induced dyskinesia (LID). Icariin (ICA), a flavonoid that is extracted from Epimedium, has been proved to evoke neuroprotection against DA neuronal loss in PD animal models. Here, the present study detected the effects of ICA combined with L-DOPA on 6-hydroxydopamine (6-OHDA)-elicited DA neurotoxicity and L-DOPA-induced motor dysfunction as well. PC12 cells were applied to investigate the combination treatment of ICA and L-DOPA against 6-OHDA-lesioned neurotoxicity. In addition, rat substantia nigral stereotaxic injection of 6-OHDA-induced DA neuronal injury was performed to explore the neuroprotective effects mediated by ICA combined with L-DOPA. The pathological movement triggered by L-DOPA was determined by the abnormal involuntary movements (AIM) scores analysis. In PC12 cells, ICA combined with L-DOPA produced better neuroprotection from 6-OHDA-induced neurotoxicity than ICA or L-DOPA alone treatment. In parkinsonian 6-OHDA lesioned rats, ICA conferred DA neuroprotection as monotherapy and an enhancement benefit of L-DOPA treatment after daily administration of L-DOPA and ICA for 21 days. Moreover, ICA ameliorated the development of LID as evidenced by the lowered AIM scores without affecting L-DOPA-mediated efficacy. Furtherly, ICA attenuated neuroinflammation in 6-OHDA-induced DA neuronal loss and the development of LID in vivo. In conclusion, these findings suggest ICA might be a potential promising adjuvant to enhance L-DOPA efficacy and attenuate L-DOPA-produced adverse effects in PD.
Collapse
Affiliation(s)
- Di-Sheng Lu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Ce Chen
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Ya-Xin Zheng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Dai-Di Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Guo-Qing Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jie Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
8
|
Dopamine D1 and D3 receptor polypharmacology as a potential treatment approach for substance use disorder. Neurosci Biobehav Rev 2018; 89:13-28. [PMID: 29577963 DOI: 10.1016/j.neubiorev.2018.03.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/29/2022]
Abstract
In the search for efficacious pharmacotherapies to treat cocaine addiction much attention has been given to agents targeting dopamine D1 or D3 receptors because of the involvement of these receptors in drug-related behaviors. D1-like and D3 receptor partial agonists and antagonists have been shown to reduce drug reward, reinstatement of drug seeking and conditioned place preference in rodents and non-human primates. However, translation of these encouraging results to clinical settings has been limited due to a number of factors including toxicity, poor pharmacokinetic properties and extrapyramidal and sedative side effects. This review highlights the role of D1 and D3 receptors in drug reward and seeking, the discovery of D1-D3 heteromers and their potential as targets in the treatment of addiction.
Collapse
|
9
|
Recent advances in discovery and development of natural products as source for anti-Parkinson's disease lead compounds. Eur J Med Chem 2017; 141:257-272. [PMID: 29031072 DOI: 10.1016/j.ejmech.2017.09.068] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/25/2017] [Accepted: 09/29/2017] [Indexed: 02/05/2023]
Abstract
Parkinson's disease (PD) is a common chronic degenerative disease of the central nervous system. Although the cause remains unknown, several pathological processes and central factors such as oxidative stress, mitochondrial injury, inflammatory reactions, abnormal deposition of α-synuclein, and cell apoptosis have been reported. Currently, anti-PD drugs are classified into two major groups: drugs that affect dopaminergic neurons and anti-cholinergic drugs. Unfortunately, the existing conventional strategies against PD are with numerous side effects, and cannot fundamentally improve the degenerative process of dopaminergic neurons. Therefore, novel therapeutic approaches which have a novel structure, high efficiency, and fewer side effects are needed. For many years, natural products have provided an efficient resource for the discovery of potential therapeutic agents. Among them, many natural products possess anti-PD properties as a result of not only their wellrecognized anti-oxidative and anti-inflammatory activities but also their inhibitory roles regarding protein misfolding and the regulatory effects of PD related pathways. Indeed, with the steady improvement in the technologies for the isolation and purification of natural products and the in-depth studies on the pathogenic mechanisms of PD, many monomer components of natural products that have anti-PD effects have been gradually discovered. In this article, we reviewed the research status of 37 natural products that have been discovered to have significant anti-PD effects as well as their mode of action. Overall, this review may guide the design of novel therapeutic drugs in PD.
Collapse
|
10
|
Tian S, Wang X, Li L, Zhang X, Li Y, Zhu F, Hou T, Zhen X. Discovery of Novel and Selective Adenosine A 2A Receptor Antagonists for Treating Parkinson's Disease through Comparative Structure-Based Virtual Screening. J Chem Inf Model 2017; 57:1474-1487. [PMID: 28463561 DOI: 10.1021/acs.jcim.7b00188] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Among non-dopaminergic strategies for combating Parkinson's disease (PD), antagonism of the A2A adenosine receptor (AR) has emerged to show great potential. In this study, on the basis of two crystal structures of the A2A AR with the best capability to distinguish known antagonists from decoys, docking-based virtual screening (VS) was conducted to identify novel A2A AR antagonists. A total of 63 structurally diverse compounds identified by VS were submitted to experimental testing, and 11 of them exhibited substantial activity against the A2A AR (Ki < 10 μM), including two compounds with Ki below 1 μM (compound 43, 0.42 μM; compound 51, 0.27 μM) and good A2A/A1 selectivity (fold < 0.1). Compounds 43 and 51 demonstrated antagonistic activity according to the results of cAMP measurements (cAMP IC50 = 1.67 and 1.80 μM, respectively) and showed good efficacy in the haloperidol-induced catalepsy (HIC) rat model for PD at doses of up to 30 mg/kg. Further lead optimization based on a substructure searching strategy led to the discovery of compound 84 as an excellent A2A AR antagonist (A2A Ki = 54 nM, A2A/A1 fold < 0.1, cAMP IC50 = 0.3 μM) that exhibited significant improvement in anti-PD efficacy in the HIC rat model.
Collapse
Affiliation(s)
- Sheng Tian
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University , Suzhou, Jiangsu 215123, China
| | - Xu Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University , Suzhou, Jiangsu 215123, China
| | - Linlang Li
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University , Suzhou, Jiangsu 215123, China
| | - Xiaohu Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University , Suzhou, Jiangsu 215123, China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University , Suzhou, Jiangsu 215123, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, Zhejiang 310058, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, Zhejiang 310058, China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University , Suzhou, Jiangsu 215123, China
| |
Collapse
|
11
|
Zeng BY. Effect and Mechanism of Chinese Herbal Medicine on Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 135:57-76. [PMID: 28807165 DOI: 10.1016/bs.irn.2017.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder. Although both genetic and environmental factors are implicated in the development of Parkinson's disease, the cause of the disease is still unclear. So far conventional treatments to Parkinson's are symptomatic relief and focused mainly on motor symptoms. Chinese herbal medicine has been used to treat many conditions in China, Korea, Japan, and many Southeast Asian countries for 1000 years. During past a few decades, Chinese herbal medicine has gained wider and increasing acceptance within both public and medical profession due to its effectiveness on many conditions in western countries. In this chapter, mechanisms of action of many Chinese herbal compounds/extracts and Chinese herb formulas on the models of Parkinson's were reviewed. Further, reports of effectiveness of Chinese herb formulas on patients with Parkinson's were summarized. It was shown that both Chinese herbal compounds/extracts and herb formulas have either specific target mechanisms of action or multitargets mechanisms of action, as antioxidant, antiinflammatory, and antiapoptosis agents. Clinical studies showed that Chinese herb formulas as an adjunct improved both motor and nonmotor symptoms, and reduced dose of dopaminergic drugs and occurrence of dyskinesia. The evidence from the studies suggests that Chinese herb medicine has potential, acting as neuroprotective to slow down the progression of Parkinson's, and it is able to simultaneously treat both motor and nonmotor symptoms of Parkinson's. More studies are needed to explore the new compounds/extracts derived from Chinese herbs, in particular, their mechanisms of action. It is hopeful that new drugs developed from Chinese herb compounds/extracts and Chinese herb formulas will lead to better and complimentary therapy to PD.
Collapse
Affiliation(s)
- Bai-Yun Zeng
- Neurodegenerative Disease Research Group, Institute of Pharmaceutical Science, Faculty of Life Science & Medicine, King's College, London, United Kingdom.
| |
Collapse
|
12
|
Geerts H, Spiros A, Roberts P. Phosphodiesterase 10 inhibitors in clinical development for CNS disorders. Expert Rev Neurother 2016; 17:553-560. [DOI: 10.1080/14737175.2017.1268531] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hugo Geerts
- In Silico Biosciences Perelman School of Medicine, University of Pennsylvania, Berwyn, PA, USA
| | - Athan Spiros
- In Silico Biosciences Perelman School of Medicine, University of Pennsylvania, Berwyn, PA, USA
| | - Patrick Roberts
- In Silico Biosciences Perelman School of Medicine, University of Pennsylvania, Berwyn, PA, USA
| |
Collapse
|
13
|
Madapa S, Gadhiya S, Kurtzman T, Alberts IL, Ramsey S, Reith M, Harding WW. Synthesis and evaluation of C9 alkoxy analogues of (-)-stepholidine as dopamine receptor ligands. Eur J Med Chem 2016; 125:255-268. [PMID: 27688181 DOI: 10.1016/j.ejmech.2016.09.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/09/2016] [Accepted: 09/10/2016] [Indexed: 01/01/2023]
Abstract
Tetrahydroprotoberberine alkaloids have shown interesting polypharmacological actions at dopamine receptors and are a unique template from which to mine novel molecules with dual selective actions at D1 and D3 receptors. Such compounds will be valuable to evaluate as anti-cocaine therapeutics. Towards that eventual goal, we engaged an SAR study in which a series of C9 alkoxy analogues of the D1/D2/D3 ligand (-)-stepholidine that possessed or lacked a C12 bromo functionality, were synthesized and evaluated for affinity at dopamine D1, D2 and D3 receptors. We found that the analogues are generally selective for the D1 receptor. Small n-alkoxy substituents (up to 4 carbons in length) were generally well tolerated for high D1 affinity but such groups reduced D3 affinity. In the case of C12 brominated analogues, C9 alkoxylation also had little effect on D1 affinity for the smaller alkoxy groups, but reduced D2 and D3 affinities significantly. C12 bromination tends to increase D1 receptor selectivity. A number of compounds were identified that retain affinity for D1 and D3 receptors but lack D2 receptor affinity. Among them, compound 22a was found to be a selective D1/D3 dual antagonist (Ki = 5.3 and 106 nM at D1 and D3 receptors). Docking studies performed on the analogues at the D3 receptor revealed a number of interactions that are important for affinity including a critical N - Asp110 salt bridge motif, H-bonds to Ser192 and Cys181 and hydrophobic interactions between the aryl rings and Phe106 and Phe345. The analogues adopt an orientation in which ring A is located in the orthosteric binding site while the C9 alkoxy substituents attached to ring D project into the secondary binding pocket of the D3 receptor.
Collapse
Affiliation(s)
- Sudharshan Madapa
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, USA
| | - Satishkumar Gadhiya
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, USA; Ph.D. Program in Chemistry, CUNY Graduate Center, 365 5th Avenue, New York, NY 10016, USA
| | - Thomas Kurtzman
- Ph.D. Program in Chemistry, CUNY Graduate Center, 365 5th Avenue, New York, NY 10016, USA; Ph.D. Program in Biochemistry, CUNY Graduate Center, 365 5th Avenue, New York, NY 10016, USA; Department of Chemistry, Lehman College, The City University of New York, Bronx, NY 10468, USA
| | - Ian L Alberts
- Department of Natural Sciences, LaGuardia Community College, City University of New York, New York, NY 11101, USA
| | - Steven Ramsey
- Ph.D. Program in Biochemistry, CUNY Graduate Center, 365 5th Avenue, New York, NY 10016, USA; Department of Chemistry, Lehman College, The City University of New York, Bronx, NY 10468, USA
| | - Maarten Reith
- Department of Psychiatry, New York University, New York, NY 10016, USA
| | - Wayne W Harding
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, USA; Ph.D. Program in Chemistry, CUNY Graduate Center, 365 5th Avenue, New York, NY 10016, USA; Ph.D. Program in Biochemistry, CUNY Graduate Center, 365 5th Avenue, New York, NY 10016, USA.
| |
Collapse
|
14
|
Miguelez C, Navailles S, De Deurwaerdère P, Ugedo L. The acute and long-term L-DOPA effects are independent from changes in the activity of dorsal raphe serotonergic neurons in 6-OHDA lesioned rats. Br J Pharmacol 2016; 173:2135-46. [PMID: 26805402 PMCID: PMC4908202 DOI: 10.1111/bph.13447] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 01/15/2016] [Accepted: 01/21/2016] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE L-DOPA is still the most efficacious pharmacological treatment for Parkinson's disease. However, in the majority of patients receiving long-term therapy with L-DOPA, its efficacy is compromised by motor complications, notably L-DOPA-induced dyskinesia. Evidence suggests that the serotonergic system is involved in the therapeutic and the side effects of L-DOPA. Here, we investigate if long-term L-DOPA treatment alters the activity of the dorsal raphe nucleus (DRN) and its responses to serotonergic drugs. EXPERIMENTAL APPROACH We measured the responses of serotonergic neurons to acute and chronic L-DOPA treatment using in vivo electrophysiological single unit-extracellular recordings in the 6-OHDA-lesion rat model of Parkinson's disease. KEY RESULTS The results showed that neither acute nor chronic L-DOPA administration (6 mg·kg(-1) s.c.) altered the properties of serotonergic-like neurons. Furthermore, no correlation was found between the activity of these neurons and the magnitude of L-DOPA-induced dyskinesia. In dyskinetic rats, the inhibitory response induced by the 5-HT1A receptor agonist 8-OH-DPAT (0.0625-16 μg·kg(-1) , i.v.) was preserved. Nonetheless, L-DOPA impaired the ability of the serotonin reuptake inhibitor fluoxetine (0.125-8 mg·kg(-1) , i.v) to inhibit DRN neuron firing rate in dyskinetic animals. CONCLUSIONS AND IMPLICATIONS Although serotonergic neurons are involved in the dopaminergic effects of L-DOPA, we provide evidence that the effect of L-DOPA is not related to changes of the activity of DRN neurons. Rather, L-DOPA might reduce the efficacy of drugs that normally enhance the extracellular levels of serotonin. LINKED ARTICLES This article is part of a themed section on Updating Neuropathology and Neuropharmacology of Monoaminergic Systems. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.13/issuetoc.
Collapse
Affiliation(s)
- C Miguelez
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - S Navailles
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - P De Deurwaerdère
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - L Ugedo
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
15
|
L-Stepholidine rescues memory deficit and synaptic plasticity in models of Alzheimer's disease via activating dopamine D1 receptor/PKA signaling pathway. Cell Death Dis 2015; 6:e1965. [PMID: 26539912 PMCID: PMC4670924 DOI: 10.1038/cddis.2015.315] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 09/15/2015] [Accepted: 09/22/2015] [Indexed: 12/04/2022]
Abstract
It is accepted that amyloid β-derived diffusible ligands (ADDLs) have a prominent role in triggering the early cognitive deficits that constitute Alzheimer's disease (AD). However, there is still no effective treatment for preventing or reversing the progression of the disease. Targeting α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor trafficking and its regulation is a new strategy for AD early treatment. Here we investigate the effect and mechanism of L-Stepholidine (L-SPD), which elicits dopamine D1-type receptor agonistic activity, while acting as D2-type receptor antagonist on cognition and synaptic plasticity in amyloid precursor protein (APP) and presenilin 1 (PS1) double-transgenic (APP/PS1) mice, and hippocampal cultures or slices treated with ADDLs. L-SPD could improve the hippocampus-dependent memory, surface expression of glutamate receptor A (GluA1)-containing AMPA receptors and spine density in hippocampus of APP/PS1 transgenic mice. L-SPD not only rescued decreased phosphorylation and surface expression of GluA1 in hippocampal cultures but also protected the long-term potentiation in hippocampal slices induced by ADDLs. Protein kinase A (PKA) agonist Sp-cAMPS or D1-type receptor agonist SKF81297 had similar effects, whereas PKA antagonist Rp-cAMPS or D1-type receptor antagonist SCH23390 abolished the effect of L-SPD on GluA1 trafficking. This was mediated mainly by PKA, which could phosphorylate serine residue at 845 of the GluA1. L-SPD may be explored as a potential therapeutic drug for AD through a mechanism that improves AMPA receptor trafficking and synaptic plasticity via activating D1/PKA signaling pathway.
Collapse
|
16
|
Lian P, Li L, Geng C, Zhen X, Fu W. Higher-Affinity Agonists of 5-HT1AR Discovered through Tuning the Binding-Site Flexibility. J Chem Inf Model 2015; 55:1616-27. [DOI: 10.1021/acs.jcim.5b00164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peng Lian
- Department of Medicinal Chemistry & Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - LinLang Li
- Jiangsu
Key Laboratory for Translational Research for Neuropsychiatric-Diseases,
Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Chuanrong Geng
- Department of Medicinal Chemistry & Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xuechu Zhen
- Jiangsu
Key Laboratory for Translational Research for Neuropsychiatric-Diseases,
Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Wei Fu
- Department of Medicinal Chemistry & Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
17
|
Pan X, Chen C, Huang J, Wei H, Fan Q. Neuroprotective effect of combined therapy with hyperbaric oxygen and madopar on 6-hydroxydopamine-induced Parkinson’s disease in rats. Neurosci Lett 2015; 600:220-5. [DOI: 10.1016/j.neulet.2015.06.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 05/08/2015] [Accepted: 06/12/2015] [Indexed: 11/17/2022]
|
18
|
Wang T, Duan SJ, Wang SY, Lu Y, Zhu Q, Wang LJ, Han B. Coadministration of hydroxysafflor yellow A with levodopa attenuates the dyskinesia. Physiol Behav 2015; 147:193-7. [PMID: 25914172 DOI: 10.1016/j.physbeh.2015.04.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 01/03/2023]
Abstract
Levodopa (L-DOPA) is used as the most effective drug available for the symptomatic treatment of Parkinson's disease (PD). However, long-term treatment of L-DOPA frequently causes complications, including abnormal involuntary movements such as dyskinesia and response fluctuations in PD patients. In the present work, we investigated whether hydroxysafflor yellow A (HSYA) ameliorates L-DOPA-induced dyskinesia and motor fluctuations in the 6-hydroxydopamine-lesioned rat model of PD. Valid PD rats were treated daily with vehicle, HSYA alone, L-DOPA, or a combination of HSYA plus L-DOPA for 21days, respectively. L-DOPA (8mg/kg) and benserazide (15mg/kg) were treated intraperitoneally. HSYA was administrated intraperitoneally at a dose of 10mg/kg. The abnormal involuntary movements and rotational behavior were evaluated. The expression of the dopamine D3 receptor in the striatum was also assayed. The results demonstrated that daily administration of L-DOPA to PD rats for 21days induced a steady expression of dyskinesia. Coadministration of HSYA with L-DOPA significantly ameliorated L-DOPA-induced dyskinesia. The combination treatment also prevented the shortening of the motor response duration that defines wearing off motor fluctuations. HSYA also inhibited the increase of expression of the dopamine D3 receptor in the striatum. These findings demonstrated that HSYA provided anti-dyskinetic relief against L-DOPA in a preclinical model of PD via regulating the expression of the dopamine D3 receptor. The combination of L-DOPA and HSYA also reduced the likelihood of wearing off development, and may thus support the utility of such compounds for the improved treatment of PD.
Collapse
Affiliation(s)
- Tian Wang
- School of Pharmacy, Yantai University, Yantai, Shandong 264005, PR China; State key laboratory of Long-acting and Targeting Drug Delivery Technologies (luye Pharma Group Ltd.), Yantai, Shandong 264003, PR China
| | - Si-jin Duan
- School of Pharmacy, Yantai University, Yantai, Shandong 264005, PR China
| | - Shu-yun Wang
- School of Life Science, Yantai University, Yantai, Shandong 264005, PR China
| | - Yan Lu
- School of Life Science, Yantai University, Yantai, Shandong 264005, PR China
| | - Qing Zhu
- School of Life Science, Yantai University, Yantai, Shandong 264005, PR China
| | - Li-jie Wang
- School of Pharmacy, Yantai University, Yantai, Shandong 264005, PR China
| | - Bing Han
- School of Life Science, Yantai University, Yantai, Shandong 264005, PR China.
| |
Collapse
|
19
|
Shin KS, Zhao TT, Park KH, Park HJ, Hwang BY, Lee CK, Lee MK. Gypenosides attenuate the development of L-DOPA-induced dyskinesia in 6-hydroxydopamine-lesioned rat model of Parkinson's disease. BMC Neurosci 2015; 16:23. [PMID: 25896846 PMCID: PMC4431176 DOI: 10.1186/s12868-015-0163-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/10/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Gypenosides (GPS) and ethanol extract of Gynostemma pentaphyllum (GP-EX) show anxiolytic effects on affective disorders in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of Parkinson's disease (PD). Long-term administration of L-3,4-dihydroxyphenylalanine (L-DOPA) leads to the development of severe motor side effects such as L-DOPA-induced-dyskinesia (LID) in PD. The present study investigated the effects of GPS and GP-EX on LID in a 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD. RESULTS Daily administration of L-DOPA (25 mg/kg) in the 6-OHDA-lesioned rat model of PD for 22 days induced expression of LID, which was determined by the body and locomotive AIMs scores and contralateral rotational behaviors. However, co-treatments of GPS (25 and 50 mg/kg) or GP-EX (50 mg/kg) with L-DOPA significantly attenuated the development of LID without compromising the anti-parkinsonian effects of L-DOPA. In addition, the increases in ∆FosB expression and ERK1/2 phosphorylation in 6-OHDA-lesioned rats induced by L-DOPA administration were significantly reduced by co-treatment with GPS (25 and 50 mg/kg) or GP-EX (50 mg/kg). CONCLUSION These results suggest that GPS (25 and 50 mg/kg) and GP-EX (50 mg/kg) effectively attenuate the development of LID by modulating the biomarker activities of ∆FosB expression and ERK1/2 phosphorylation in the 6-OHDA-lesioned rat model of PD. GPS and GP-EX will be useful adjuvant therapeutics for LID in PD.
Collapse
Affiliation(s)
- Keon Sung Shin
- College of Pharmacy and Research Center for Bioresource and Health, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, 362-763, Republic of Korea.
| | - Ting Ting Zhao
- College of Pharmacy and Research Center for Bioresource and Health, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, 362-763, Republic of Korea.
| | - Keun Hong Park
- College of Pharmacy and Research Center for Bioresource and Health, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, 362-763, Republic of Korea.
| | - Hyun Jin Park
- College of Pharmacy and Research Center for Bioresource and Health, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, 362-763, Republic of Korea.
| | - Bang Yeon Hwang
- College of Pharmacy and Research Center for Bioresource and Health, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, 362-763, Republic of Korea.
| | - Chong Kil Lee
- College of Pharmacy and Research Center for Bioresource and Health, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, 362-763, Republic of Korea.
| | - Myung Koo Lee
- College of Pharmacy and Research Center for Bioresource and Health, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, 362-763, Republic of Korea.
| |
Collapse
|
20
|
Meade JA, Free RB, Miller NR, Chun LS, Doyle TB, Moritz AE, Conroy JL, Watts VJ, Sibley DR. (-)-Stepholidine is a potent pan-dopamine receptor antagonist of both G protein- and β-arrestin-mediated signaling. Psychopharmacology (Berl) 2015; 232:917-30. [PMID: 25231919 PMCID: PMC5234683 DOI: 10.1007/s00213-014-3726-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/13/2014] [Indexed: 01/11/2023]
Abstract
RATIONALE (-)-Stepholidine is a tetrahydroberberine alkaloid that is known to interact with dopamine receptors and has also been proposed as a novel antipsychotic agent. Its suggested novelty lies in the fact that it has been proposed to have D1-like receptor agonist and D2-like receptor antagonist properties. Thus, it might be effective in treating both positive and negative (cognition) symptoms of schizophrenia. However, its activity on specific dopamine receptor subtypes has not been clarified, especially with respect to its ability to activate D1-like receptors. OBJECTIVES We wished to examine the affinity and functional activity of (-)-stepholidine at each of the human dopamine receptor subtypes expressed in a defined cellular environment. METHODS D1-D5 dopamine receptors were stably expressed in cell lines and their interactions with (-)-stepholidine were examined using radioligand binding and various functional signaling assays. Radioligand binding assays were also performed using bovine striatal membranes. RESULTS (-)-Stepholidine exhibited high (nM) affinity for D1 and D5 receptors, somewhat lower (two- to four-fold) affinity for D2 and D3 receptors, and low micromolar affinity for D4 receptors. Functionally, (-)-stepholidine was ineffective in activating G protein-mediated signaling of D1-like and D2 receptors and was also ineffective in stimulating β-arrestin recruitment to any dopamine receptor subtype. It did, however, antagonize all of these responses. It also antagonized D1-D2 heteromer-mediated Ca(2+) mobilization. Radioligand binding assays of D1-like receptors in brain membranes also indicated that (-)-stepholidine binds to the D1 receptor with antagonist-like properties. CONCLUSIONS (-)-Stepholidine is a pan-dopamine receptor antagonist and its in vivo effects are largely mediated through dopamine receptor blockade with potential cross-talk to other receptors or signaling proteins.
Collapse
Affiliation(s)
- Julie A Meade
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 5625 Fishers Lane, Room 4S-04, Bethesda, MD, 20892-9405, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Li Z, Huang J, Sun H, Zhou S, Guo L, Zhou Y, Zhen X, Liu H. Design, synthesis and evaluation of benzo[a]thieno[3,2-g]quinolizines as novel l-SPD derivatives possessing dopamine D1, D2 and serotonin 5-HT1A multiple action profiles. Bioorg Med Chem 2014; 22:5838-46. [PMID: 25308766 DOI: 10.1016/j.bmc.2014.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
Abstract
A novel scaffold derived from l-SPD with a substituted thiophene group in the D ring were designed, synthesized, and evaluated for their binding affinities at dopamine (D1, D2 and D3) and serotonin (5-HT1A and 5-HT2A) receptors. Most of the tetracyclic compounds exhibited higher affinities for D2 and 5-HT1A receptors than l-SPD, while compound 23 e showed the highest Ki value of 7.54 nM at D2 receptor which was 14 times more potent than l-SPD. Additionally, compounds 23 d and 23 e were more potent than l-SPD at D3 receptor. According to the functional assays, 23 d and 23 e were demonstrated as full antagonists at D1 and D2 receptors and full agonists at 5-HT1A receptor. Since the combination of D2 antagonism and 5-HT1A agonism is considered effective in treating both the positive and negative symptoms of schizophrenia, these novel compounds are implicated as potential therapeutic agents.
Collapse
Affiliation(s)
- Zeng Li
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Jiye Huang
- Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Haifeng Sun
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Shengbin Zhou
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Lin Guo
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Department of Pharmacology, Soochow University College of Pharmaceutical Sciences, Suzhou, PR China; CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Yu Zhou
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Department of Pharmacology, Soochow University College of Pharmaceutical Sciences, Suzhou, PR China; Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China.
| | - Hong Liu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China.
| |
Collapse
|
22
|
Han B, Jin HJ, Song MY, Wang T, Zhao H. A potential target for the treatment of Parkinson's disease: effect of lateral habenula lesions. Parkinsonism Relat Disord 2014; 20:1191-5. [PMID: 25219971 DOI: 10.1016/j.parkreldis.2014.08.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/18/2014] [Accepted: 08/24/2014] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Parkinson's disease (PD) is a progressive neurodegenerative movement disorder that is caused predominantly by the degeneration of the nigrostriatal dopaminergic pathway. Lateral habenula (LHb) has efferent projections that terminate in the substantia nigra pars compacta (SNpc) and electrical stimulation of the LHb effectively suppresses the activity of dopamine-containing neurons in the SNpc. This study was aimed to investigate whether LHb lesions can ameliorate the syndromes of PD via affecting the activities of SNpc neurons in 6-hydroxydopamine (6-OHDA)-induced PD model rats. METHODS Concentrations of dopamine (DA) and its metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the striatum, which is the area projected by the SNpc dopaminergic neurons were assayed by high-performance liquid chromatography (HPLC) coupled with fluorescence detection. The immunohistochemical method was applied to detect the numbers of tyrosine hydroxylase (TH)-positive cells in the substantia nigra. RESULTS The results showed that LHb lesions induced a significant reduction in apomorphine-induced rotational behavior. The DA, DOPAC and HVA levels in the striatum of PD model rats were increased by the LHb lesions. CONCLUSION Therefore, we speculate that the LHb lesions induced a significant amelioration in motor disorders via increasing the DA levels in the striatum, which may lead to a potential therapeutic strategy for the treatment of PD.
Collapse
Affiliation(s)
- Bing Han
- Neuroscience Research Center, First Hospital of Jilin University, Changchun 130021, China; Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Hui Juan Jin
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Mei Ying Song
- Neuroscience Research Center, First Hospital of Jilin University, Changchun 130021, China
| | - Tian Wang
- School of Pharmacy, Yantai University, Yantai, China
| | - Hua Zhao
- Neuroscience Research Center, First Hospital of Jilin University, Changchun 130021, China; Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
23
|
L-Stepholidine, a naturally occurring dopamine D1 receptor agonist and D2 receptor antagonist, attenuates heroin self-administration and cue-induced reinstatement in rats. Neuroreport 2014; 25:7-11. [PMID: 24145772 DOI: 10.1097/wnr.0000000000000012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Opiate addiction is a chronic, relapsing brain disease characterized by persistent and uncontrolled drug-seeking behavior despite negative effects. L-Stepholidine (L-SPD) is an alkaloid extract of the Chinese herb Stephania intermedia with dopamine D1 receptor partial agonistic and D2 receptor antagonistic dual actions. The unique pharmacological profile of L-SPD suggests that L-SPD may be effective for the treatment of opiate addiction. The aim of this study was to characterize the effects of L-SPD on heroin self-administration on a fixed-ratio 1 schedule and cue-induced reinstatement under an extinction/reinstatement protocol. The effect of L-SPD on the locomotor activity of heroin-free rats was also tested. We found that 2.5, 5, and 10 mg/kg of L-SPD attenuated heroin self-administration and cue-induced reinstatement without affecting locomotor activity. These results showed that L-SPD, which has dual actions on dopamine D1 and D2 receptors, attenuates heroin self-administration and cue-induced reinstatement.
Collapse
|
24
|
Zhao R, Lu W, Fang X, Guo L, Yang Z, Ye N, Zhao J, Liu Z, Jia J, Zheng L, Zhao B, Zhang A, Zhen X. (6aR)-11-amino-N-propyl-noraporphine, a new dopamine D2 and serotonin 5-HT1A dual agonist, elicits potent antiparkinsonian action and attenuates levodopa-induced dyskinesia in a 6-OHDA-lesioned rat model of Parkinson's disease. Pharmacol Biochem Behav 2014; 124:204-10. [PMID: 24955866 DOI: 10.1016/j.pbb.2014.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/10/2014] [Accepted: 06/15/2014] [Indexed: 11/24/2022]
Abstract
Parkinson's disease (PD) drug therapy remains a challenge. Dual modulation of dopamine and 5-HT receptors has emerged as a promising approach in anti-PD drug development. Taking advantage of the newly discovered aporphine analogue(s), (6aR)-11-amino-N-propyl-noraporphine (SOMCL-171), which exhibited dual D2/5-HT1A receptor agonistic activity, we studied the effects of the compound on levodopa-induced dyskinesia (LID) in a PD animal model. The results demonstrated that SOMCL-171 elicited a potent anti-PD effect in a 6-OHDA-lesioned rat model. Chronic use of SOMCL-171 reduced LID without compromising the antiparkinsonian efficacy. Furthermore, we found that the antidyskinesia effect of SOMCL-171 is associated with its 5-HT1A agonistic activity and the up-regulation of the striatal 5-HT1A receptor. The present data indicated that chronic SOMCL-171 alone produced potent antiparkinsonian effects with weak dyskinesia, compared with that of levodopa. In addition, chronic SOMCL-171 application attenuated the development of levodopa-induced LID at no expense to the antiparkinsonian efficacy. Taken together, our data suggested that dual modulation of D2/5-HT1A receptors may provide a novel approach for drug development in PD and LID.
Collapse
Affiliation(s)
- Rui Zhao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Weijian Lu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xing Fang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Lin Guo
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Zhi Yang
- Department of Neurology, Affiliated Hospital, Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Na Ye
- Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
| | - Jiahao Zhao
- Department of Neurology, Affiliated Hospital, Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Zhili Liu
- Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
| | - Jia Jia
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Longtai Zheng
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Bin Zhao
- Department of Neurology, Affiliated Hospital, Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Ao Zhang
- Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China.
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
25
|
Miguelez C, Morera-Herreras T, Torrecilla M, Ruiz-Ortega JA, Ugedo L. Interaction between the 5-HT system and the basal ganglia: functional implication and therapeutic perspective in Parkinson's disease. Front Neural Circuits 2014; 8:21. [PMID: 24672433 PMCID: PMC3955837 DOI: 10.3389/fncir.2014.00021] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 02/27/2014] [Indexed: 01/15/2023] Open
Abstract
The neurotransmitter serotonin (5-HT) has a multifaceted function in the modulation of information processing through the activation of multiple receptor families, including G-protein-coupled receptor subtypes (5-HT1, 5-HT2, 5-HT4-7) and ligand-gated ion channels (5-HT3). The largest population of serotonergic neurons is located in the midbrain, specifically in the raphe nuclei. Although the medial and dorsal raphe nucleus (DRN) share common projecting areas, in the basal ganglia (BG) nuclei serotonergic innervations come mainly from the DRN. The BG are a highly organized network of subcortical nuclei composed of the striatum (caudate and putamen), subthalamic nucleus (STN), internal and external globus pallidus (or entopeduncular nucleus in rodents, GPi/EP and GPe) and substantia nigra (pars compacta, SNc, and pars reticulata, SNr). The BG are part of the cortico-BG-thalamic circuits, which play a role in many functions like motor control, emotion, and cognition and are critically involved in diseases such as Parkinson's disease (PD). This review provides an overview of serotonergic modulation of the BG at the functional level and a discussion of how this interaction may be relevant to treating PD and the motor complications induced by chronic treatment with L-DOPA.
Collapse
Affiliation(s)
- Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain ; Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU Vitoria-Gasteiz, Spain
| | - Teresa Morera-Herreras
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain
| | - Maria Torrecilla
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain
| | - Jose A Ruiz-Ortega
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain ; Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU Vitoria-Gasteiz, Spain
| | - Luisa Ugedo
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain
| |
Collapse
|
26
|
Neuroprotective effect of pseudoginsenoside-f11 on a rat model of Parkinson's disease induced by 6-hydroxydopamine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:152798. [PMID: 24386001 PMCID: PMC3872412 DOI: 10.1155/2013/152798] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/19/2013] [Indexed: 01/23/2023]
Abstract
Pseudoginsenoside-F11 (PF11), a component of Panax quinquefolism (American ginseng), plays a lot of beneficial effects on disorders of central nervous system. In this paper, the neuroprotective effect of PF11 on Parkinson's disease (PD) and the possible mechanism were investigated in a rat PD model. PF11 was orally administered at 3, 6, and 12 mg/kg once daily for a period of 2 weeks before and 1 week after the unilateral lesion of left medial forebrain bundle (MFB) induced by 6-hydroxydopamine (6-OHDA). The results showed that PF11 markedly improved the locomotor, motor balance, coordination, and apomorphine-induced rotations in 6-OHDA-lesioned rats. The expression of tyrosine hydroxylase (TH) in substantia nigra (SN) and the content of extracellular dopamine (DA) in striatum were also significantly increased after PF11 treatment. Moreover, significant reduction in the levels of striatal extracellular hydroxyl radical (∙OH), detected as 2,3- and 2,5-dihydroxy benzoic acid (2,3- and 2,5-DHBA), and increase in the level of striatal extracellular ascorbic acid (AA) were observed in the PF11-treated groups compared with 6-OHDA-lesioned rats. Taken together, we propose that PF11 has potent anti-Parkinson property possibly through inhibiting free radical formation and stimulating endogenous antioxidant release.
Collapse
|
27
|
Azkona G, Sagarduy A, Aristieta A, Vazquez N, Zubillaga V, Ruíz-Ortega JA, Pérez-Navarro E, Ugedo L, Sánchez-Pernaute R. Buspirone anti-dyskinetic effect is correlated with temporal normalization of dysregulated striatal DRD1 signalling in L-DOPA-treated rats. Neuropharmacology 2013; 79:726-37. [PMID: 24333147 DOI: 10.1016/j.neuropharm.2013.11.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 11/28/2013] [Accepted: 11/29/2013] [Indexed: 01/11/2023]
Abstract
Dopamine replacement with l-DOPA is the most effective therapy in Parkinson's disease. However, with chronic treatment, half of the patients develop an abnormal motor response including dyskinesias. The specific molecular mechanisms underlying dyskinesias are not fully understood. In this study, we used a well-characterized animal model to first establish the molecular differences between rats that did and did not develop dyskinesias. We then investigated the molecular substrates implicated in the anti-dyskinetic effect of buspirone, a 5HT1A partial agonist. Striatal protein expression profile of dyskinetic animals revealed increased levels of the dopamine receptor (DR)D3, ΔFosB and phospho (p)CREB, as well as an over-activation of the DRD1 signalling pathway, reflected by elevated ratios of phosphorylated DARPP32 and ERK2. Buspirone reduced the abnormal involuntary motor response in dyskinetic rats in a dose-dependent fashion. Buspirone (4 mg/kg) dramatically reduced the presence and severity of dyskinesias (by 83%) and normalized DARPP32 and ERK2 phosphorylation ratios, while the increases in DRD3, ΔFosB and pCREB observed in dyskinetic rats were not modified. Pharmacological experiments combining buspirone with 5HT1A and DRD3 antagonists confirmed that normalization of both pDARPP32 and pERK2 is required, but not sufficient, for blocking dyskinesias. The correlation between pDARPP32 ratio and dyskinesias was significant but not strong, pointing to the involvement of convergent factors and signalling pathways. Our results suggest that in dyskinetic rats DRD3 striatal over-expression could be instrumental in the activation of DRD1-downstream signalling and demonstrate that the anti-dyskinetic effect of buspirone in this model is correlated with DRD1 pathway normalization.
Collapse
Affiliation(s)
- Garikoitz Azkona
- Animal Model Unit, Inbiomed, Mikeletegi, 81, 20009 San Sebastian, Spain; Laboratory of Stem Cells and Neural Repair, Inbiomed, P. Mikeletegi, 81, 20009 San Sebastian, Spain.
| | - Ainhoa Sagarduy
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), B. Sarriena s/n, 48940 Leioa, Spain.
| | - Asier Aristieta
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), B. Sarriena s/n, 48940 Leioa, Spain.
| | - Nerea Vazquez
- Laboratory of Stem Cells and Neural Repair, Inbiomed, P. Mikeletegi, 81, 20009 San Sebastian, Spain.
| | - Verónica Zubillaga
- Laboratory of Stem Cells and Neural Repair, Inbiomed, P. Mikeletegi, 81, 20009 San Sebastian, Spain.
| | - José Angel Ruíz-Ortega
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), B. Sarriena s/n, 48940 Leioa, Spain.
| | - Esther Pérez-Navarro
- Department of Cell Biology, Immunology and Neurosciences, Faculty of Medicine, University of Barcelona, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/ Rosselló, 149-153, 08036 Barcelona, Spain; Centro de Investigaciones Biomédicas en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Casanova, 143, Barcelona, Spain.
| | - Luisa Ugedo
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), B. Sarriena s/n, 48940 Leioa, Spain.
| | - Rosario Sánchez-Pernaute
- Laboratory of Stem Cells and Neural Repair, Inbiomed, P. Mikeletegi, 81, 20009 San Sebastian, Spain.
| |
Collapse
|
28
|
Ma B, Yue K, Chen L, Tian X, Ru Q, Gan Y, Wang D, Jin G, Li C. L-stepholidine, a natural dopamine receptor D1 agonist and D2 antagonist, inhibits heroin-induced reinstatement. Neurosci Lett 2013; 559:67-71. [PMID: 24269875 DOI: 10.1016/j.neulet.2013.10.066] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 12/21/2022]
Abstract
L-Stepholidine (l-SPD), an alkaloid extract of the Chinese herb Stephania intermedia, is the first compound known to exhibit mixed dopamine D1 receptor agonist/D2 antagonist properties and is a potential medication for the treatment of opiate addiction. The aim of the present study was to investigate the effects of pretreatment with L-SPD on heroin-seeking behavior induced by heroin priming. Male Sprague-Dawley rats were trained to self-administer heroin (0.05mg/kg per infusion) under a fixed ratio 1 schedule for 12 consecutive days and nose-poke responding was extinguished for 12 days, after which reinstatement of drug seeking was induced by heroin priming. Pretreatment with L-SPD (2.5, 5.0 and 10.0mg/kg, i.p.) inhibited the heroin-induced reinstatement of heroin-seeking behavior. Importantly, L-SPD did not affect locomotion, indicating that the observed effects of L-SPD on reinstatement are not the result of motor impairments. The present data suggested that l-SPD inhibits heroin-induced reinstatement and its potential for the treatment of heroin relapse.
Collapse
Affiliation(s)
- Baomiao Ma
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan 430056, China
| | - Kai Yue
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan 430056, China
| | - Lin Chen
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan 430056, China
| | - Xiang Tian
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan 430056, China
| | - Qin Ru
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan 430056, China
| | - Yongping Gan
- Drug Prevention and Education Center, Hubei Public Security Bureau, Wuhan 430070, China
| | - Daisong Wang
- Drug Prevention and Education Center, Hubei Public Security Bureau, Wuhan 430070, China
| | - Guozhang Jin
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan 430056, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201213, China
| | - Chaoying Li
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
29
|
Han B, Hu J, Shen J, Gao Y, Lu Y, Wang T. Neuroprotective effect of hydroxysafflor yellow A on 6-hydroxydopamine-induced Parkinson's disease in rats. Eur J Pharmacol 2013; 714:83-8. [PMID: 23791614 DOI: 10.1016/j.ejphar.2013.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 06/03/2013] [Accepted: 06/13/2013] [Indexed: 11/19/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting predominantly the dopaminergic mesotelencephalic system. Enormous progress has been made in the treatment of PD. Our previous study has shown that hydroxysafflor yellow A (HSYA) could attenuate the neurotoxicity induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. In the present work, we examined whether HSYA had the neuroprotective effect on dopaminergic neurons of substantia nigra in a rat model of PD. Adult Sprague-Dawley rats were unilaterally injected with 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle. The PD rats were treated with HSYA (2 or 8 mg/kg) via caudal vein injection daily for 4 weeks. Rotational tests showed that HSYA significantly attenuated apomorphine-induced turns in 6-OHDA-induced PD rats. HSYA treatment resulted in a significant protection against the loss of tyrosine hydroxylase-positive cells. Our data showed that HSYA also increased the levels of dopamine and its metabolites, glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor in striatum of PD rats. In conclusion, these results supported a role for HSYA in preserving dopamine neuron integrity and motor function in a rodent model of PD, and implied a potential neuroprotective role for HSYA in this disease.
Collapse
Affiliation(s)
- Bing Han
- School of Life Science, Yantai University, Yantai 264005, PR China
| | | | | | | | | | | |
Collapse
|
30
|
Asymmetric total synthesis and identification of tetrahydroprotoberberine derivatives as new antipsychotic agents possessing a dopamine D1, D2 and serotonin 5-HT1A multi-action profile. Bioorg Med Chem 2013; 21:856-68. [DOI: 10.1016/j.bmc.2012.12.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/12/2012] [Accepted: 12/14/2012] [Indexed: 11/19/2022]
|
31
|
Riahi G, Morissette M, Lévesque D, Rouillard C, Samadi P, Parent M, Di Paolo T. Effect of chronic l-DOPA treatment on 5-HT(1A) receptors in parkinsonian monkey brain. Neurochem Int 2012; 61:1160-71. [PMID: 22940695 DOI: 10.1016/j.neuint.2012.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 08/09/2012] [Accepted: 08/15/2012] [Indexed: 12/16/2022]
Abstract
After chronic use of l-3,4-dihydroxyphenylalanine (l-DOPA), most Parkinson's disease (PD) patients suffer from its side effects, especially motor complications called l-DOPA-induced dyskinesia (LID). 5-HT(1A) agonists were tested to treat LID but many were reported to worsen parkinsonism. In this study, we evaluated changes in concentration of serotonin and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) and of 5-HT(1A) receptors in control monkeys, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkeys, dyskinetic MPTP monkeys treated chronically with l-DOPA, low dyskinetic MPTP monkeys treated with l-DOPA and drugs of various pharmacological activities: Ro 61-8048 (an inhibitor of kynurenine hydroxylase) or docosahexaenoic acid (DHA) and dyskinetic MPTP monkeys treated with l-DOPA+naltrexone (an opioid receptor antagonist). Striatal serotonin concentrations were reduced in MPTP monkeys compared to controls. Higher striatal 5-HIAA/serotonin concentration ratios in l-DOPA-treated monkeys compared to untreated monkeys suggest an intense activity of serotonin axon terminals but this value was similar in dyskinetic and nondyskinetic animals treated with or without adjunct treatment with l-DOPA. As measured by autoradiography with [(3)H]8-hydroxy-2-(di-n-propyl) aminotetralin (8-OH-DPAT), a decrease of 5-HT(1A) receptor specific binding was observed in the posterior/dorsal region of the anterior cingulate gyrus and posterior/ventral area of the superior frontal gyrus of MPTP monkeys compared to controls. An increase of 5-HT(1A) receptor specific binding was observed in the hippocampus of MPTP monkeys treated with l-DOPA regardless to their adjunct treatment. Cortical 5-HT(1A) receptor specific binding was increased in the l-DOPA-treated MPTP monkeys alone or with DHA or naltrexone and this increase was prevented in low dyskinetic MPTP monkeys treated with l-DOPA and Ro 61-8048. These results highlight the importance of 5-HT(1A) receptor alterations in treatment of PD with l-DOPA.
Collapse
Affiliation(s)
- Golnasim Riahi
- Faculty of Pharmacy, Université Laval, Quebec City, Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
Design, synthesis, and pharmacological evaluation of novel tetrahydroprotoberberine derivatives: Selective inhibitors of dopamine D1 receptor. Bioorg Med Chem 2012; 20:4862-71. [DOI: 10.1016/j.bmc.2012.05.057] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/23/2012] [Accepted: 05/24/2012] [Indexed: 01/11/2023]
|
33
|
Song JX, Sze SCW, Ng TB, Lee CKF, Leung GPH, Shaw PC, Tong Y, Zhang YB. Anti-Parkinsonian drug discovery from herbal medicines: what have we got from neurotoxic models? JOURNAL OF ETHNOPHARMACOLOGY 2012; 139:698-711. [PMID: 22212501 DOI: 10.1016/j.jep.2011.12.030] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/20/2011] [Accepted: 12/20/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herbal medicines are used to treat Parkinson's disease (PD) in ancient medical systems in Asian countries such as India, China, Japan and Korea based on their own anecdotal or experience-based theories. AIM OF THE REVIEW To systematically summarize and analyze the anti-Parkinsonian activities of herbal preparations (including active compounds, herbal extracts and formulations) investigated in the neurotoxic models of PD and provide future references for basic and clinical investigations. MATERIALS AND METHODS All the herbal materials tested on in vitro and in vivo neurotoxic models of PD were retrieved from PubMed database by using pre-set searching strings. The relevant compounds and herbal extracts with anti-Parkinsonian activities were included and analyzed according to their chemical classifications or biological activities. RESULTS A total of 51 herbal medicines were analyzed. A diversity of compounds isolated from herbal materials were reported to be effective on neurotoxic models of PD by modulating multiple key events or signaling pathways implicated in the pathogenesis of PD. The main structure types of these compounds belong to catechols, stilbenoids, flavonoids, phenylpropanoids and lignans, phenylethanoid glycosides and terpenes. Although some herbal extracts and formulations have shown positive results on PD animal models, the relative compounds accounting for the effects and the underlying mechanisms remain to be further investigated. CONCLUSIONS Herbal medicines can be an alternative and valuable source for anti-Parkinsonian drug discovery. Compounds classified into stilbenoids, flavonoids, catechols and terpenes may be the most promising candidates for further investigation. Some well-studies compounds such as baicalein, puerarin, resveratrol, curcumin and ginsenosides deserve further consideration in clinical trials. In-depth experimental studies are still needed to evaluate the efficacy of herbal extracts and formulations in PD models.
Collapse
Affiliation(s)
- Ju-Xian Song
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhang H, Ye N, Zhou S, Guo L, Zheng L, Liu Z, Gao B, Zhen X, Zhang A. Identification of N-Propylnoraporphin-11-yl 5-(1,2-Dithiolan-3-yl)pentanoate as a New Anti-Parkinson's Agent Possessing a Dopamine D2 and Serotonin 5-HT1A Dual-Agonist Profile. J Med Chem 2011; 54:4324-38. [DOI: 10.1021/jm200347t] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hai Zhang
- Department of Pharmacology, Soochow University College of Pharmaceutical Sciences, Suzhou, China 215325
| | | | | | | | - Longtai Zheng
- Department of Pharmacology, Soochow University College of Pharmaceutical Sciences, Suzhou, China 215325
| | | | - Bo Gao
- Department of Pharmacology, Soochow University College of Pharmaceutical Sciences, Suzhou, China 215325
| | - Xuechu Zhen
- Department of Pharmacology, Soochow University College of Pharmaceutical Sciences, Suzhou, China 215325
| | | |
Collapse
|
35
|
Gao M, Chu HY, Jin GZ, Zhang ZJ, Wu J, Zhen XC. l-Stepholidine-induced excitation of dopamine neurons in rat ventral tegmental area is associated with its 5-HT1A receptor partial agonistic activity. Synapse 2010; 65:379-87. [DOI: 10.1002/syn.20855] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 06/28/2010] [Indexed: 01/23/2023]
|